
Int J Parallel Prog (2019) 47:1046–1085
https://doi.org/10.1007/s10766-017-0539-5

Extensibility and Composability of a Multi-Stencil
Domain Specific Framework

Hélène Coullon1 · Julien Bigot2 ·
Christian Perez3

Received: 30 May 2016 / Accepted: 13 November 2017 / Published online: 21 November 2017
© Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract As the computation power of modern high performance architectures
increases, their heterogeneity and complexity also become more important. One of
the big challenges of exascale is to reach programming models that give access to
high performance computing (HPC) to many scientists and not only to a few HPC
specialists. One relevant solution to ease parallel programming for scientists is domain
specific language (DSL). However, one problem to avoid with DSLs is to mutualize
existing codes and libraries instead of implementing each solution from scratch. For
example, this phenomenon occurs for stencil-based numerical simulations, for which
a large number of languages has been proposed without code reuse between them.
The Multi-Stencil Framework (MSF) presented in this paper combines a new DSL
to component-based programming models to enhance code reuse and separation of
concerns in the specific case of stencils. MSF can easily choose one parallelization
technique or another, one optimization or another, as well as one back-end imple-
mentation or another. It is shown that MSF can reach same performances than a non
component-based MPI implementation over 16,384 cores. Finally, the performance
model of the framework for hybrid parallelization is validated by evaluations.

B Hélène Coullon
helene.coullon@inria.fr

Julien Bigot
julien.bigot@cea.fr

Christian Perez
christian.perez@inria.fr

1 IMT Atlantique, Inria, LS2N, UBL, CNRS, 44307 Nantes, France

2 Maison de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay,
91191 Gif-sur-Yvette, France

3 Univ. Lyon, Inria, CNRS, ENS de Lyon, Univ. Claude-Bernard Lyon 1, LIP, Lyon, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-017-0539-5&domain=pdf
http://orcid.org/0000-0003-2573-2147

Int J Parallel Prog (2019) 47:1046–1085 1047

Keywords Component programming models · Domain specific language (DSL) ·
Stencil · Numerical simulation · Data parallelism · Task parallelism · Scheduling ·
MPI · OpenMP

1 Introduction

As the computation power of modern high performance architectures increases, their
heterogeneity and complexity also become more important. For example, the current
fastest supercomputer Sunway TaihuLight1 is composed of multi-cores processors and
accelerators, and is able to reach a theoretical peak performance of about thirty peta-
flops (floating-point operations per second). However, to be able to use suchmachines,
multiple programming models, such as Message Passing Interface (MPI), OpenMP,
CUDA, etc., and multiple optimization techniques, such as cache optimization, have
to be combined. Moreover, current architectures evolution seems to indicate that het-
erogeneity and complexity in HPC will continue to grow in the future.

One of the big challenges to be able to use those upcoming Exascale computers is to
propose programming models that give access to high performance computing (HPC)
to many scientists and not only to a few HPC specialists [15]. Actually, applications
that run on supercomputers and need such computation power (e.g., physics, weather
or genomic) are typically not implemented byHPCspecialists but by domain scientists.

Many general purpose languages and frameworks have improved the simplicity of
writing parallel codes. For example PGAS models [23] or task-based frameworks,
such as OpenMP [13], Legion [4] or StarPU [2], partially hide intricate details of par-
allelism to the user. For non-expert users however, these languages and frameworks
are still difficult to use. Moreover, tuning an application for a given architecture is still
very complex to achieve with these solutions. An interesting approach that combines
simplicity of use, due to a high abstraction level, with efficient execution are domain
specific languages (DSL) and domain specific frameworks (DSF). These solutions are
specific to a given domain and propose a grammar or an API which is easy to under-
stand for specialists of this domain. Moreover, knowledge about the targeted domain
can be embedded in the compiler that can thus automatically apply parallelization and
optimization techniques to produce high performance code. Domain specific solu-
tions are therefore able to separate end-user concerns from HPC concerns which is a
requirement to make HPC accessible to a wider audience.

Many domain specific languages and frameworks have been proposed. Each one
claims to handle a distinct specific optimization or use case. Each solution is how-
ever typically re-implemented from scratch. In this paper, we claim that the sharing
of common building blocks when designing DSLs or DSFs would increases re-use,
flexibility and maintainability in their implementation. It would also ease the creation
of approaches and applications combining multiple DSLs and DSFs.

For example, some of the approaches to numerically solve partial differential equa-
tions (PDEs) lead to stencil computations where the values associated to one point in
space at a given time are computed from the values at the previous time at the exact

1 https://www.top500.org/list/2017/11/.

123

https://www.top500.org/list/2017/11/

1048 Int J Parallel Prog (2019) 47:1046–1085

same location together with a few neighbor locations.ManyDSLs have been proposed
for stencil computations [7,8,14,26,30] as detailed in Sect. 7. Many of them use the
same kind of parallelization, data structures or optimization techniques, however each
one has been built from scratch.

Wepropose theMulti-Stencil Framework (MSF) that is built upon ameta-formalism
of multi-stencil simulations. MSF produces a parallel orchestration of a multi-stencil
program without being aware of the underlying implementation choices (e.g., dis-
tributed data structures, task scheduler etc.). Thanks to this meta-formalism MSF is
able to easily switch from one parallelization technique to another and from one opti-
mization to another. Moreover, as MSF is independent from implementation details,
MSF can easily choose one back-end or another, thus easing code reuse of existing
solutions. To ease composition of existing solutions, MSF is based on component-
based programming [29], where applications are defined as an assembly of building
blocks, or components.

After a short overview of the Multi-Stencil Framework given in Sect. 2, the paper
is organized as follows. The meta-formalism of a multi-stencil program is presented
in Sect. 3; from this formalism are built both a light and descriptive domain specific
language, namely MSL, as well as a generic component assembly of the application
both described in Sect. 4; the compiler of the framework is described in Sect. 5; finally
a performance evaluation is detailed in Sect. 6.

2 The Component-Based Multi-Stencil Framework

This section first presents a background on component models and particularly on the
Low Level Components. This background is needed to understand the second part of
the section which gives an overview of the overall Multi-Stencil Framework (MSF).

2.1 Background on Component Models

Component-based software engineering (CBSE) is a domain of software engineer-
ing [29] which aims at improving code re-use, separations of concerns, and thus
maintainability. A component-based application is made of a set of component
instances linked together, this is also called a component assembly. A component
is a black box that implements an independent functionality of the application, and
which interacts with its environment only through well defined interfaces: its ports.
For example, a port can specify services provided or required by the component. With
respect to high performance computing, some works have also shown that component
models can achieve the needed level of performance and scalability while also helping
in application portability [1,6,27].

Many component models exist, each of themwith its own specificities. Well known
component models include, for example, the CORBAComponentModel (CCM) [24],
and the Grid Component Model (GCM) [3] for distributed computing, while the Com-
mon Component Architecture (CCA) [1], and Low Level Components (L2C) [5] are
HPC-oriented. This work makes use of L2C for the experiments.

123

Int J Parallel Prog (2019) 47:1046–1085 1049

c0 c1 m

p u vq

(a)

c0 c1 m

p u vq

(b)

c2 c3

(c)

Fig. 1 Example of components and their ports representation. a Component c0 has a provide port (p) and
a use port (u); Component c1 has also a provide port (q) but also a use multiple port (v). b A use port is
connected to a (compatible) provide port. c Component c2 and c3 shares an MPI communicator

L2C [5] is a minimalist C++ based HPC-oriented component model where a com-
ponent extends the concept of class. The services offered by the components are
specified trough provide ports, those used either by use ports for a single service
instance, or use-multiple ports for multiple services instances. Services are specified
as C++ interfaces. L2C also offers MPI ports that enable components to share MPI
communicators. Finally, components can also have attribute ports to be configured.
In this paper, and as illustrated in Fig. 1, a provide port is represented by a white
circle, a use port by a black circle, a use-multiple port by a black circle with a white
m in it. MPI port are connected with a black rectangle. A L2C-based application is
a static assembly of components instances and the connections between their ports.
Such an assembly is described in LAD, an XML dialect, and is managed by the L2C
runtime system that minimize overheads by loading simple dynamic libraries. One
can also notice that L2C can achieve performance if the granularity of components is
high enough and attentively chosen by the user. The typical overhead of a L2C is a
C++ indirect virtual method invocation.

2.2 Multi-Stencil Framework Overview

The Multi-Stencil Framework helps end-users to produce high performance parallel
applications for the specific case of multi-stencils. The multi-stencil domain will be
formally defined in the next section. Amulti-stencil program numerically solves PDEs
using computations that can use neighborhood values around an element, also called
a stencil computation.

Figure 2 gives an overview of the Multi-Stencil Framework that is entirely detailed
throughout this paper. It is composed of four distinct parts described hereafter. As
illustrated in Fig. 2, MSF targets two different kinds of end-users: the numerician,
in other words the mathematician, and the developer. Most of the time numericians
do have programming knowledge, however as it is not their core domain and because
of a lack of time, development is often left to engineers according to numerician
needs. MSF has the interesting particularity to propose a clear separation of concerns

123

1050 Int J Parallel Prog (2019) 47:1046–1085

Numerician

Generic Assembly

Mul�-Stencil Language

Mul�-Stencil Compiler

Specialized assembly

HPC spec.

Developer

M
u
l
t
i
-
S
t
e
n
c
i
l

F
r
a
m
e
w
o
r
k

+

Fig. 2 TheMulti-Stencil framework (MSF) is composed of theMulti-Stencil Language (MSL), theGeneric
Assembly (GA) and the Multi-Stencil Compiler (MSC) to produce a specialized assembly of components.
The numerician, or mathematician uses MSL to describe its simulation. The developer will implement
components responsible for numerical codes. A third party HPC specialist can interact withMSF to propose
different version of HPC components (Color figure online)

between these two end-users by distinguishing the description of the simulation from
the implementation of numerical codes.

MSF also has the interesting capability to be more flexible than existing solutions
thanks to a possibility for a third party to interact with the framework. This third party
is a High Performance Computing (HPC) specialist as displayed in Fig. 2.

Multi-Stencil Language The Multi-Stencil Language, or MSL, is the domain spe-
cific language proposed by the framework for the numerician. It is a descriptive
language, easy to use, without any concern about implementation details. It fits the
need of a mathematician to describe the simulation. The description written withMSL
can be considered as an input of the framework. MSL is described in details in Sect. 4.
The language is built upon the formalism described in Sect. 3.

Generic Assembly In addition to the language MSL, used by the numerician to
describe its simulation, MSF needs a Generic Assembly (GA) of a multi-stencil pro-
gram as input. What is called a GA is a component assembly for which meta-types
of components are represented and for which some parts need to be generated or spe-
cialized. A GA could be compared respectively to a template or a skeleton in object
programming languages (such as C++) or functional languages. From this generic
assembly will be built the final specialized assembly of the simulation where compo-
nent types will be specified, and where parts of GA will be transformed. As well as
MSL, this generic assembly is described in Sect. 4 and is built upon themeta-formalism
described in Sect. 3.

Multi-Stencil Compiler The core of the framework is the Multi-Stencil Compiler,
or MSC. It is responsible for transforming the generic assembly into the final parallel
assembly which is specific to the simulation described by the numerician with MSL.
MSC is described in Sect. 5.

Specialized assembly Finally, the output of MSF is the component assembly gen-
erated by MSC. It is an instantiation and a transformation of the generic component
assembly, by adding component types, transforming some part of the assembly, and by
adding specific components generated by MSC. From this final component assembly

123

Int J Parallel Prog (2019) 47:1046–1085 1051

0,0

1,1

Fig. 3 From left to right, Cartesian, curvilinear and unstructured meshes

which is specific to the simulation initially described with MSL, the developer will
finally write components associated to numerical codes, or directly re-use existing
components from other simulations. This final specialized component assembly is a
parallel orchestration of the computations of the simulation initially described by the
numerician. Finally, the specialized assembly produced by MSF is written in L2C.

3 Formalism of a Multi-stencil Program

The numerical solving of partial differential equations relies on the discretization of
the continuous time and space domains. Computations are typically iteratively (time
discretization) applied onto a mesh (space discretization). While the computations
can have various forms, many direct methods can be expressed using three categories
only: stencil computations involve access to neighbor values only (the concept of
neighborhood depending on the space discretization used); local computations depend
on the computed location only (this can be seen as a stencil of size one); finally,
reductions enable to transform variables mapped on the mesh to a single scalar value.

This section gives a complete formal description of what we call a multi-stencil
program and its computations. This formalism is general enough to be common to
any existing solution already proposed for stencil computations. As a result it can be
considered as a meta-formalism or a meta-model of a Multi-Stencil Program. This
meta-formalism will be used to define MSL and GA in the next section.

3.1 Time, Mesh and Data

Let us introduce some notations. Ω is the continuous space domain of a numerical
simulation (typically R

n). A mesh M defines the discretization of the continuous
space domain Ω and is defined as follows.

Definition 1 Amesh is a connected undirected graphM = (V, E), where V ⊂ Ω is
the (finite) set of vertices and E ⊆ V 2 the set of edges. The set of edges E of a mesh
M = (V, E) does not contain bridges. It is said that the mesh is applied onto Ω .

Amesh can be structured (as Cartesian or curvilinearmeshes), unstructured, regular
or irregular (without the same topology for each element) as illustrated in Fig. 3.

123

1052 Int J Parallel Prog (2019) 47:1046–1085

Definitions (mesh)

– An entity φ of a meshM = (V, E) is defined as a subset of its vertices and edges,
φ ⊂ V ∪ E .

– A group of mesh entities G ∈ P(V ∪ E) represents a set of entities of the same
topology.

– The set of all groups of mesh entities used in a simulation is denoted Φ.

For example, in a 2D Cartesian mesh, an entity could be a cell, made up of four
vertices and four edges. A group of entities could contain all the cells, another would
for example contain the vertical edges at the frontier between cells. Both groups would
be part of Φ. This example is illustrated in Fig. 4a.

Definition 2 The finite sequence T : (tn)n∈�0,Tmax� represents the discretization of the
continuous time domain T = R.

The time discretization can be as simple as a constant time-step with a fixed number
of steps. The time-step and the number of steps can also change on the fly during
execution.

Definitions (quantity)

– Δ are the mesh variables. A mesh variable δ ∈ Δ associates to each couple entity
and time-step a value δ : G × T �→ Vδ where Vδ is a value type.

– The group of entities a variable is mapped on is denoted enti t y(δ) = G.
– S are the scalar variables. A scalar variable s ∈ S associates to each time-step a
value s : T �→ Vδ where Vδ is a value type.

– V = Δ ∪ S is the set of variables or quantities.
– Among the scalar variables is one specific boolean variable conv ∈ S, the conver-
gence criteria, whose value is 0 except at the last step where it is 1. This scalar can
be updated on the fly according to other variables, typically by using a reduction
as detailed later.

3.2 Computations

Definitions

– A computation domain D is a subpart of a group of mesh entities, D ⊆ G ∈ Φ.
– The set of computation domains of a numerical simulation is denoted D.
– N is the set of neighborhood functions n : Gi �→ Gm

j which for a given entity
φ ∈ Gi returns a set of m entities in G j . One can notice that i = j is possible.
Most of the time, such a neighborhood is called a stencil shape.

Definition 3 A computation kernel k of a numerical simulation is defined as k =
(S, R, (w, D), comp), where

– S ∈ S is the set of scalar to read,
– w ∈ V is the single quantity (variable) modified by the computation kernel,
– D is the computation domain on which w is computed, D ⊆ enti t y(w), or is null
if w ∈ Δ,

123

Int J Parallel Prog (2019) 47:1046–1085 1053

– R ∈ Δ ×N is the set of tuples (r, n) representing the data read where r is a mesh
variable read by the kernel to compute w, and n : enti t y(w) → enti t y(r)m is a
neighborhood function that indicates which entity of r are read to compute w.

– Finally, comp is the numerical computation which returns a value from a set of
n input values, comp : Vn

i → V j , where Vi and V j are value types. Thus, comp
represents the actual numerical expression computed by a kernel.

In aMulti-Stencil simulation, at each time-step, a set of computations is performed.
During a computation kernel, it can be considered that a set of old states (t − 1) of
quantities are read (S and R), and that a new state (t) of a single quantity is written
(w). Such a definition of a computation kernel covers a large panel of different com-
putations. For example, the four usual types of computations (stencil, local, boundary
and reduction) performed into a simulation can be defined as follow:

– A computation kernel k(S, R, (w, D), comp) is a stencil kernel if ∃(r, n) ∈ R
such that n 	= identi t y.

– A boundary kernel is a kernel k(S, R, (w, D), comp) where D is a specific com-
putation domain at the border of entities, and which does not intersect with any
other computation domain.

– A computation kernel k(S, R, (w, D), comp) is a local kernel if ∀(r, n) ∈ R,
n = identi t y.

– A computation kernel k(S, R, (w, D), comp) is a reduction kernel ifw is a scalar.
A reduction can for example be used to compute the convergence criteria of the
time loop of the simulation.

Since we only consider explicit numerical schemes in this paper, a kernel cannot
write the same quantity it reads, except locally, i.e. if ∃(w, n) where w ∈ R ⇒ n =
identi t y.

It could seem counter-intuitive to restrict kernels to the computation of a single
quantity. As amatter of fact, one often performsmultiple computations in a single loop,
for example for performance reasons (cache optimization, temporary computation
factorization, etc.) or for readability (code length, semantically close computations,
etc.). One can however notice that it is always possible to re-express a computation
modifying n quantities as n computations modifying a single quantity each. Both
approaches are therefore equivalent from an expressiveness point of view.

Modifying multiple quantities in a single loop nest does however not always
improve performance. For example, it reduces the number of concurrent tasks available
and limits the potential efficiency on parallel resources as will be shown in Sect. 6. We
therefore introduce the concept of fusion in Sect. 5 where multiple logical kernels can
be executed in a single loop nest that modifies multiple quantities. This transformation
is much easier to implement than splitting a kernel would be, leaving more execution
choices open.

In addition, the modification of multiple quantities in a single loop nest can lead to
subtle ordering errors when executing in parallel as it will be discussed in Sect. 5.4.
Automatically detecting kernels that can be fused instead of leaving this to the respon-
sibility of the domain scientist avoids these potential errors. We have therefore chosen
to restrict kernels to the computation of a single quantity.

123

1054 Int J Parallel Prog (2019) 47:1046–1085

Mesh Cells Edgex

(a) On the left a mesh is represented, on the right two examples
of groups of mesh entities are represented: cells and vertical
edges.

y,xy,x

x
y+1

x
y-1

x-1
y

x+1
y

A B

(b) A is computed with a 4-
neighborhood stencil applied on B.
A is computed onto a computation
domain which does not include all
entities of the group.

x,y x1
y1

x1+1
y1

A C

(c) A is computed with a 2-
neighborhood stencil applied on C.
A is computed onto a computation
domain includes all entities of the
group.

Fig. 4 a Cartesian mesh and two kind of groups of mesh entities, b an example of stencil kernel on cells,
c an example of stencil kernel on two different groups of mesh entities

Definition 4 The set of n ordered computation kernels of a numerical simulation is
denoted Γ = [ki]0≤i≤n−1, such that ∀ki , k j ∈ Γ , if i < j , then ki is computed before
k j .

Definition 5 A multi-stencil program is defined by the octuplet

MSP(M, Φ,D,N ,Δ,S, T, Γ) (1)

Example For example, in Fig. 4b, assuming that the computation domain (full lines)
is denoted dc1 and the stencil shape described by the neighborhood function is n1,
the stencil kernel can be defined as:

R : {(B, n1)}, w : A, D : dc1,
comp : A(x, y) = B(x + 1, y) + B(x − 1, y) + B(x, y + 1) + B(x, y − 1).

On the other hand, in the example of Fig. 4c, assuming the computation domain is
dc2 and the stencil shape is n2, the stencil kernel is defined as:

R : {(C, n2), (A, identi t y)}, w : A, D : dc2,
comp : A(x, y) = A(x, y) + C(x1, y1) + C(x1 + 1, y1).

123

Int J Parallel Prog (2019) 47:1046–1085 1055

Driverstart

m

TimeT Computations Γ

DataΔ
∗

∗

DDS M,Φ, D,N

Fig. 5 Generic Assembly according to the Multi-Stencil program formalism. Components circled by a
double line identify those that will be instantiated multiple times by MSC. Component colors represent
actors of Fig. 2 responsible for the component implementation: green for those automatically generated
by the compiler, red for those implemented by HPC specialists and blue for those implemented by the
developer (Color figure online)

In this section,wehave formally defined a stencil program.This formalism ismainly
composed of a mesh abstraction and a simple definition of computation. In fact, this
formalism is generic enough to be common tomany existingmodelizations of a stencil
computation or a stencil simulation. Thus, the formalism summarized by Eq. (1) can
be compared to a meta-model of a multi-stencil program. In the next section, we use
this meta-model (or meta-formalism) to define both a the domain specific language
MSL, and the generic assembly of a multi-stencil program GA.

4 Generic Asssembly and the Multi-stencil Language

From the octuplet of Eq. (1) both the Generic Assembly (GA) of a multi-stencil
program and the Multi-Stencil Language (MSL) can be built. GA and MSL are both
are described in this section.

4.1 Generic Assembly

As illustrated in Fig. 5, the GA has five components: Driver, Time, DDS, Data, and
Computations. These components are generic components or abstract components.
It means that interfaces of these components are well defined but that they are not
implemented yet in GA. They can be compared to abstract classes and templates in
C++ for which an implementation must be given as well as specific parameters .

Driver This component can be compared to the main function of a usual program.
It is responsible for both the initialization and the execution of other components
(like variable initialization and function calls). This component is generated by MSC
(represented in green).

TimeThis component is responsible for the time T defined in Eq. (1). It is composed
of a time loop and potentially of a convergence reduction. This component is generated
by MSC (represented in green).

123

1056 Int J Parallel Prog (2019) 47:1046–1085

DDS This component is responsible for the mesh and its entities M and Φ, the
set of computation domains D, and the set of neighborhood functions N . When the
generic assembly is instantiated and specialized by MSC, an implementation of DDS
is selected to handle a specific type of mesh. The interfaces exposed by this component
are well defined and any component providing these interfaces can be indifferently
used. A third party specialist can therefore propose new implementation of DDS.
In this paper, both data and task parallelism are used. In the case of data parallelism
DDS handles mesh partitioning and provides a synchronization interface as detailed in
Sect. 5. The implementation of this component is the responsibility of HPC specialists
(represented in red).

Data This component is responsible for the set of mesh variables Δ. Each instance
of the component uses the DDS component to handle one single mesh variable. It is
closely related to DDS and its implementation is typically provided by the same HPC
specialist as DDS (represented in red).

Computations This component is responsible for Γ , i.e., the computations of the
simulation. It is automatically replaced by a sub-assembly of components produced
by MSC for which the parallel part is automatically generated. On the other hand,
components responsible for the numerical kernels are filled by the developer. This
is why this component is represented in green and blue in Fig. 5. The sub-assembly
generation is described in Sect. 5.

4.2 The Multi-stencil Language

The second element ofMSFwhich is built upon themeta-model represented by Eq. (1)
is the Multi-Stencil Language and its grammar. This grammar is light and descriptive
only. However it is sufficient (in addition to GA) for MSC to automatically extract a
parallel pattern of the simulation, which is finally dumped as a specialized instantiation
of GA.

The grammar of the Multi-Stencil Language is given in Fig. 6 and an example is
provided in Fig. 7. A Multi-Stencil program is composed of eight parts that match
those of Eq. (1).

1. The mesh keyword (Fig. 6, l.1) introduces an identifier for M, the single mesh
of the simulation. For example cart in Fig. 7, l.1. The language, based on the
meta-model is independent of the mesh topology, thus this identifier is actually
not used by the compiler.

2. The mesh entities keyword (Fig. 6, l.2) introduces identifiers for the groups
of mesh entities G ∈ Φ. For example cell or edgex in Fig. 7, l.2.

3. The computation domains keyword (Fig. 6, l.3) introduces identifiers for
the computation domains D ∈ D. For example d1 and d2 in Fig. 7, l.4-5. For
reference, each domain is associated to a group of entities (Fig. 6, l.12) such as
cell for d1 in Fig. 7, l.4.

4. The independent keyword (Fig. 6, l.4) offers a way to declare that computation
domains do not intersect, such as d1 and d2 in Fig. 7, l.7. This is used by the
compiler to compute dependencies between computations.

123

Int J Parallel Prog (2019) 47:1046–1085 1057

1 program : := ”mesh : ” meshid
2 ”mesh e n t i t i e s : ” l i s t g r o up
3 ”computation domains : ” listcompdom
4 ” independent : ” l i s t i n d e
5 ” s t e n c i l shapes : ” l i s t s t e n c i l
6 ”mesh quan t i t i e s : ” l i s t q u a n t i t i e s
7 ” s c a l a r s : ” l i s t s c a l a r
8 l i s t l o o p
9

10 l i s t g r o up : := groupid ” , ” l i s t g r o up | groupid
11 listcompdom : := compdom listcompdom | compdom
12 compdom : := compdomid ” in ” groupid
13 l i s t i n d e : := inde l i s t i n d e | inde
14 inde : := compdomid ”and” compdomid
15 l i s t s t e n c i l : := s t e n c i l l i s t s t e n c i l | s t e n c i l
16 s t e n c i l : := s t e n c i l i d ” from” groupid ” to ” groupid
17 l i s t q u a n t i t i e s : := quant i ty l i s t q u a n t i t i e s | quant i ty
18 quant i ty : := groupid l i s t q u a n t i t y i d
19 l i s t q u a n t i t y i d : := quant i ty id ” , ” l i s t q u a n t i t y i d | quant i ty id
20 l i s t s c a l a r : := s c a l a r i d ” , ” l i s t s c a l a r | s c a l a r i d
21 l i s t l o o p : := loop l i s t l o o p | loop
22 loop : := ” time : ” i t e r a t i o n
23 ” computations : ” l i s t comp
24 i t e r a t i o n : := num | s c a l a r i d
25 l i s t comp : := comp l i s t comp | comp
26 comp : := wr i t t en ”=” compid ” (” l i s t r e a d ”) ”
27 wr i t t en : := quant i ty id ” [” compdomid ”] ” | s c a l a r
28 l i s t r e a d : := dataread l i s t r e a d | dataread
29 dataread : := quant i ty id ” [” s t e n c i l i d ”] ” | quant i ty id | s c a l a r

Fig. 6 Grammar of the Multi-Stencil Language

5. The stencil shapes keyword (Fig. 6, l.5) introduces identifiers for each
stencil shape n ∈ N . For each n, the source and destination group of entities
(Fig. 6, l.16) are specified. For example nec in Fig. 7, l.11 is a neighborhood from
edgex to cell.

6. The mesh quantities keyword (Fig. 6, l.6) introduces identifiers for δ ∈ Δ,
the mesh variables with the group of entities they are mapped on (Fig. 6, l.16).
For example the quantities C and H are mapped onto the groups of mesh entities
edgex.

7. The scalars keyword (Fig. 6, l.7) introduces identifiers for s ∈ S, the scalars.
For example mu and tau in Fig. 7, l.15.

8. Finally, the last part (Fig. 6, l.8) introduces the different computation loops of the
simulation. Each loop is made of two parts:
– the time keyword (Fig. 6, l.22) introduces either a constant number of iter-
ations or conv, the convergence criteria that is a scalar (Fig. 6, l.24). For
example, 500 iterations are specified in Fig. 7, l.16,

– the computations keyword (Fig. 6, l.23) introduces identifiers for each
computation k = (S, R, (w, D), comp) ∈ Γ . Each computation (Fig. 6, l.26)
specifies:

123

1058 Int J Parallel Prog (2019) 47:1046–1085

1 mesh : ca r t
2 mesh e n t i t i e s : c e l l , edgex
3 computation domains :
4 d1 in c e l l
5 d2 in edgex
6 independent :
7 d1 and d2
8 s t e n c i l shapes :
9 ncc from c e l l to c e l l

10 nce from c e l l to edgex
11 nec from edgex to c e l l
12 mesh quan t i t i e s :
13 c e l l A,B,D,E,F ,G, I , J
14 edgex C,H
15 s c a l a r s : mu, tau
16 time : 500
17 computations :
18 B[d1] = k0 (tau ,A)
19 C[d2] = k1 (B[nec])
20 D[d1] = k2 (C)
21 E[d1] = k3 (C)
22 F [d1] = k4 (D,C[nce])
23 G[d1] = k5 (mu, tau ,E)
24 H[d2] = k6 (F)
25 I [d1] = k7 (G,H)
26 J [d1] = k8 (mu, I [ncc])

Fig. 7 Example of program using the Multi-Stencil Language

– the quantityw written and its domain D, for example in Fig. 7, l.22, kernel
k4 computes the variable F on domain d1,

– the read scalars S and mesh variables with their associated stencil shape
(R). For example in Fig. 7, l.22, k4 reads C with the shape nce and D
with the default identity shape; it does not read scalars.

One can notice that in the example of Fig. 7, there are no kernel associated to
the scalars mu and tau (reduction). In this case, those scalars are in fact constants.
One can also notice that the computation to execute for each kernel is not specified.
Only an identifier is given to each kernel, for example k4. The numerical code is
indeed not handled by MSL that generates a parallel orchestration of computations
only. The numerical computation is specified after MSC compilation by the developer
(Fig. 2).

5 The Multi-stencil Compiler

In a computation k(S, R, (w, D), comp), the comp part is provided by the developer
after the MSC compilation phase. This part does therefore not have any impact on
compilation concerns. Thus, to simplify notations in the rest of this paper, we use the
shortcut notation k(S, R, (w, D)) instead of k(S, R, (w, D), comp).

123

Int J Parallel Prog (2019) 47:1046–1085 1059

5.1 Data Parallelism

In a data parallelization technique, the idea is to split data, or quantities, on which
the program is computed into sub-domains, one for each execution resource. The
same program is applied to each sub-domain simultaneously with some additional
synchronizations to ensure coherence.

More formally, the data parallelization of amulti-stencil program of Eq. (1) consists
in a partitioning of the meshM in p sub-meshesM = {M0, . . . ,Mp−1}. This step
can be performed by an external graph partitioner [11,21,25] and is handled by the
DDS implementation of the third party HPC specialist.

As entities and quantities are mapped on the mesh, the set of groups of mesh
entities and the set of quantities Δ are partitioned the same way as the mesh: Φ =
{Φ0, . . . , Φp−1}, Δ = {Δ0, . . . , Δp−1}.

The second step of the parallelization is to identify in Γ the synchronizations
required to update data. It leads to the constructionof a newordered list of computations
Γsync.

Definition 6 For n the number of computations in Γ , and for i, j such that i < j < n,
a synchronization is needed between ki and k j , denoted ki ≺≺≺ k j , if ∃(r j , n j) ∈ R j

such that wi = r j and n j 	= identi t y (k j is a stencil computation). The quantity to
synchronize is {wi }.

A synchronization is needed for the quantity read by a stencil computation (not
local), if this quantity has been written before. This synchronization is needed because
a neighborhood function n ∈ N of a stencil computation involves values computed
on different resources.

However, as a multi-stencil program is an iterative program, computations that
happen after k j at the time iteration t have also been computed before k j at the previous
time iteration t − 1. For this reason another case of synchronization has to be defined.

Definition 7 For n the number of computations in Γ and j < n, if ∃(r j , n j) ∈ R j

such that n j 	= identi t y and such that for all i < j , ki 	≺≺≺ k j , a synchronization is
needed between kt−1

l and ktj , where j < l < n, denoted kt−1
l ≺≺≺ ktj , if wl = r j . The

quantity to synchronize is {wl}.
Definition 8 A synchronization between two computations ki ≺≺≺ k j is defined as a
specific computation

ksynci, j (S, R, (w, D)),

where S = ∅, R = {(r, n)} = {(wi , n j ∈ N }, (w, D) = (wi ,
⋃

φ∈Dj
n j (φ))). In

other words, wi has to be synchronized for the neighborhood n j for all entities of Dj .

Definition 9 If ki ≺≺≺ k j , k j is replaced by the list

[
ksynci, j , k j

]

where the synchronization operation has been added.

123

1060 Int J Parallel Prog (2019) 47:1046–1085

When data parallelism is applied, the other type of computation which is respon-
sible for additional synchronizations is the reduction. Actually, the reduction is first
applied locally on each subset of entities, on each resource. Thus, p (number of
resources) scalar values are obtained. For this reason, to perform the final reduction, a
set of synchronizations are needed to get the final reduced scalar. As most parallelism
libraries (MPI, OpenMP) already propose a reduction synchronization with their own
optimizations, we simply replace the reduction computation by itself annotated by
red.

Definition 10 A reduction kernel k j (S j , R j , (w j , Dj)), where w is a scalar, is
replaced by kredj (S j , R j , (w j , Dj)).

Definition 11 The concatenation of two ordered lists of respectively n andm compu-
tations l1 = [ki]0≤i≤n−1 and l2 = [k′

i]0≤i≤m−1 is denoted l1 · l2 and is equal to a new
ordered list l3 = [k0, . . . , kn−1, k′

0, . . . , k
′
m−1].

Definition 12 From the ordered list of computation Γ , a new synchronized ordered
list Γsync is obtained from the call Γsync = Fsync(Γ, 0), where Fsync is the recursive
function defined in Algorithm 1.

Algorithm 1 follows previous definitions to build a new ordered list which includes
synchronizations. In this algorithm, lines 7 to 19 apply Definition (6), lines 20 to 29
apply Definition (7), and finally lines 34 and 35 apply Definition (10). Finally, line 37
of the algorithm is the recursive call.

The final step of this parallelization is to run Γsync on each resource. Thus, for each
resource 0 ≤ r ≤ p − 1 the multi-stencil program

MSPr (Mr , Φr ,Dr ,N ,Δr ,S, T, Γsync), (2)

is performed.
Example Figure 7 gives an example of a MSP program. From this example, the
following ordered list of computation kernels is extracted:

Γ = [k0, k1, k2, k3, k4, k5, k6, k7, k8]

From this ordered list of computation kernels Γ , and from the rest of the multi-stencil
program, synchronizations can be automatically detected from the call to Fsync(Γ, 0)
to get the synchronized ordered list of kernels:

Γsync =
[
k0, k

sync
0;1 , k1, k2, k3, k

sync
1;4 , k4, k5, k6, k7, k

sync
7;8 , k8

]
, (3)

where

ksync0;1 = (∅, {(B, nce)}, (B,∪φ∈D1nce(φ))), (4a)

ksync1;4 = (∅, {(C, nec)}, (C,∪φ∈D4nec(φ))), (4b)

ksync7;8 = (∅, {(I, ncc)}, (I,∪φ∈D8ncc(φ))). (4c)

123

Int J Parallel Prog (2019) 47:1046–1085 1061

Algorithm 1 Fsync recursive function
1: procedure Fsync(Γ , j)
2: k j = Γ [j]
3: list = []
4: if j = |Γ | then
5: return list
6: else if ∃(r j , n j) ∈ R j such that n j 	= identi t y then
7: for all (r j , n j) ∈ R j such that n j 	= identi t y do
8: found = false
9: for 0 ≤ i < j do
10: ki = Γ [i]
11: if ki ≺≺≺ k j then
12: found = true
13: S = ∅
14: R = {(wi , n j)}
15: (w, D) = (wi ,

⋃
φ∈D j

n j (φ)))

16: list.[ksynci; j (S, R, (w, D))]
17: end if
18: end for
19: if !found then
20: for j < i ≤ n do
21: ki = Γ [i]
22: if ki ≺≺≺ k j then
23: S = ∅
24: R = {(wi , n j)}
25: (w, D) = (wi ,

⋃
φ∈D j

n j (φ)))

26: list.[ksynci; j (S, R, (w, D))]
27: end if
28: end for
29: end if
30: list · [k j]
31: end for
32: else if w j ∈ S then

33: list.[kredj]
34: else
35: list.[k j]
36: end if
37: return list · Fsync(Γ, j + 1)
38: end procedure

5.2 Hybrid Parallelism

A task parallelization technique is a technique to transform a program as a dependency
graph of different tasks. A dependency graph exhibits parallel tasks, or on the contrary
sequential execution of tasks. Such a dependency graph can directly be given to a
dynamic scheduler, or can statically be scheduled. In this paper, we consider a compu-
tation kernel as a task and we introduce task parallelism by building the dependency
graph between kernels of the sequential list Γsync. Thus, as Γsync already takes into
account data parallelism, we introduce hybrid parallelism.

123

1062 Int J Parallel Prog (2019) 47:1046–1085

Definition 13 For two computations ki and k j , with i < j , it is said that k j is depen-
dent from ki with a read after write dependency, denoted ki ≺raw k j , if ∃(r j , n j) ∈ R j

such that wi = r j . In this case, ki has to be computed before k j .

Definition 14 For two computations ki and k j , with i < j , it is said that k j is depen-
dent from ki with a write after write dependency, denoted ki ≺waw k j , if wi = w j

and Di ∩ Dj 	= ∅. In this case, ki also has to be computed before k j .

Definition 15 For two computations ki and k j , with i < j , it is said that k j is depen-
dent from ki with a write after read dependency, denoted ki ≺war k j , if ∃(ri , ni) ∈ Ri

such that w j = ri . In this case, ki also has to be computed before k j is started so that
values read by ki are relevant.

These definitions are known as data hazards classification. However, a specific
condition on the computation domain, due the multi-stencils specific case, is intro-
duced for the write after write case. One can note that the independent keyword
of Fig. 6 is useful in this case as the user explicitly indicates that Di ∩ Dj = ∅.
Definition 16 A directed acyclic graph (DAG) G(V, A) is a graph where the edges
are directed from a source to a destination vertex, and where, by following edges
direction, no cycle can be found from a vertex u to itself. A directed edge is called an
arc, and for two vertices v, u ∈ V an arc from u to v is denoted (

�
u, v) ∈ A.

From the ordered list of computations Γsync and from the MSL description, a
directed dependency graph Γdep(V, A) can be built finding all pairs of computations
ki and k j , with i < j , such that ki ≺raw k j or ki ≺waw k j or ki ≺war k j .

Definition 17 For two directed graphs G(V, A) and G ′(V ′, A′), the union (V, A) ∪
(V ′, A′) is defined as the union of each set (V ∪ V ′, A ∪ A′).
Definition 18 From the synchronized ordered list of computation kernels Γsync,
the dependency graph of the computations Γdep(V, A) is obtained from the call
Fdep(Γsync, 0), where Fdep is the recursive function defined in Algorithm 2.

This constructive function is possible because the input is an ordered list. Actually,

if ki ≺ k j then i < j . As a result, ki is already in V when the arc (
�

ki , k j) is built.
One can note that Γdep only takes into account a single time iteration. A complete

dependency graph of the simulation could be built. This is a possible extension of this
work.

Proposition 19 The directed graph Γdep is an acyclic graph.

As a result of the hybrid parallelization, each resource 0 ≤ r ≤ p − 1 perform a
multi-stencil program, defined by

MSPr (Mr , Φr ,Dr ,N ,Δr , T, Γdep).

The set of computations Γdep is a dependency graph between computation kernels ki
of Γ and synchronizations of kernels added into Γsync. Γdep can be built from the call
to

Fdep(Fsync(Γ, 0), 0).

123

Int J Parallel Prog (2019) 47:1046–1085 1063

Algorithm 2 Fdep recursive function
1: procedure Fdep(Γsync , j)
2: k j = Γsync[j]
3: if j = |Γsync| then
4: return ({}, {})
5: else if j < |Γsync| then
6: G = ({}, {})
7: for 0 ≤ i < j do
8: ki = Γsync[i]
9: if ki ≺raw k j or ki ≺waw k j or ki ≺war k j then

10: G = G ∪ (k j , {(
�

ki , k j })
11: end if
12: end for
13: return G ∪ Fdep(Γsync, j + 1)
14: end if
15: end procedure

Example Figure 7 gives an example ofMSP program. From Γsync that has been built
in Eq. (3), the dependency DAG can be built. For example, as k4 computes F and k6

reads F , k4 and k6 becomes vertices of Γdep, and an arc (
�

k4, k6) is added to Γdep.
The overall Γdep built from the call to Fdep(Γsync, 0) is drawn in Fig. 8. By building
synchronizations as defined in Definitions (6), (7) and (8), dependencies are respected.
For example, ksync0;1 read and write B which guarantees that ksync0;1 is performed after k0
and before k1.

5.3 Static Scheduling

In this section we detail a static scheduling of Γdep by using minimal series-parallel
directed acyclic graphs. Such a static scheduling may not be the most efficient one,
but it offers a simple fork/join task model which makes possible the design of a
performance model. Moreover, such a scheduling offers a simple way to propose a
fusion optimization.

In 1982, Valdes & Al [31] have defined the class of Minimal Series-Parallel DAGs
(MSPD). Such a graph can be decomposed as a serie-parallel tree, denoted T SP , where
each leaf is a vertex of the MSPD it represents, and whose internal nodes are labeled
S or P to indicate whether the two sub-trees form a sequence or parallel composition.

k0 ksync
0;1 k1

k2

ksync
1;4

k3

k4

k5

k6

k7 ksync
7;8 k8

Fig. 8 Γdep of the example of program of Fig. 7

123

1064 Int J Parallel Prog (2019) 47:1046–1085

k0 k1

k2 k3

Fig. 9 Over-constraint on the forbidden N shape

S

P

k0 k2

P

k1 k3

Fig. 10 TSP tree of Fig. 9

Such a tree can be considered as a fork-join model and as a static scheduling. An
example is given in Fig. 10.

Valdes & Al [31] have identified a forbidden shape, or sub-graph, called N , such
that a DAG without this shape is MSPD.

Thus, as Γdep is a DAG, by removing N-Shapes it is transformed to a MSPD.
The intuition is illustrated in Fig. 9. Considering the figure without the dashed line,
the sub graph forms a “N” shape. The fact is that this shape cannot be represented
as a composition of sequences or parallel executions. To remove such forbidden N-
shapes of Γdep = (V, E), we have chosen to apply an over-constraint with the relation
k0 ≺ k3, such that a complete bipartite graph is created for the sub-dag as illustrated
in Fig. 9. By adding this arc to the DAG, it is possible to identify its execution as
sequence(parallel(k0; k2); parallel(k1; k3)) represented by the TSP tree of Fig. 10.

After these over-constraints are applied, Γdep is MSPD. Valdes & Al [31] have
proposed a linear algorithm to know if a DAG is MSPD and, if it is, to decompose it
to its associated binary decomposition tree. As a result, the binary tree decomposition
algorithm of Valdes & Al can be applied on Γdep to get the T SP static scheduling of
the multi-stencil program.
Example From Γdep illustrated in Fig. 8 the TSP tree represented in Fig. 11 can be
computed.

5.4 Fusion Optimization

Using MSL, it is possible to ask for data parallelization of the application, or for an
hybrid parallelization. Even though the MSL language is not dedicated to produce
very optimized independent stencil codes, but to produce the parallel orchestration
of computations, building the T SP tree makes available an easy optimization when
the data parallelization technique is the only one used. This optimization consists in
proposing a valid merge of some computation kernels inside a single space loop. This
is called a fusion. As previously explained in Sect. 3, MSL restrict the definition of a
numerical computation by writing a single quantity at a time which avoids errors in

123

Int J Parallel Prog (2019) 47:1046–1085 1065

S

S

S

S

k0 ksync
0;1

k1

S

S

k7 ksync
7;8

k8P

S

k3 k0

S

P

k2 ksync
1;4

S

k4 k6

Fig. 11 Serie-Parallel tree decomposition of the example of program of Fig. 7

P

ki

[Di]
kj

[Dj]

P

kfus
i;j
[Di]

Di = Dj

Fig. 12 First fusion case

manual fusion or counter-productive fusions for task parallelization. MSF guarantees
that proposed fusions are correct and will not cause errors in the final results of the
simulation.

Those fusions can be computed from the canonical form of the T SP tree decom-
position. The canonical form consists in recursively merging successive S vertices or
successive P vertices of T SP .

The fusion function Ff us is described inAlgorithm3,where the parent (k) function

returns the parent vertex of k in the tree, and where k f us
i; j represents the fusion of ki and

k j keeping the sequential order i; j if i is computed before j in T SP . Finally, t ype(k)
returns comp if the kernel is a computation kernel, and sync or red otherwise.

We are not arguing that such a simple fusion algorithm could be as good as complex
cache optimization techniques which can be found in stencil DSLs [30] for exam-
ple. However, this fusion takes place at a different level and can bring performance
improvements as illustrated in Sect. 6. This fusion algorithm relies on the following
observations.

First, two successive computation kernels ki and k j which are under the same parent
vertex S in TSP are, by construction, data dependent. As a result, what is written by
the first one is read by the second one. Thus, wi the quantity written by ki is common
to these computations. Thus, if the computation domains verify Di = Dj , the fusion
of ki and k j will decrease cache misses.

Second, two successive computation kernels ki and k j which are under the same
parent vertex P in TSP are not, by construction, data dependent. However, if the
computation domains verify Di = Dj , and if Ri ∩ R j 	= ∅ cache misses could also

be decreased by the fusion k f us
i; j . These two cases are illustrated by Figs. 12 and 13.

123

1066 Int J Parallel Prog (2019) 47:1046–1085

Algorithm 3 Ff us

1: procedure F f us (T SP(V, E))

2: for (ki , k j) ∈ V 2 do
3: if parent(ki)==parent(k j) then
4: if t ype(ki) == t ype(k j) == comp then
5: if parent(ki)==S then
6: if Di == Dj then

7: propose the fusion k f us
i; j

8: else
9: if ∃n : Di → Dj ∈ (N) and

⋃
φ∈Di

n(φ) = Dj then

10: propose the fusion kscatteri; j
11: end if
12: end if
13: else if parent(ki)==P then
14: if Di == Dj and Ri ∩ R j 	= ∅ then

15: propose the fusion k f us
i; j

16: end if
17: end if
18: end if
19: end if
20: end for
21: end procedure

Third, an additional fusion case is possible and more tricky to find. Similarly
to the first observation, two successive computation kernels ki and k j which are
under the same parent vertex S in TSP are data dependent and what is writ-
ten by the first one is read by the second one. The construction of the tree also
guarantees that synchronizations are not needed between these computations, oth-
erwise a ksync would have been inserted between them (inherited from Γsync). Thus,
wi the quantity written by ki is common to these computations. Considering the
following:

– Di 	= Dj , which means that loop fusion is by default not possible,
– (r j , n j) is the pair read by k j for which r j = wi and for which n j : Dj → Dm

i

the fusion of ki and k j is possible if and only if ∃n : Di → Dj ∈ N such
that ⋃

φ∈Di

n(φ) = Dj

This means that even if domains are different, a loop fusion is possible if an ade-
quate neighborhood function can be found. One can note that this particular fusion

S

ki

[Di]
kj

[Dj]

S

kfus
i;j
[Di]

Di = Dj

Ri Rj =

Fig. 13 Second fusion case

123

Int J Parallel Prog (2019) 47:1046–1085 1067

S

ki

[Di]
kj

[Dj]

S

kscatter
i;j
[Di]

Di = Dj

∃n : Di → Dj

φ∈Di
n(φ) = Dj

Fig. 14 Third fusion case

case is equivalent to a scatter optimization, often used when using unstructured
meshes. One can also note that the computation k j will be written in a different
manner if a scatter fusion is performed or not. This particular case is illustrated in
Fig. 14.

The developer will be notified of fusions in the output of MSC. This is not a
problem by using MSF as the fusion is proposed before the developer actually write
the numerical code of k j .

5.5 Overall Compilation Process

MSC takes a MSL file written using the grammar described in Sect. 4, as well as
the Generic Assembly presented in Fig. 5 as inputs, and generates a specialized com-
ponent assembly that manages the parallel orchestration of the computations of the
simulation. In this final assembly, that could be compared to a pattern or a skeleton of
the simulation, the developer still has to fill-in the functions corresponding to the var-
ious computation kernels by using the DDS instantiation chosen into the specialized
assembly. The overall behavior of the compiler is as follows:

1. it parses the MSL input file and generates Γ , the list of computation kernels,
2. from Γ , it builds Γsync, the list including synchronizations for data parallelism

using Algorithm Fsync introduced in Sect. 5,
3. fromΓsync, it buildsΓdep, the DAG supporting hybrid parallelism usingAlgorithm

Fdep introduced in Sect. 5,
4. it then removes the N-Shapes from Γdep to get a MSPD graph, and generates its

serie-parallel binary tree decomposition T SP ,
5. it performs the fusion of kernels in T SP if required (data parallelization only),
6. it transforms GA to generate its output specialized component assembly.

The last step of this compilation process is detailed below. It is composed of four
steps:

1. it instantiates DDS and Data components by using components implemented by
a third party HPC specialist,

2. it generates the structure of K components responsible for each computation kernel
of the simulation,

3. it generates a new Scheduler component,
4. it replaces theComputations component of GA by a generated sub-assembly that

matches T SP by using Scheduler , K and Sync components.

123

1068 Int J Parallel Prog (2019) 47:1046–1085

K
∗

(a)

Sync m

(b)
Scheduler

∗

(c)

Fig. 15 Specific components used to transformGA to the specialized component assembly of the simulation
a K . b Sync. c Scheduler

Driverstart

m

T ime Scheduler

A

B

...

1

2
3

cart

k0 1
2

Sync(0, 1) 3
...

Fig. 16 Sub-part of the specialized assembly generated by MSC from the example of the example of Fig.7
used throughout the paper. For readability some connections are represented by numbers instead of lines.
The entire assembly is generated byMSC, however some components are automatically generated byMSC
(in green), some are written by HPC specialists (in red) and others by the developer (in blue) (Color figure
online)

New components have been introduced above and need to be explained. A K com-
ponent is a component into which the developer will write numerical code. It could
represents a single computation kernel described by the numerician using MSL, or it
could represents the fusion of multiple computation kernels. In any case the name of
the generated component will use kernel identifiers used in the MSL description. A
K kernel is composed of m use ports that are used to be connected to the m quantities
needed by the computation (i.e., the numerical code). The component also exposes a
provide port to be connected to the Scheduler component. Interfaces of a K compo-
nent are represented in Fig. 15a.

A Sync component is a static component (not generated) composed of a use-
multiple port which is used to request synchronizations for all quantities it is linked to
(Data). The component also exposes a provide port to be connected to the Scheduler
component. The Sync component is represented in Fig. 15b.

Finally, the Scheduler component is the component responsible for implementing
the T SP tree computed byMSC. Thus, this component represents the specific parallel
orchestration of computations. It exposes as many use ports as there are instances of K
components to call (i.e., computations and fusions of computations). The component
also exposes a provide port to be connected to the T ime component. Interfaces of a
Scheduler component are represented in Fig. 15c.

To illustrate how a specialized assembly is generated, the specialized assembly of
the example that has been used throughout this paper is represented in Fig. 16.

123

Int J Parallel Prog (2019) 47:1046–1085 1069

5.6 Performance Model

In this subsection we introduce two performance models, one for the data paralleliza-
tion technique, and one for the hybrid data and task parallelization technique, both
previously explained.

The performance model for the data parallelization technique is inspired by the
Bulk Synchronous Parallel model. We consider that each process handles its own
sub-domain that has been distributed in a perfectly balanced way. The performance
model describes the computation time as the sum of the sequential time divided by
the number of processes, and of the time spent in communications between processes.
Thus, for

– TSEQ the sequential reference time,
– P the total number of processes,
– TCOM the communications time,

the total computation time is

T = TSEQ

P
+ TCOM . (5)

Thus, when the number of processes P increase in data parallelization, the perfor-
mance model limit is TCOM

lim
P→+∞ T = TCOM . (6)

As a result, the critical point for performance is when TCOM ≥ TSEQ
P , which

happens naturally in data parallelization as TCOM will increase with the number of
processes, and TSEQ

P decrease with the number of processes.
This limitation is always true, but can be delayed by different strategies. First, it

is possible to overlap communications and computations. Second, it is possible to
introduce another kind of parallelization, task parallelization. Thus, for the same total
number of processes, only a part of them are used for data parallelization, and the rest
are used for task parallelism. As a result, TSEQ

P will continue to decrease but TCOM

will increase later. This second strategy is the one studied in the following hybrid
performance model.

For an hybrid (data and task) parallelization technique, and for

– Pdata the number of processes used for data parallelization,
– Ptask the number of processes used for task parallelization, such that P = Pdata ×

Ptask is the total number of processes used,
– Ttask the overhead time due to task parallelization technique,
– and Ftask the task parallelization degree of the application,

the total computation time is

T = TSEQ

Pdata × Ftask
+ TCOM + Ttask (7)

123

1070 Int J Parallel Prog (2019) 47:1046–1085

The time overhead due to task parallelization can be represented as the time spent
to create a pool of threads and the time spent to synchronize those threads. Thus, for

– Tcr the total time to create the pool of threads (may happened more than once),
– Tsync the total time spent to synchronize threads,

the overhead is
Ttask = Tcr + Tsync.

The task parallelization degree of the application Ftask is the limitation of a task
parallelization technique.As explained before, a task parallelization technique is based
on the dependency graph of the application. Thus, this dependency graph must expose
enough parallelism for the number of available threads. For this performance model
we consider that

Ftask = Ptask,

however, as it will be illustrated in Sect. 6 Ftask is more difficult to establish. Actually,
the lower and upper bounds of Ftask are constrained by the dependency graph of the
application.

As a result when Pdata is small a data parallelization technique may be more
efficient, while an hybrid parallelization could be interesting at some point to improve
performance. The question is: when is it interesting to use hybrid parallelization ? This
paper does not propose an intelligent system to answer this question automatically,
however, it offers a way to understand how to answer the question. To answer this
question let’s consider the two parallelization techniques, data only and hybrid. We
denote

– Pdata1 the total number of processes entirely used by the data only parallelization,
– Pdata2 the number of processes used for data parallelization in the hybrid paral-
lelization,

– and Ptask the number of processes used for task parallelization in the hybrid par-
allelization,

– such that Pdata1 = Pdata2 × Ptask .

We search the point where the data parallelization is less efficient than the hybrid
parallelization. Thus,

TSEQ

Pdata1
+ TCOM1 ≥ TSEQ

Pdata2 × Ptask
+ TCOM2 + Ttask .

This happens when
TCOM1 ≥ TCOM2 + Ttask (8)

This performance model will be validated and will help explain results of Sect. 6.

6 Evaluation

This section first presents the implementation details chosen to evaluate MSF in this
paper, and the studied use case. Then, the compilation time ofMSC is evaluated before

123

Int J Parallel Prog (2019) 47:1046–1085 1071

analyzing both available parallelization techniques, data and hybrid (data and task).
Finally, the impact of kernels fusions is studied.

6.1 Implementation Details

The main choices to take when implementing a specialized assembly of GA concern
the technologies used for data and task parallelizations, i.e., implementation choices
of DDS and Scheduler components.

For the data-parallelization, as already detailed many times throughout the paper,
a third party HPC specialist is responsible for implementing DDS and Data using a
chosen library or external language and by following the specified interfaces of these
two components. To evaluate MSF, we have played the role of HPC specialists and
have implemented these components using SkelGIS, a C++ embedded DSL [10] that
proposes a distributed Cartesian mesh as well as user API to manipulate structures
while hiding their underlying distribution.

For task parallelism, we have chosen to use OpenMP [13] to generate the code of
the Scheduler component. OpenMP targets shared-memory platforms only. Although
the version 4 of OpenMP has introduced explicit support for dynamic task scheduling,
our implementation only requires version 3 whose fork-join model is well suited for
the static scheduling introduced in Sect. 5. The use of dynamic schedulers, such as
provided by libgomp,2 StarPU [2], or XKaapi [17], to directly execute the DAG Γdep

is left to future work.
As a result, MSC generates a hybrid code which uses both SkelGIS and OpenMP. It

also generates the structure of K components where the developer must provide local
sequential implementations of the kernels using SkelGIS API.

6.2 Use Case Description

All evaluations presented in this section are based on a real case study of the shallow-
Water Equations as solved in the FullSWOF2D3 [10,16] code from the MAPMO
laboratory, University of Orléans. In 2013, a full SkelGIS implementation of this
use case has been performed by numericians and developers of the MAPMO labo-
ratory [9,10,12]. From this implementation we have kept the code of computation
kernels to directly use it into K components. Compared to a full SkelGIS implemen-
tation, where synchronizations and fusions are handled manually, MSF automatically
compute where synchronizations are needed and how to perform a fusion without
errors. To evaluate MSF on this use case we have described the FullSWOF2D simula-
tion by using MSL. FullSWOF2D contains 3 mesh entities, 7 computation domains,
48 data and 98 computations (32 stencil kernels and 66 local kernels). Performances
of the obtained implementation are compared to the plain SkelGIS implementation to
show that no overheads are introduced by MSF by using L2C.

2 https://gcc.gnu.org/projects/gomp/.
3 http://www.univ-orleans.fr/mapmo/soft/FullSWOF/.

123

https://gcc.gnu.org/projects/gomp/
http://www.univ-orleans.fr/mapmo/soft/FullSWOF/

1072 Int J Parallel Prog (2019) 47:1046–1085

Table 1 Execution times of the MSL compiler

Step Parser Γsync Γdep T SP

Time (ms) 1 2 4.2 3998.5

% 0.022 0.043 0.09 86.6

Table 2 Hardware configuration of TGCC Curie thin nodes

TGCC Curie thin nodes

Processor 2 × SandyBridge

(2.7GHz)

Cores/node 16

RAM/node 64GB

RAM/core 4GB

#Nodes 5040

Compiler [−O3] gcc 4.9.1

MPI Bullxmpi

6.3 Multi-stencil Compiler Evaluation

Table 1 illustrates the execution time of each step of MSC for the FullSWOF2D
example. This has been computed on a laptop with a dual-core Intel Core i5 1.4 GHz,
and 8 GB of DDR3. MSC has been implemented in Python 2. While the overall time
of 4.6 s remains reasonable for a real case study, one can notice that the computation
of the T SP tree is by far the longest step. As a matter of fact, the complexity of the
algorithm for N-shapes removal is O(n3). If this complexity is not a problem at the
moment and onto this use case it could become one for just-in-time compilation or
more complex simulations. The replacement of the static scheduling by a dynamic
scheduling using dedicated tools (such as OpenMP 4, StarPU etc.) should solve this
in the future.

6.4 Data Parallelism Evaluation

In this part, we disable task-parallelism to focus on data-parallelism. Two versions
of the code are compared in this section: first a plain SkelGIS implementation of
FullSWOF2D, where synchronizations and fusions are handled manually; second,
a MSF over SkelGIS version where synchronizations and fusions are automatically
handled. SkelGIS has already been evaluated in comparison with a native MPI imple-
mentation for the FullSWOF2D example [10]. For this reason, this section uses the
plain SkelGIS implementation as the reference version. This enables to evaluate both
the choices made by MSC as well as the potential overheads of using L2C [5] that is
not used in the plain SkelGIS version. The evaluations have been performed on the
Curie supercomputer (TGCC, France) described in Table 2. Each evaluation has been
performed nine times and the median is presented in results.

123

Int J Parallel Prog (2019) 47:1046–1085 1073

24 25 26 27 28 29 210 211 212 213 214

cores

0

5

10

15

20

25

30

tim
e

(s
)

MSF over SkelGIS

SkelGIS

Fig. 17 weak-scaling with 400 × 400 domain per core and 200 time iterations

24 25 26 27 28 29 210 211 212 213 214

cores

0

10

20

30

40

50

60

70

�m
e

(s
)

MSF over SkelGIS

SkelGIS

Fig. 18 weak-scaling with 600 × 600 domain per core and 200 time iterations

Weak scaling Figures 17, 18 and 19 respectively show weak scaling experiments
that we have conducted. Four computation domains are evaluated: 400× 400 cells by
core, 600 × 600 cells by core and 800 × 800 cells by core, from 16 to 16,384 cores,
as summarized in Table 3.

From these results, one can notice, first, that performances of MSF are very close
to the reference version using plain SkelGIS. This is a very good result which shows
first thatMSC performs good synchronizations and fusions, and second that overheads
introduced by L2C are limited thanks to a good component granularity in the Generic
Assembly.

123

1074 Int J Parallel Prog (2019) 47:1046–1085

24 25 26 27 28 29 210 211 212 213 214

cores

0

20

40

60

80

100

tim
e

(s
)

MSF over SkelGIS

SkelGIS

Fig. 19 weak-scaling with 800 × 800 domain per core and 200 time iterations

Table 3 Weak scaling experiments of Figs. 17, 18 and 19

Domain size per core Number of iterations

400 × 400 200

600 × 600 200

800 × 800 200

However, it seems that a slightly drop of performance happenswhen the domain size
per core increases. This performance decrease is really small though, with a maximum
difference between the two versions of 2.83% in Fig. 19.

The only noticeable difference between the two versions are due to L2C which load
dynamic libraries at runtime. Because of this particularity, components of L2C are
compiled with the -fpic compilation flag4 while the SkelGIS version does not. This
flag can have slight positive or negative effects on code performance depending on the
situation and might be responsible for the observed difference.

Strong scaling Figure 20 shows the number of iteration per second for a 10k×10k
global domain size from 16 to 16,384 cores. The total number of time iterations for
this benchmark is 1000. In addition to the reference SkelGIS version, the ideal strong
scaling is also plotted in the figure.

First, one can notice that the strong scaling evaluated for the MSF version is close
to the ideal speedup up to 16,384 cores, which is a very good result. Moreover, no
overheads are introduced by MSF which shows that automatic synchronizations and
automatic fusions enable the same level of performance than the one manually written
into the plain SkelGIS version. Finally, no overheads are introduced by components
of L2C. A small behavior difference can be noticed with 29 = 512 cores, however this
variation is no longer observed with 1024 cores.

4 L2C has been recently extended with the possibility of static linking.

123

Int J Parallel Prog (2019) 47:1046–1085 1075

25 26 27 28 29 210 211 212 213 214

cores

2-2

2-1

20

21

22

23

24

25

26

27

28

ite
ra

tio
ns

 p
er

 se
co

nd

Ideal

MSL + SkelGIS

SkelGIS

Fig. 20 Strong scaling on a 10k × 10k domain and 1000 time iterations

Table 4 Parallelism level and the number of times this parallelism level appears into fork phases

Level 1 2 3 4 6 10 12 16

Frequency 2 1 3 5 3 1 1 2

6.5 Hybrid Parallelism Evaluation

In this section, we add task parallelism to evaluate the hybrid parallelization offered
by MSF. The MSF implementation evaluated in this paper relies on SkelGIS and
OpenMP.

The series-parallel tree decomposition T SP of this simulation, extracted by MSC,
is composed of 17 nodes labeled as sequence S and 18 nodes labeled as parallel P .

We define the level of parallelism as the number of parallel tasks inside one fork of
the fork/join model. The fork/join model obtained for FullSWOF2D is composed of
18 fork phases (corresponding to P nodes of T SP). Table 4 represents the number of
time (denoted frequency) a given level of parallelism is obtained inside fork phases.

One can notice that the level of task parallelism extracted from the Shallow water
equations is limited by two sequential parts in the application (level 1). Moreover, a
level of 16 parallel tasks is reached two times, and five times for the fourth level. This
means that if two cores are dedicated to task parallelism, the two sequential parts of
the code will not take advantage of these two cores, and that no part of the code would
benefit from more than 16 cores. The task parallelism, as proposed in this paper (i.e.,
where each kernel is a task) is therefore insufficient to take advantage of a single node
of modern clusters that typically supports more than 16 cores.

On the other hand, Fig. 21 illustrates limitations of data parallelization tech-
nique alone. This figure displays the execution time (with a logarithmic scale) of
FullSWOF2Dwhile increasing the number of cores for a fix domain size of 500×500

123

1076 Int J Parallel Prog (2019) 47:1046–1085

1 2 4 8 16 32 64 128 256 512 1024 2048
cores

10-4

10-3

10-2

10-1

tim
e

(s
)

Computations
Communications

Fig. 21 Computation versus communication times for a single time iteration using the data parallelization
technique

2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11

cores

26

27

28

29

210

211

212

213

214

215

ite
ra

tio
ns

 p
er

 se
co

nd

Ideal
MSL data paralleliza�on only
MSL using 2 cores for tasks
MSL using 4 cores for tasks
MSL using 8 cores for tasks
MSL using 16 cores for tasks

Fig. 22 Strong scaling comparisons between data parallelization and hybrid parallelization. A close
OpenMP clause is used to bind threads onto cores

with a total of 200 time iterations (i.e., this is a strong scaling). One can note that times
are really small. Actually the time represented in Fig. 21 is the time spent into a single
time iteration. The speedup of this same benchmark is represented in blue in Fig. 22.
One can note that the scaling is not as good as the one presented in Fig. 20. The main
difference between these two benchmarks is the domain size. In the benchmark of
Fig. 20 the domain size is 10k × 10k which means that using 28 = 256 cores, for
example, each core has to compute only a 625× 625 sub-domain. On the other hand,
using 28 cores in Fig. 22 each core has to compute a 31 × 31 sub-domain. Figure 21
shows why the speedup is not as good as the one with a bigger domain size.

123

Int J Parallel Prog (2019) 47:1046–1085 1077

Actually, in this figure, while the computation time (in blue) decreases linearly
with the number of core used, the communication behavior (in red) is much more
erratic. Between 2 and 16 cores, communications are performed inside a single node
thus the time is small and nearly constant. There is a small oscillation that might
be explained by the partitioning differences. SkelGIS performs a two dimensional
partitioning strategy. For this reason a smaller number of bytes are communicated
using 2 cores than using 4, and using 8 cores than using 16 cores. Starting from 32
cores, each node is fully used and more than one node is used. From this point thus
the communication time is typically modeled as L + S/B where L is the latency, S
the data size and B the bandwidth. This explains the decrease of communication time
from 32 to 128 cores where the data sizes communicated by each process decreases.
The increases observed after 128 cores might be due to the fact that with the increased
number of processes the fat-tree becomes deeper and the latencies increase.

All in all, when the number of core increases, the computation/communication ratio
becomes poorer and poorer. As a result, the data parallelism alone fails to provide
enough parallelism to leverage the whole machine and other sources of parallelism
have to be found. As expected, in Fig. 22 the speedup bends down from 256 to 2048
cores. The same problem would happened in previous experiment of Fig. 20, however
as the domain size is larger, the phenomena appears with more cores.

As task parallelism fails to scale from 16 cores, and as data parallelism also fails
to scale when the communication cost overpass the execution time, an hybrid paral-
lelization strategy is proposed by MSF and is evaluated below.

In addition to the blue curve, Fig. 22 shows speedups for the same example (500×
500 domain with 200 iterations) but using an hybrid parallelization. Figure 22 shows
a comparison with 2, 4, 8 and 16 cores per MPI process for task parallelization.

For example, the purple curve shows the parallelization which uses for each data
parallelization process (i.e., MPI process) 8 additional cores for task parallelization.
As a result, for example, when using 2machines of the TGCC cluster, with a total of 32
cores, 4 cores are used for SkelGISMPI processes, for data parallelization, and for each
one 8 cores are used for task parallelization (4× 8 = 32). This respects P = Pdata ×
Ptask as presented in Sect. 5.6. As a result, and as explained in Sect. 5.6, quantities
that are responsible for communications are less divided into sub-domains. Therefore,
the effect observed with the blue curve is delayed to a higher number of cores.

From 2 to 8 cores, the improvement of the strong scaling is clear. However, reaching
16 cores, an important initial overhead appears and in addition to this, the curve bends
down rapidly instead of improving the one with 8 cores for task parallelization. Two
different phenomena happen in this case.

First, thin nodes of the TGCC Curie are built with two NUMA socket each of 8
cores.As a result,when increasing the number ofOpenMPcores for task parallelization
from 8 to 16 cores, an overhead is introduced by exchanges of data between memories
of the two NUMA sockets. This phenomena is illustrated in Fig. 23. In this figure, a
different binding strategy is used. A binding strategy is the way the scheduler binds
threads onto available cores. The strategy used in Fig. 23 is called spread (instead of
close in Fig. 22). This strategy binds threads on cores in order to spread as much as
possible onto resources, which means that the two NUMA sockets are used whatever
the number of cores used for tasks is. As a result, and as shown in the figure, using

123

1078 Int J Parallel Prog (2019) 47:1046–1085

24 25 26 27 28 29 210 211

cores

25

26

27

28

29

210

211

212

213

214

215

ite
ra

�o
ns

 p
er

 se
co

nd

Ideal
MSL data paralleliza�on only
MSL using 2 cores for tasks
MSL using 4 cores for tasks
MSL using 8 cores for tasks
MSL using 16 cores for tasks

Fig. 23 Strong scaling comparisons between data parallelization and hybrid parallelization. A spread
OpenMP clause is used to bind threads onto cores

2, 4 and 8 cores an initial overhead is introduced as the one observed in Fig. 22. This
shows that the initial overhead with 16 cores is due to NUMA effects.

The second phenomena that happens in Fig. 22 using 16 cores is due to the level of
parallelism introduced by the task parallelization technique. Actually, as illustrated in
Table 4, only two forks of T SP can take advantage of 16 cores among a total of 18
forks. This phenomena has been mentioned in Sect. 5.6 by the variable Ftask and the
fact that it is not always true that Ftask = Ptask . This explains why using 16 cores is
less efficient than using 8 cores, even when the two NUMA sockets are always used
as in Fig. 23.

Finally, to validate the performancemodel introduced in Sect. 5.6, and to understand
when the hybrid parallelization becomesmore interesting than the data parallelization,
Fig. 24 represents TCOM1 and TCOM2 +Ttask of Eq. (8), for the best case, i.e., when 8
cores are used in Fig. 22. Figure 24 and Table 5 presents results of thesemeasurements.
Results perfectly matches Fig. 22 for 8 cores per MPI process. As a result, the hybrid
parallelization is better for 512 cores or more in this case.

6.6 Fusion Evaluation

In this section we propose an evaluation of the fusion optimization. From the T SP
tree computed by MSC it may be possible, according to some specific conditions, to
merge the domain loops of some kernels, thus optimizing the use of cache memories.
This kind of optimization is called a fusion and three fusion optimizations have been
introduced in Sect. 5.4. Among them, the two first ones (Figs. 12 and 13 on page 22)
have been automatically detected by MSF in this case study.

Figure 25 shows the number of iterations per second as a function of the number of
cores with and without fusions. This benchmark is performed on FullSWOF2D onto

123

Int J Parallel Prog (2019) 47:1046–1085 1079

16 32 64 128 256 512 1024 2048
cores

10-4

10-3

10-2

10-1

tim
e

(s
)

Tcom1
Tcom2 + Ttask

Fig. 24 Execution times (s) for a single time iteration of TCOM1 and TCOM2 + Ttask for 8 cores for task
parallelization. Verification of the Eq. (8)

Table 5 Execution times (s) of TCOM1, TCOM2 and Ttask for 8 cores for task parallelization

TCOM1 TCOM2 Ttask Equation (8)

16 cores (2 × 8) 0.0005 0.00032 0.013 False

32 cores (4 × 8) 0.0018 0.00045 0.0062 False

64 cores (8 × 8) 0.0013 0.00038 0.0034 False

128 cores (16 × 8) 0.00075 0.0005 0.0023 False

256 cores (32 × 8) 0.00077 0.0018 0.001 False

512 cores (64 × 8) 0.0029 0.0013 0.00052 True

1024 cores (128 × 8) 0.018 0.00075 0.00029 True

2048 cores (256 × 8) 0.0623 0.00077 0.00016 True

Verification of the Eq. (8)

a 500× 500 domain size with 200 time iterations, and by using data parallelism alone
(without tasks). As explained in Sect. 5.4, theMSF loop fusion happens at a high level.
Most of the time such fusions are done naturally by a computer scientist. However, an
automatic detection of such fusions avoids errors, particularly for a parallel execution.
In addition to this, more advanced fusion cases, such as a scatter, are more difficult
to deduce. In FullSWOF2D a total of 62 fusions are proposed by MSF over a total
of 98 computation kernels. Figure 25 shows that the performance is clearly improved
(around 40%) by these fusions.

However, fusion optimizations are not always relevant. To illustrate this, we are
using the same benchmark of FullSWOF2D onto a 500 × 500 domain size with 200
time iterations, however we compare data parallelism and hybrid parallelism both with
and without fusion.

123

1080 Int J Parallel Prog (2019) 47:1046–1085

1 2 4 8 16 32 64 128

cores

0

500

1000

1500

2000

2500

3000

ite
ra

tio
ns

 p
er

 s
ec

on
d

With fusion
Without fusion

Fig. 25 Strong scaling on a 500 × 500 domain size with 200 time iterations, with and without fusions
proposed by MSF

2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11

cores

26

27

28

29

210

211

212

213

ite
ra

tio
ns

 p
er

 se
co

nd

Data parallelism without fusion
Data parallelism with fusion
Hybrid 2 cores for tasks without fusion
Hybrid 2 cores for tasks with fusion

Fig. 26 Strong scaling on a 500× 500 domain size with 200 time iterations. Blue curves represent strong
scaling for data parallelism with and without fusion. Red curves represent strong scaling by using 2 cores
per MPI process dedicated to tasks, with and without fusion (Color figure online)

Blue curves of Fig. 26 represent results for data parallelismwith andwithout fusion.
One can note that the best performance, as expected, is reached by the version using
fusions. Red curves represent results by using 2 cores per MPI process dedicated to
tasks, with and without fusion again. One can note that the best performance is also
reached by the version using fusion.

However, to deeper analyze this results, we propose a second evaluation presented
in Fig. 27. The blue curves are exactly the same one than in Fig. 26. The red curves, on
the other hand, represent results by using 8 cores per MPI process dedicated to tasks,

123

Int J Parallel Prog (2019) 47:1046–1085 1081

24 25 26 27 28 29 210 211

cores

26

27

28

29

210

211

212

213

ite
ra

tio
ns

 p
er

 se
co

nd

Data parallelism without fusion
Data parallelism with fusion
Hybrid 8 cores for tasks without fusion
Hybrid 8 cores for tasks with fusion

Fig. 27 Strong scaling on a 500× 500 domain size with 200 time iterations. Blue curves represent strong
scaling for data parallelism with and without fusion, thus are exactly the same than blue curves of Fig. 26.
Red curves represent strong scaling by using 8 cores per MPI process dedicated to tasks, with and without
fusion (Color figure online)

with and without fusion. Interesting results appears in this figure as the hybrid version
using fusions is less efficient than the one without fusions. As already explained, this
result is due to the fact that fusions reduce the number of tasks from 98 to 36 resulting
in a non optimized use of eight cores for task parallelism. By using only 2 cores per
MPI process (in Fig. 26) the 36 computation kernels were enough to feed the two
cores, while it is not for eight.

In conclusion, if fusion optimization incurs a too large reduction of the number of
tasks to feed dedicated cores, the problem observed for 16 cores in Fig. 22 happens
earlier which reduces performance. For this reason, MSF performs fusions only when
data parallelization is used alone. This choice could be more intelligent but this is the
subject of future work.

7 Related Work

Many domain specific languages have been proposed for the optimization of single
stencil computations. Each one has its own optimization specificities and targets a
specific numerical method or a specific kind of mesh. For example, Pochoir [30]
focuses on cache optimization techniques for stencils applied onto Cartesian meshes.
On the other hand, PATUS [8] proposes to add a parallelization strategy grammar to its
stencil language to perform an auto-tuning parallelization. ExaSlang [28] is specific
to multigrid numerical methods. Thus, these stencil compilers target a different scope
than the Multi-Stencil Framework presented in this paper, which actually orchestrates
a parallel execution of multiple stencil codes together. Hence, an interesting future
work would be to combine these stencil compilers with MSF to build very optimized
stencil kernels K .

123

1082 Int J Parallel Prog (2019) 47:1046–1085

Some solutions, closer toMSF, have also been proposed to automatically orchestrate
multiple stencils and computations in a parallel manner. Among them is Halide [26]
that proposes an optimization and parallelization of a pipeline of stencils. However,
Halide is limited to Cartesian meshes and is specific to images. Liszt [14], OP2 [18]
and Nabla [7] all offer solutions for the automatic parallel orchestration of stencils
applied onto any kind of mesh, from Cartesian to unstructured meshes. The needed
mesh can be built from a set of available symbols in the grammar of each language.
Thus, these languages generalize the definition of a mesh, as it is proposed into the
MSL formalism of Sect. 3. However, neither Liszt, OP2 nor Nabla handle hybrid
parallelism as it is proposed by MSF.

MSF offers the MSL Domain Specific Language to the numerician to describe its
sequential set of computations. This description, is close to a dataflow representation.
However, MSL differs from general purpose dataflow languages or framework for two
main reasons. First, MSL is specific to numerical simulations and proposes a mesh
abstraction adapted to numerical simulations. Thus, compared to general purpose
dataflow runtimes such as Legion [4], HPX [19], PFunc [20], MSL is closer to the
semantic of the domain (mesh, stencils etc.) and easier to use for non-specialists.
Second, MSL is very light and only descriptive. Numerical codes are left to another
language and another user (the developer in Fig. 2 on page 5). Furthermore, such
dataflow runtimes could actually be used by MSF as back-ends, instead of using
SkelGIS or OpenMP.

This flexibility proposed by MSF is due to software engineering capacities intro-
duced by proposing a meta-model and by using a component programming model.
Actually,MSF is designed to increase separation of concerns and code-reuse compared
to existing solutions. Separation of concerns is illustrated in Fig. 2 and all along the
paper. The numerician is only responsible for the description of the simulation by using
MSL. A HPC specialist can propose new (or updated) components for handling the
distributed data structure and quantities of the simulation. MSF generates from these
pieces of information the parallel orchestration of computations. Finally, the devel-
oper of numerical codes fills computation kernels by using the chosen distributed data
structure. In Liszt, OP2 and Nabla, for example, there is no such separation of con-
cerns between the numerician and the developer. Moreover, it is not possible to easily
integrate a new distributed data structure in these solutions as a monolithic code is
generated. Finally, thanks to components, MSF improves code-reuse. Kernel compo-
nents as well as any component (except the scheduler component which is specific to
the simulation) can be reused from one simulation to another.

To conclude and as far as we know, no component-based framework has been
proposed for stencils orchestration.

8 Conclusion

In this paper, we have presented MSF, a multi-stencil framework. MSF is built upon
a meta-formalism of a multi-stencil program that we have presented in Sect. 3. From
this meta-formalism, we have designed, first, the generic component assembly of a
multi-stencil program, and second, the domain specific language MSL that enables

123

Int J Parallel Prog (2019) 47:1046–1085 1083

the description of a specific application by a numerician. From these entries, MSC, the
MSF compiler, automatically generates a parallel component assembly. This assembly
represents the parallel orchestration of computations, independently of implementa-
tion choices. Two parallelization strategies are supported: data parallelization and
hybrid (data and task) parallelization.

By combining ameta-model and component-based programming,MSF has the par-
ticularity to enhance separation of concerns, as well as code-reuse and composition of
existing solutions (e.g., SkelGIS and OpenMP in this paper). MSF has been evaluated
on the real case simulation FullSWOF2D. Results show that the MSF runtime does
not induce unwanted overheads for its data parallelization technique on both strong
and weak scalings. Results also show that the hybrid parallelization supported byMSF
can increase performance when the data parallelism exposed by the simulation is not
enough, which is a new contribution compared to existing solutions. Finally, we have
evaluated the fusion optimization and shown that it often increases performance but
it is not always a good choice, particularly when performing hybrid parallelism.

Many perspectives of future work raise from this paper. First, even if using one
distributed data structure or another is possible and facilitated by MSF, the HPC
specialist still has to understand component programming models and the meta-model
of the framework to add new implementation of DDS and Data components.We think
it could be interesting to also facilitate the work of the HPC specialist by proposing a
semi-automated framework to add new implementations of these components toMSF.

Second, it has been shown in the performance model and evaluation results that the
choice between data parallelism and hybrid parallelism in not trivial. It depends on
the time spent in computations, the number of cores and nodes used for the execution,
as well as the network behavior (Figs. 21 and 22). MSF, thanks to its meta-formalism
and to the use of component models, easily handles the activation of one paral-
lelism technique or another. Thus, MSF can be considered as a performance leverage
for multi-stencil programs. However, it would be interesting to investigate how an
algorithm could choose the best parallelization technique for a given execution of a
multi-stencil simulation.

The same choice problem is raised by the fusion optimization. For the same reasons
an algorithm could choose the best solution for a given execution. To design such an
algorithm different solutions should be studied, such as following an approximated
behavior model, or using calibration runs to then use deep learning algorithms, etc.

Finally, by using component models doors are opened to reconfiguration of appli-
cations [22] which means that the application could adapt its behavior and structure
to external events.

Acknowledgements This work has partially been supported by the PIA ELCI project of the French
FSN. This work was granted access to the HPC resources of TGCC under the allocations t2015067470,
x2016067617 and AP010610191 made by GENCI.

References

1. Allan, B.A., et al.: A component architecture for high-performance scientific computing. Int. J. High
Perform. Comput. Appl. 20(2), 163–202 (2006)

123

1084 Int J Parallel Prog (2019) 47:1046–1085

2. Augonnet, C., Thibault, S., Namyst, R.,Wacrenier, P.-A.: StarPU: a unified platform for task scheduling
on heterogeneous multicore architectures. Concurr. Comput. Pract. Exp. 23(2), 187–198 (2011)

3. Baude, F., Caromel, D., Dalmasso, C., Danelutto, M., Getov, V., Henrio, L., Pérez, C.: Gcm: a grid
extension to fractal for autonomous distributed components. Ann. Telecommun. 64(1–2), 5–24 (2009)

4. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: expressing locality and independence with
logical regions. In: International Conference on High Performance Computing, Networking, Storage
and Analysis. IEEE (2012)

5. Bigot, J., Hou, Z., Prez, C., Pichon, V.: A low level component model easing performance portability
of hpc applications. Computing 96(12), 1115–1130 (2014)

6. Bigot, J., Pérez, C.: Increasing Reuse in Component Models through Genericity. Research Report
RR-6941 (2009)

7. Camier, J.-S.: Improving performance portability and exascale software productivity with the ∇
numerical programming language. In: Proceedings of the 3rd International Conference on Exascale
Applications and Software, EASC ’15, pp. 126–131. University of Edinburgh, Edinburgh (2015)

8. Christen,M., Schenk, O., Burkhart, H.: PATUS: a code generation and autotuning framework for paral-
lel iterative stencil computations onmodernmicroarchitectures. In: Parallel and Distributed Processing
Symposium (IPDPS), 2011 IEEE International, pp. 676–687. IEEE (2011)

9. Cordier, S., Coullon, H., Delestre, O., Laguerre, C., Le, M.H., Pierre, D., Sadaka, G.: Fullswof paral:
comparison of two parallelization strategies (mpi and skelgis) on a software designed for hydrology
applications. In: ESAIM: Proceedings, vol. 43, pp. 59–79. EDP Sciences (2013)

10. Coullon, H., Limet, S.: The SIPSim implicit parallelism model and the SkelGIS library. Pract. Exp.
Concurr. Comput. 28, 2120–2144 (2015)

11. Coullon, H., Limet, S.: Algorithmic skeleton library for scientific simulations: Skelgis. In: International
Conference onHigh PerformanceComputing and Simulation, HPCS 2013, Helsinki, Finland, July 1–5,
2013, pp. 429–436 (2013)

12. Coullon, H., Limet, S., Le Minh, H.: Parallelization of shallow-water equations with the algorithmic
skeleton library SkelGIS. In: Elsevier (ed.) ICCS, volume 18 of Procedia Computer Science, pp. 591–
600. Elsevier, Barcelone (2013)

13. Dagum, L., Menon, R.: Openmp: an industry standard api for shared-memory programming. IEEE
Comput. Sci. Eng. 5(1), 46–55 (1998)

14. DeVito, Z., Joubert, N., Palacios, F., Oakley, S., Medina, M., Barrientos, M., Elsen, E., Ham, F. ,
Aiken, A., Duraisamy, K., Darve, E., Alonso, J., Hanrahan, P.: Liszt: a domain specific language for
building portable mesh-based pde solvers. In: Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’11, pp. 9:1–9:12. ACM, New York
(2011)

15. ETP4HPC. ETP4HPC Strategic Research Agenda Achieving HPC leadership in Europe. Technical
report, ETP4HPC (2013)

16. Ferrari, S., Saleri, F.: A new two-dimensional shallow water model including pressure effects and slow
varying bottom topography. M2AN Math. Model. Numer. Anal. 38(2), 211–234 (2004)

17. Gautier, T., Lima, J.V.F., Maillard, N., Raffin, B.: Xkaapi: a runtime system for data-flow task program-
ming on heterogeneous architectures. In: Proceedings of the 2013 IEEE 27th International Symposium
on Parallel and Distributed Processing, IPDPS ’13, pp. 1299–1308. IEEE Computer Society, Wash-
ington (2013)

18. Giles, M.B., Mudalige, G.R., Sharif, Z., Markall, G., Kelly, P.H.J.: Performance analysis of the OP2
framework on many-core architectures. SIGMETRICS Perform. Eval. Rev. 38(4), 9–15 (2011)

19. Kaiser, H., Heller, T., Adelstein-Lelbach, B., Serio, A., Fey, D.: Hpx: a task based programming model
in a global address space. In: Proceedings of the 8th International Conference on Partitioned Global
Address Space Programming Models, PGAS ’14, pp. 6:1–6:11. ACM, New York (2014)

20. Kambadur, P., Gupta, A., Ghoting, A., Avron, H., Lumsdaine, A.: Pfunc: modern task parallelism
for modern high performance computing. In: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09, pp. 43:1–43:11. ACM, New York (2009)

21. Lachat, C., Pellegrini, F., Dobrzynski, C.: PaMPA: parallel mesh partitioning and adaptation. In:
21st International Conference on Domain Decomposition Methods (DD21), Rennes, France. INRIA
Rennes-Bretagne-Atlantique (2012)

22. Lanore, V. Pérez, C.: A reconfigurable component model for hpc. In: Proceedings of the 18th Interna-
tional ACM SIGSOFT Symposium on Component-Based Software Engineering, CBSE ’15, pp. 1–10.
ACM, New York (2015)

123

Int J Parallel Prog (2019) 47:1046–1085 1085

23. Nieplocha, J., Palmer, B., Tipparaju, V., Krishnan,M., Trease, H., Aprà, E.: Advances, applications and
performance of the global arrays shared memory programming toolkit. Int. J. High Perform. Comput.
Appl. 20(2), 203–231 (2006)

24. Object Management Group. Corba component model 4.0 specification. Specification Version 4.0,
Object Management Group (2006)

25. Pellegrini, F., Roman, J.: Scotch: a software package for static mapping by dual recursive bipartitioning
of process and architecture graphs. In: Proceedings of the International Conference and Exhibition on
High-Performance Computing and Networking, HPCN Europe 1996, pp. 493–498. Springer, London
(1996)

26. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.: Halide: a language
and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines.
In: Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’13, pp. 519–530. ACM, New York (2013)

27. Richard, J., Lanore, V., Pérez, C.: Towards application variability handling with component models:
3d-fft use case study. In Proceedings of the 8th Workshop on UnConventional High Performance
Computing (UCHPC), Vienna, Austria (To appear) (2015)

28. Schmitt, C., Kuckuk, S., Hannig, F., Köstler, H., Teich, J.: Exaslang: a domain-specific language for
highly scalable multigrid solvers. In: Proceedings of the Fourth International Workshop on Domain-
Specific Languages and High-Level Frameworks for High Performance Computing, WOLFHPC ’14,
pp. 42–51. IEEE Press, Piscataway (2014)

29. Szyperski,C.:Component Software:BeyondObject-OrientedProgramming, 2nd edn.Addison-Wesley
Longman Publishing Co., Inc, Boston (2002)

30. Tang, Y., Chowdhury, R.A., Kuszmaul, B.C., Luk, C.-K., Leiserson, C.E.: The pochoir stencil compiler.
In: Fortnow L., Vadhan S.P. (eds.) SPAA, pp. 117–128. ACM (2011)

31. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs. In: Proceedings of
the Eleventh Annual ACM Symposium on Theory of Computing, STOC ’79, pp. 1–12. ACM, New
York (1979)

123

	Extensibility and Composability of a Multi-Stencil Domain Specific Framework
	Abstract
	1 Introduction
	2 The Component-Based Multi-Stencil Framework
	2.1 Background on Component Models
	2.2 Multi-Stencil Framework Overview

	3 Formalism of a Multi-stencil Program
	3.1 Time, Mesh and Data
	3.2 Computations

	4 Generic Asssembly and the Multi-stencil Language
	4.1 Generic Assembly
	4.2 The Multi-stencil Language

	5 The Multi-stencil Compiler
	5.1 Data Parallelism
	5.2 Hybrid Parallelism
	5.3 Static Scheduling
	5.4 Fusion Optimization
	5.5 Overall Compilation Process
	5.6 Performance Model

	6 Evaluation
	6.1 Implementation Details
	6.2 Use Case Description
	6.3 Multi-stencil Compiler Evaluation
	6.4 Data Parallelism Evaluation
	6.5 Hybrid Parallelism Evaluation
	6.6 Fusion Evaluation

	7 Related Work
	8 Conclusion
	Acknowledgements
	References

