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Abstract This paper focuses on evaluating the computational performance of parallel
spatial interpolation with Radial Basis Functions (RBFs) that is developed by utilizing
modern GPUs. The RBFs can be used in spatial interpolation to build explicit surfaces
such as Discrete Elevation Models. When interpolating with large-size of data points
and interpolated points for building explicit surfaces, the computational cost would be
quite expensive. To improve the computational efficiency, we specifically develop a
parallel RBF spatial interpolation algorithm on many-core GPUs, and compare it with
the parallel version implemented on multi-core CPUs. Five groups of experimental
tests are conducted on two machines to evaluate the computational efficiency of the
presented GPU-accelerated RBF spatial interpolation algorithm. Experimental results
indicate that: in most cases, the parallel RBF interpolation algorithm on many-core
GPUs does not have any significant advantages over the parallel version on multi-
core CPUs in terms of computational efficiency. This unsatisfied performance of the
GPU-accelerated RBF interpolation algorithm is due to: (1) the limited size of global
memory residing on the GPU, and (2) the need to solve a system of linear equations
in each GPU thread to calculate the weights and prediction value of each interpolated
point.
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1 Introduction

Spatial interpolation is the procedure for predicting the unknown value of a group of
interpolated points according to the known value of a set of data points. The spatial
interpolation is widely used in science and engineering applications, such as image
processing [21], numerical analysis [32,35], geometrical computation [3], Geographic
Information System (GIS) [16,17], Artificial Intelligence (AI) [22,37], and even Inter-
net of Things (IoT) [4,7,19]. Several of the most frequently used spatial interpolation
methods include: Inverse Distance Weighted Method (IDW) [33], Kriging method
[26], Discrete Smoothing Interpolation method (DSI) [24,25], Moving Least Squares
method (MLS) [30], and Radial Basis Functions (RBFs) Interpolation [8]. The per-
formance of these interpolation methods has been excellently compared and analyzed
by R. Franke [12].

The RBFs are commonly used to (1) approximate implicit surfaces in image pro-
cessing and (2) build explicit surfaces such as Digital Elevation Model (DEM). The
objective of approximating implicit surfaces with RBFs is different from that of build-
ing explicit surfaces with RBFs. In approximating implicit surfaces, the input data is
a set of scattered points, and an implicit surface will be approximated, which attempts
to fit the input scattered points. When building explicit surfaces using the RBF inter-
polation, a set of points with a specific type of known value is needed to calculate the
unknown value of another set of interpolated points.

Much research work has been conducted to approximate implicit surfaces using the
RBF approximation algorithms. For example, Cuomo et al. [8] analyzed theoretical
and practical issues in using RBFs for reconstructing implicit curves and surfaces
from point clouds. Hillier et al. [14] presented a generalized interpolation framework
using RBFs to implicitly model three-dimensional continuous geological surfaces
from scattered multivariate structural data. Macedo et al. [23] introduced the Hermite
Radial Basis Function (HRBF) implicit method to calculate a global implicit function
that can interpolate scattered multivariate Hermite data. Lin et al. [20] proposed a
novel implicit surface reconstruction approach, named Dual-RBF.

Also, several efforts have been dedicated to building various types of explicit
surfaces using the RBF interpolation algorithms. For example, Izquierdo et al. [18]
proposed a new interpolation scheme for Compactly-Supported Radial Basis Func-
tions (CS-RBFs) to address the problem of the interpolation of explicit surfaces with
vertical faults from scattered data.

In many science or engineering applications such as those in the field of GIS and
IoT, the involved data size could be quite large. When adopting the RBF interpolation
method to deal with the large size of data sets, the computational cost would be quite
expensive; especially the computational efficiency would be unsatisfied.

The techniques in HPC (High Performance Computing) are widely used to improve
computational efficiency in various science and engineering applications, such as
image processing [10,11,31], 3D data denoising [5], spatial interpolation [28,29], and
numerical computation [6,27].

One of the effective strategies to solve the problem is to perform the RBF-based
approximations or interpolations in parallel on various parallel computing platforms
such as shared-memory computers, distributed-memory computers, or even clusters.
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For example, Cuomo et al. [9] described a parallel implicit method based on RBFs for
surface reconstruction by exploiting the Graphic Processor Units (GPUs) acceleration.
Wang et al. [36] presented a parallel algorithm for RBF-based surface reconstruction
from contours on multi-core CPUs. Yokota et al. [38] developed a parallel algorithm
for RBF interpolation that exhibits O(n) complexity, requires O(n) storage, and scales
excellently up to a thousand processes on powerful clusters.

To be best of the authors’ knowledge, there is no previously reported work specifi-
cally focused on developing or evaluating GPU-accelerated spatial interpolation with
RBFs for building explicit surfaces. The currently reported relevant work mainly aims
at accelerating the approximation of implicit surfaces on the GPU [9].

In this paper, we specifically focus on evaluating the computational performance of
GPU-accelerated spatial interpolationwith RBFs.We first parallelize the RBF interpo-
lation on many-core GPU and then compare it with the parallel version implemented
onmulti-core CPU.We also carry out five groups of experimental tests on two different
machines to evaluate the computational efficiency.

The paper is organized as follows. Section 2 briefly introduces the spatial inter-
polation using RBFs. Section 3 concentrates mainly on our parallel implementations
of the RBF interpolation on multi-core CPU and many-core GPU. Section 4 presents
several experimental tests, and Section 5 discusses the results. Finally, Sect. 6 draws
some conclusions.

2 Background: Spatial Interpolation Using RBFs

Given a set of N distinct points
(
x j , y j

)
, j = 1, . . . , N , where x j ∈ Rs and y j ∈ R,

the scattered data interpolation problem consists in finding an interpolant function on
F such that:

F
(
x j

) = y j , j = 1, . . . , N . (1)

In the univariate setting (s = 1), the interpolant F is usually chosen in a suitable
function space. A common approach assumes the function F as a linear combination
of certain basis functions Φ j .

F (x) =
N∑

j = 1

w jΦ j (x) (2)

In a multivariate setting x j ∈ Rs, s > 1, the problem is more complex. In order to
have a well-posed multivariate scattered data interpolation problem, it is not possible
to fix in advance the basis {Φ1, Φ2, . . . , ΦN }, since the basis functions must depend
on the data sites x j .

The data dependent space for RBF interpolation can be easily generated by means
of the radial functions:

Φ j = φ
(‖x − x j‖

)
(3)

The points x j to which the basic function φ is shifted are usually referred to as centers.
While there may be circumstances that suggest choosing these centers different from
the data sites one generally picks the centers to coincide with the data sites.
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In fact, a practical interpolation problem consists of two sub problems: finding the
interpolant F and evaluating it on an assigned set of points. The coefficients w j in
Eq. (2) are obtained by imposing the interpolation conditions (Eq. 1).

F (xi ) =
N∑

j=1

w jφ
(‖xi − x j‖

) = yi , i = 1, . . . , N (4)

This leads to solving the linear system of equations Ax = b in Eq. (5).

Aw = B

A =

⎡

⎢⎢⎢
⎣

φ (‖x1 − x1‖) φ (‖x1 − x2‖) · · · φ (‖x1 − xN‖)
φ (‖x2 − x1‖) φ (‖x2 − x2‖) · · · φ (‖x2 − xN‖)

...
...

. . .
...

φ (‖xN − x1‖) φ (‖xN − x1‖) · · · φ (‖xN − xN‖)

⎤

⎥⎥⎥
⎦

w = [w1, w2, . . . , wN ]
T , B = [y1, y2, . . . , yN ]

T (5)

Given a set of M points ξ = {ξ1, ξ2, . . . , ξM }, the evaluation of the interpolant F
on ξ can be computed as a matrix-vector product (Eq. 6).

F (ξi ) =
N∑

j = 1

w jφ
(
ξi − x j

)
, i = 1, 2, . . . , M (6)

It is well known that in order to have a well-posed problem (Eq. 5), the matrix
A must be nonsingular. Unfortunately, a complete characterization of the class of
all basic functions φ that generate a nonsingular matrix for an arbitrary set χ =
{x1, x2, . . . , xN } of distinct data points is still lacking. The situation gets better in the
case of positive definite matrices, which are always non-singular. Popular RBFs φi ,
that give rise to positive definite interpolation matrices, are summarized as follows.

Multi-quadrics (MQ):

φ j (x) =
√(

c2 + ‖x − x j‖2
)
, (7)

Inverse MQ (IMQ):

φ j (x) = 1/
√(

c2 + ‖x − x j‖2
)
, (8)

Thin-plate splines (TPS):

φ j (x) = ‖x − x j‖2 ln
(‖x − x j‖/c

)
, (9)

Gaussians:
φ j (x) = exp

(
−c‖x − x j‖2

)
, (10)
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where c is the shape parameter, which can be selected according to the suggestions
given in the literature [13,34,35].

3 Methods: GPU-Accelerated Spatial Interpolation Using RBFs for
Building Explicit Surfaces

In this section, we will first introduce our basic ideas behind the presented GPU-
accelerated spatial interpolation using RBFs for building explicit surfaces, and then
describe the details of three implementations, i.e., (1) the serial implementation of
the spatial interpolation using RBFs, (2) the parallel implementation developed on
multi-core CPU, and (3) the parallel implementation by utilizing a single many-core
GPU.

3.1 Basic Ideas Behind the GPU-Accelerated Spatial Interpolation Using RBFs

3.1.1 Overview

The spatial interpolation algorithm using RBFs for building explicit surfaces is inher-
ently suitable to be parallelized on GPU architecture. This is because that: in the
RBF-based interpolation algorithm, the desired prediction value for each interpolated
point can be calculated independently, which means that it is naturally to calculate the
prediction values for many interpolated points concurrently without any data depen-
dencies between the interpolating procedures for any pair of the interpolated points.

Due to the inherent feature of the RBF-based spatial interpolation algorithm, it is
allowed a single thread to calculate the interpolation value for an interpolated point. For
example, assuming there are n interpolation points that are needed to be predicted their
values such as elevations, and then it is needed to allocated n threads to concurrently
calculate the desired prediction values for all n interpolated points. Therefore, the
RBF-based spatial interpolation method is quite suitable to be parallelized on GPU
architecture.

In the RBF-based spatial interpolation, there are two choices for determining the
region of data points for each interpolated point. The first is to use all the data points
to calculate the prediction value of each interpolated points, while the second is to
employ a local set of data points to evaluate the prediction value of an interpolated
point. The interpolation methods adopting the first choice of selecting a global set of
data points are referred to as Global interpolation, while those interpolation methods
employing the second opinion are called Local interpolation.

In the presented RBF-based spatial interpolation for building explicit surfaces, we
adopt the second choice to determine the region of data points for each interpolated
point. That is, we only use the local set of data points around an interpolated point
to calculate the prediction value. The local set of data points for each interpolated is
found using the k Nearest Neighbors algorithm (kNN) [29]. Moreover, we adopt the
Globally-Supported RBFs (GS-RBFs) rather than the Compactly-Supported RBFs
(CS-RBFs) for the local set of data points to compute the prediction value of each
interpolated point.
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CPU (Host Side) GPU (Device Side)

Start

End

Input Data

Output Data

Remove Duplicate Point

Copy Data from CPU to GPU

Copy Data from GPU to CPU

Create a uniform grid, assign all points
to the grid, and record the information

Use the kNN search method to search for the 
     nearest k data points around the local 
      area around each interpolated point

Calculate the distance between the k data points, 
 then substitute the distance into the radial basis 
 function, and assemble the coefficient matrix A

Solve the equations to obtain the weights w

Calculate the distance between the interpolated 
point and the k data points and substitute the dis-
tance to the basis function. Calculate the Z value
of the interpolated point via weighted average

Fig. 1 The procedure of the presented GPU-accelerated spatial interpolation algorithm using RBFs

In summary, there are two key ideas behind the presented RBF-based spatial inter-
polation algorithm for constructing explicit surfaces:

(1) We use a local set of data points around each interpolated point to calculate the
prediction value of the interpolated point. The local set of data points is found
using a kNN algorithm.

(2) We employ GS-RBFs for the local set of data points to compute the prediction
value of the interpolated point.

The process of the presented GPU-accelerated spatial interpolation algorithm using
RBFs is illustrated in Fig. 1. First, the input data is stored on the host side and then
transferred to the device side. Second, on the device side, an even grid is created
to help conduct the kNN search procedure. Third, the local set of data points for
each interpolated point is found using the kNN algorithm; and then the distances
between the data points are calculated, after that the coefficient matrix can be formed
according to the selected GS-RBFs. Finally, weights can be obtained by solving the
linear equations, and the desired prediction value for each interpolated points can be
achieved by weighting average using those weights.
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Create a Grid according 
to the min and max x and 
y coordinates of all points 

Distribute each data point 
into the Grid, and record 
the located Cell of Grid

Determine the number of 
data points and the first 

one locating in each Cell

Find k nearest neighboring
data points for each 

interpolated point

Fig. 2 The procedure of the kNN search for finding a local set of data points for each interpolated point

3.1.2 Stage 1: The kNN Search

In the RBF-based spatial interpolation algorithm, it is needed to find the k nearest
neighboring data points for each interpolated point. The kNN search algorithm is
directly derived from our previous work [29]. The procedure of the kNN search is
illustrated in Fig. 2, and more details are described as follows.

Step 1: Creating an even grid
The creating of an even planar grid is straightforward. We first determine the planar

rectangular region for partitioning by finding the minimum and maximum x and y
coordinates of all points. Then, the numbers of rows and columns of the grid can be
easily determined by dividing the rectangle with the width of the square cell; see a
simple illustration in Fig. 3.

Step 2: Distributing data points into cells
The objective of distributing all data points into the grid cells is to find out in which

grid cell each data point is located. The distributing of each data point is in fact to
determine the row and column indices of the cell in which it locates. Since that the
grid cells are indexed sequentially first by rows and then by columns, the procedure of
distributing can be easily carried out. First, the differences between the coordinates of
a data point and the minimum coordinates of all cells are calculated; then the indices
of column and row can be determined by dividing the above differences with the cell
width.

Step 3: Determining data points in each cell
The objective of this step is to determine the number and the indices of those data

points located in the same cell. The number of data points located in the same cell
can be determined with the use of a segmented parallel reduction. After sorting all
data points according to cell indices, the data points are sequentially stored in a group
of segments; each segment is flagged with the cell index, and contains the indices of
data points locating in the same cell. The number of those data points located in the
same cell can be obtained by performing a reduction for each segment; see Fig. 4a.
Moreover, the head index of the first point of each segment can be determined using
segmented parallel scan; see Fig. 4b.

Step 4: Searching nearest neighbors
The process of kNN search for each interpolated point can be summarized as the

following substeps: (1) locating the interpolate point into the even grid, (2) determining
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Fig. 3 The creation of an even grid according to the minimum and maximum coordinates of all the data
points and interpolated points (This figure is directly derived from our previous work [29])

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14Data Point’s ID

0 3 5 9 14 - - - - - - - - - -Head Point’s ID

1 1 1 2 2 3 3 3 3 4 4 4 4 4 5Located Cell’s ID

(b)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1Helper Values

3 2 4 5 1 - - - - - - - - - -Number of Points

1 1 1 2 2 3 3 3 3 4 4 4 4 4 5Located Cell’s ID
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Fig. 4 Demonstration of determining the number of data points distributed in each cell and the index of
the head point. a The number of points; b the index of the head point (This figure is directly derived from
our previous work [29])

the level of cell expanding (see Fig. 3), and (3) finding the k nearest neighbors within
the local region. More details on searching the nearest neighboring data points for
each interpolated points are presented in our previous work [29].
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3.1.3 Stage 2: The Interpolating Using RBFs

After finding the nearest neighbors of each interpolated point using the above-
described kNN search algorithm, the distances (1) between any pair of the nearest
neighboring data points and (2) between each nearest neighbor and the interpolated
point can be calculated; after that, the coefficient matrix can be formed according to
the selected GS-RBFs, i.e., the Multi-quadrics RBF (see Eq. 7). Finally, the weights
can be obtained by solving the equations (see Eq. 5), and the desired prediction value
for each interpolated points can be achieved by weighting average using those weights
(see Eq. 6).

3.2 Sequential and Parallel Implementations

In this subsection, we will introduce details of the following three implementations,
i.e., (1) the sequential implementation of the spatial interpolation using RBFs, (2)
the parallel implementation developed on multi-core CPU, and (3) the parallel imple-
mentation by utilizing a many-core GPU. Our focus in this work is to evaluate the
computational performance of the GPU-accelerated spatial interpolation algorithm
using RBFs. Thus, we also implement the sequential version and the parallel version
on multi-core CPU, and then compare the GPU version with that of the sequential
version and the parallel version on multi-core CPU.

It should be also noted that the source code of the above three implementations is
publicly available at: https://figshare.com/s/e9a2fc20daa963097d1d.

3.2.1 Sequential Implementation

There are two major sub-procedures in the sequential implementation. The first is
to create the even grid and then record the number and indices of those data points
located in each grid cell. The second is to loop over all interpolated points to first find
the kNN of each interpolated point and then calculate the prediction value based on
RBFs.

In the sequential implementation, we first sequentially loop over all points to
determine the planar rectangular region for partitioning by finding the minimum
and maximum x and y coordinates of all points. Then, the numbers of rows and
columns of the grid can be quite easily determined by dividing the rectangle with the
width of the square cell. After that, we sequentially distribute all the data points into
the grid cells and record the index of the located cell for each data point. Then,
we sort all the data points according to the index of the cell it locates ascend-
ingly using the std::sort() function, and sequentially loop over all the sorted
data points again to directly record the number and indices of data point located
in the same grid cell. Finally, we loop over all interpolated points to first find the
kNN of each interpolated point and then calculate the prediction value based on
RBFs.
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3.2.2 Parallel Implementation on Multi-core CPU

There are two major sub-procedures in the presented parallel spatial interpolation
algorithm using RBFs. The first is to create the even grid and then record the number
and indices of those data points located in each grid cell. The second is to loop over all
interpolated points to first find the kNN of each interpolated point and then calculate
the prediction value based on RBFs.

Thefirst sub-procedure is implemented by strongly utilizing theThrust library [1,2].
Thrust is a C++ template library for parallel platforms based on the Standard Template
Library (STL). Thrust provides a rich collection of data parallel primitives such as
scan, sort, and reduce. Thrust allows users to implement high-performance parallel
applications with minimal programming effort through a high-level interface that is
fully interoperable with technologies such as C++, CUDA, OpenMP, and TBB [15].

In the first sub-procedure, we first employ the function thrust::minmax_
element() to find the boundary range of all input data points and interpolated
points, i.e., to determine the minimum and maximum x and y coordinates of all data
points and interpolated points. Then, we use the function thrust::sort_by_key
to sort all data points ascendingly according to their coordinates. Finally, we employ
the function thrust::unique_by_key to find the head indices of the data points
located in each grid cell, and adopt the function thrust::reduce_by_key to
determine the number of data points residing in each grid cell.

The second sub-procedure is parallelized by exploiting the interface OpenMP with
the simple use of the OpenMP directive “#pragma omp parallel for”. In
the second sub-procedure, a loop needs to be performed over all the interpolated
points to first find the k nearest neighboring data points for each interpolated point
and then calculate the nodal distances, coefficients, and weights. Due to the fact that
there are no data dependencies between the calculating of prediction values of any
pair of interpolated points, the spatial interpolating for all interpolated points can be
parallelized by simply adding the OpenMP directive “#pragma omp parallel
for” before the for_loop.

3.2.3 Parallel Implementation on Many-Core GPU

As introduced in the above subsection, there are two major sub-procedures in the
presented parallel spatial interpolation algorithm using RBFs. The first is to create the
even grid and then record the number and indices of those data points located in each
grid cell. The second is to loop over all interpolated points to first find the kNN of
each interpolated point and then calculate the prediction value based on RBFs.

The first sub-procedure is implemented by strongly utilizing the Thrust library
[1,2]. For that the Thrust library is fully interoperable with technologies such as
C++, CUDA, OpenMP, and TBB [15], these employed functions provided by Thrust
library, such as thrust::minmax_element(), thrust::sort_by_key,
thrust::unique_by_key, and thrust::reduce_by_key, can be executed
in parallel on both the multi-core CPU and many-core GPU. Therefore, there is no
need to modify those functions to port them from the multi-core CPU to the many-
core GPU. It only needs to replace the container thrust::host_vectorwith the
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Table 1 Specifications of the employed two workstations for performing the experimental tests

Specifications PC NO.1 PC NO.2

CPU Intel Xeon E5-2650 v3 Intel Xeon E5-2680 v2

CPU frequency 2.30GHz 2.80GHz

CPU RAM 144GB 96GB

CPU core 40 40

GPU Quadro M5000 Tesla k40c

GPU memory 8GB 12GB

GPU core 2048 2880

OS Windows 7 Professional Windows 7 Professional

Compiler Visual Studio 2010 Visual Studio 2010

CUDA version v8.0 v8.0

container thrust::device_vector. After the modifying, the above-mentioned
functions can be automatically executed in parallel on the GPU.

A specific CUDA kernel is designed for the second sub-procedure. In the kernel,
each thread is invoked to calculate the prediction value for an interpolated point. More
specifically, each thread is responsible to (1) find the k nearest neighboring data points
for an interpolated point and (2) calculate the distances between the found k nearest
data points, the corresponding coefficient matrix, the weights, and finally the desired
prediction value for an interpolated point.

4 Experimental Results

4.1 Experimental Environment and Testing Data

4.1.1 Experimental Environment

To evaluate the computational performance of the presented RBF-based spatial inter-
polation algorithm, we carry out five groups of experimental tests on two different
workstations. The specifications of the employed workstations are listed in Table 1.

4.1.2 Testing Data

We have created five groups of testing data (see Table 2). In each group of testing data,
a set of input data points that the x , y, and z coordinates are known before interpolating
and a set of interpolated points that only the x and y coordinates are known while the
z coordinate is intended to be predicted using the presented RBF-based interpolation
algorithm.

Each set of data points are created by randomly distributing on a parametric surface;
see Fig. 5. The equation of the parametric surface is demonstrated in Eq. (11). More
specifically, both of the x and y coordinates are randomly generated in the range of
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Table 2 The used five groups of experimental testing data

Data set Num. of data points Num. of interpolated points

Size 1 69,198 72,301

Size 2 136,960 144,601

Size 3 276,991 287,977

Size 4 530,870 580,194

Size 5 963,895 1,149,231

0
200

400
600

800
1000

0

500

1000
−500

−400

−300

−200

−100

0

100

200

Fig. 5 The parametric surface for generating input experimental testing data

0—1000, while the z coordinate is simply calculated according to Eq. (11) after the x
and y coordinates have been determined.

z = 1000 ∗ sin
( πx

6 ∗ 1000

)
sin

(
7 ∗ πx

4 ∗ 1000

)
cos

(
3 ∗ πy

4 ∗ 1000

)

cos

(
5 ∗ πy

4 ∗ 1000

)
, 0 ≤ x, y ≤ 1000 (11)

The generation of five sets of interpolated points is the same as that of the data points.
Both of the x and y coordinates of each interpolated points are randomly generated
in the range of 0–1000. However, the z coordinate is not needed to be calculated
according to Eq. (11).

4.2 Running Time and Speedup

In the presented RBF-based spatial interpolation algorithm, we use a local set of data
points around an interpolated point to calculate the prediction value of the interpo-
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Table 3 Experimental results of five groups of testing data when k = 10 on the PC NO.1

Data set Running time (/ms) Speedup

Sequential Parallel on CPU Parallel on GPU Parallel on CPU Parallel on GPU

Size 1 375 312 75 1.20 5.00

Size 2 764 601 129 1.27 5.92

Size 3 1529 1194 223 1.28 6.86

Size 4 3112 2377 386 1.31 8.06

Size 5 5959 4789 686 1.24 8.69

Table 4 Experimental results of five groups of testing data when k = 20 on the PC NO.1

Data set Running time (/ms) Speedup

Sequential Parallel on CPU Parallel on GPU Parallel on CPU Parallel on GPU

Size 1 1287 328 142 3.92 9.06

Size 2 2574 624 216 4.13 11.92

Size 3 5140 1233 397 4.17 12.95

Size 4 10,327 2403 782 4.30 13.21

Size 5 20,241 4813 1525 4.21 13.27

lated point. The local set of data points is determined by employing the kNN search
procedure. The size of the local set of data points can be user-specified by fixing the
value of k.

In our experimental tests, five values of k are specified, i.e., 10, 20, 40, 60, and
80. For each of the five different values of k, the five groups of experimental tests are
performed on both of two workstations. The running time and corresponding speedup
of each group of experimental tests are presented in the following section.

4.2.1 Experimental Tests on the PC NO.1

On the workstation featured with the GPU M5000, five groups of experimental tests
are conducted with five different values of k. The running time and corresponding
speedups of each group of experimental tests are listed in Tables 3, 4, 5, 6 and 7.

The experimental results indicate that: (1) for the same group of testing data, with
the increase of the value of k, the speedups achieved by the two parallel versions of
the RBF-based spatial interpolation algorithm become large. (2) for the same value of
k, with the increase of the size of testing data, the speedups obtained by the parallel
implementations on multi-core CPU and many-core GPU also become large.

4.2.2 Experimental Tests on the PC NO.2

On the workstation featured with the GPU K40c, five groups of experimental tests
are conducted with five different values of k. The running time and corresponding
speedups of each group of experimental tests are listed in Tables 8, 9, 10, 11 and 12.
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Table 5 Experimental results of five groups of testing data when k = 40 on the PC NO.1

Data set Running time (/ms) Speedup

Sequential Parallel on CPU Parallel on GPU Parallel on CPU Parallel on GPU

Size 1 6108 655 593 9.33 10.30

Size 2 12,230 1123 1071 10.89 11.42

Size 3 24,336 2036 1978 11.95 12.30

Size 4 49,015 3619 3932 13.54 12.47

Size 5 97,235 6965 7935 13.96 12.25

Table 6 Experimental results of five groups of testing data when k = 60 on the PC NO.1

Data set Running time (/ms) Speedup

Sequential Parallel on CPU Parallel on GPU Parallel on CPU Parallel on GPU

Size 1 16,325 1458 1299 11.20 12.57

Size 2 32,698 2636 2467 12.40 13.25

Size 3 65,099 5125 4663 12.70 13.96

Size 4 130,790 9118 9451 14.34 13.84

Size 5 258,696 17,285 18,850 14.97 13.72

Table 7 Experimental results of five groups of testing data when k = 80 on the PC NO.1

Data set Running time (/ms) Speedup

Sequential Parallel on CPU Parallel on GPU Parallel on CPU Parallel on GPU

Size 1 35,022 2855 3526 12.27 9.93

Size 2 69,919 5312 6846 13.16 10.21

Size 3 139,371 9329 13,378 14.94 10.42

Size 4 280,457 18,510 26,905 15.15 10.42

Size 5 555,049 35,924 53,768 15.45 10.32

Table 8 Experimental results of five groups of testing data when k = 10 on the PC NO.2

Data set Running time (/ms) Speedup

Sequential Parallel on CPU Parallel on GPU Parallel on CPU Parallel on GPU

Size 1 375 258 83 1.45 4.52

Size 2 671 523 145 1.28 4.63

Size 3 1365 1030 260 1.33 5.25

Size 4 2769 2004 515 1.38 5.38

Size 5 5359 4048 988 1.32 5.42
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Table 9 Experimental results of five groups of testing data when k = 20 on the PC NO.2

Data set Running time (/ms) Speedup

Sequential Parallel on CPU Parallel on GPU Parallel on CPU Parallel on GPU

Size 1 1116 305 144 3.66 7.75

Size 2 2262 546 265 4.14 8.54

Size 3 4516 1100 500 4.11 9.03

Size 4 9072 2098 1003 4.32 9.04

Size 5 17,932 4228 1999 4.24 8.97

Table 10 Experimental results of five groups of testing data when k = 40 on the PC NO.2

Data set Running time (/ms) Speedup

Sequential Parallel on CPU Parallel on GPU Parallel on CPU Parallel on GPU

Size 1 5297 616 715 8.60 7.41

Size 2 10,639 913 1400 11.65 7.60

Size 3 21,153 1630 2728 12.98 7.75

Size 4 42,510 3042 5558 13.97 7.65

Size 5 84,115 5843 11,083 14.40 7.59

Table 11 Experimental results of five groups of testing data when k = 60 on the PC NO.2

Data set Running time (/ms) Speedup

Sequential Parallel on CPU Parallel on GPU Parallel on CPU Parallel on GPU

Size 1 14,844 1202 1690 12.35 8.78

Size 2 29,640 2106 3329 14.07 8.90

Size 3 59,248 3955 6494 14.98 9.12

Size 4 119,387 7792 13,189 15.32 9.05

Size 5 234,827 15,198 26,359 15.45 8.91

Table 12 Experimental results of five groups of testing data when k = 80 on the PC NO.2

Data set Running time (/ms) Speedup

Sequential Parallel on CPU Parallel on GPU Parallel on CPU Parallel on GPU

Size 1 31,574 2208 3717 14.30 8.49

Size 2 62,946 4243 7339 14.84 8.58

Size 3 125,564 8268 14,317 15.19 8.77

Size 4 253,407 16,435 28,954 15.42 8.75

Size 5 499,622 32,331 57,933 15.45 8.62
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As the same as the two behaviors concluded from the experimental results per-
formed on the workstation featured with the GPU M5000, the experimental results
conducted on the workstation featured the GPU K40c also indicate that: (1) for the
same group of testing data, with the increase of the value of k, the speedups achieved
by the two parallel versions of the RBF-based spatial interpolation algorithm become
large. (2) for the same value of k, with the increase of the size of testing data, the
speedups obtained by the parallel implementations on multi-core CPU and many-core
GPU also become large.

4.3 Interpolation Accuracy

One of the key issues in spatial interpolation is to evaluate the accuracy by comparing
the interpolated results with the theoretically exact results or really observed results.
However, it also should be noted that: in some cases, it is not able to evaluate the
interpolation accuracy since the theoretically exact or the really observed results cannot
be obtained.

In this work, we adopt the following twometrics for indicating computational errors
to evaluate the interpolation accuracy.

Metric 1: Normalized Maximum Error (NME)

NME = 1

max
1≤ i ≤Ni

|za | max
1≤ i ≤ Ni

|zn − za | , (12)

Metric 2: Normalized Root-Mean-Square Error (NRMSE)

N RMSE = 1

max
1≤ i ≤ Ni

|za |

√√
√√ 1

Ni

Ni∑

i = 1

|zn − za |2, (13)

where Ni is the number of interpolated points, za is the theoretically exact solution of
the i th interpolated point, which can be easily calculated according to Eq. (11); and
zn is the predicted value of the i th interpolated point.

The interpolation accuracy of the five groups of experimental tests is listed in
Tables 13 and 14. Note that the data presented in Tables 13 and 14 is completely the
same. However, to be easy to evaluate the impact of (1) the size of data set and (2) the
value of k on the accuracy, we specifically organize the data in two different layouts
of tables (Tables 13 and 14).

5 Discussion

In this section, we will analyze (1) the impact of the size of data set and the value
of k on the computational efficiency of the presented RBF-based spatial interpolation
algorithm, (2) the impact of the size of data set and the value of k on the interpolation
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Table 13 Interpolation accuracy of the GPU-accelerated spatial interpolation algorithm when fixing the
value of k

Data set Numerical error Value of k

10 20 40 60 80

Size 1 NME 1.23E−03 6.82E−04 1.01E−03 1.23E−03 1.65E−03

NRMSE 3.75E−05 4.19E−05 5.80E−05 7.40E−05 9.14E−05

Size 2 NME 5.54E−04 3.03E−04 4.34E−04 5.39E−04 7.40E−04

NRMSE 1.84E−05 2.07E−05 2.82E−05 3.58E−05 4.33E−05

Size 3 NME 2.51E−04 1.31E−04 2.23E−04 2.50E−04 3.23E−04

NRMSE 8.89E−06 9.88E−06 1.34E−05 1.69E−05 2.07E−05

Size 4 NME 1.15E−04 7.70E−05 1.31E−04 1.60E−04 1.89E−04

NRMSE 4.52E−06 5.06E−06 6.84E−06 8.71E−06 1.08E−05

Size 5 NME 8.46E−05 5.91E−05 8.04E−05 8.43E−05 1.26E−04

NRMSE 2.44E−06 2.72E−06 3.72E−06 4.91E−06 6.31E−06

Table 14 Interpolation accuracy of the GPU-accelerated spatial interpolation algorithm when fixing the
size of data sets

Value of k Numerical error Data set

Size 1 Size 2 Size 3 Size 4 Size 5

10 NME 1.23E−03 5.54E−04 2.51E−04 1.15E−04 8.46E−05

NRMSE 3.75E−05 1.84E−05 8.89E−06 4.52E−06 2.44E−06

20 NME 6.82E−04 3.03E−04 1.31E−04 7.70E−05 5.91E−05

NRMSE 4.19E−05 2.07E−05 9.88E−06 5.06E−06 2.72E−06

40 NME 1.01E−03 4.34E−04 2.23E−04 1.31E−04 8.04E−05

NRMSE 5.80E−05 2.82E−05 1.34E−05 6.84E−06 3.72E−06

60 NME 1.23E−03 5.39E−04 2.50E−04 1.60E−04 8.43E−05

NRMSE 7.40E−05 3.58E−05 1.69E−05 8.71E−06 4.91E−06

80 NME 1.65E−03 7.40E−04 3.23E−04 1.89E−04 1.26E−04

NRMSE 9.14E−05 4.33E−05 2.07E−05 1.08E−05 6.31E−06

accuracy, and (3) the key factors that limit the efficiency of theGPU-accelerated spatial
algorithm using RBFs. Furthermore, we point out our potential future work that would
improve the proposed algorithm in this work.

5.1 Impact of the Size of Data Set and the Value of k on the Computational
Efficiency

In this subsection, we will discuss the impact of the size of data sets (i.e., the input
data points and the interpolated points) and the different values of k on the com-
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putational efficiency of the proposed RBF-bases spatial interpolation algorithm for
building explicit surfaces.

5.1.1 Impact of the Size of Data Set on the Computational Efficiency

We have conducted five groups of experimental tests on twomachines. To evaluate the
impact the size of data set on the computational efficiency, we specifically re-organize
the experimental results by fixing the value of k for five different sizes of data set; see
Fig. 6.

The experimental results illustrated in Fig. 6 clearly indicate that: with the increase
of the size of data sets, the speedups achieved by the parallel RBF-based spatial inter-
polation algorithm on the GPU stably become large. This behavior is quite reasonable
since with the increase in the data size, the computational cost needed to perform
the spatial interpolation is thus correspondingly increased. Moreover, in this case, the
power of the GPU parallelization is highly exploited.

In short, when accelerating a relatively small size of data sets on the GPU, the
power of the parallelism on the GPU cannot be fully utilized. For but the large size of
data sets, the advantage in parallelizing on the GPU becomes more obvious and thus
the achieved speedups become larger.

5.1.2 Impact of the Value of k on the Computational Efficiency

Similar to evaluating the impact of data size on the computational efficiency, we also
specifically re-organize the experimental results by fixing the sizes of data sizes for
five different values of k; see Fig. 7.

The experimental results illustrated in Fig. 7 also clearly indicate that: with the
increase of the values of k, the speedups achieved by the parallel RBF-based spatial
interpolation algorithm on the GPU become large. This behavior is quite reasonable
since with the increase in the data size, the computational cost needed to perform the
spatial interpolation is thus correspondingly increased. And in this case, the power of
the GPU parallelization is highly exploited.

However, it is also should be noted that: after the value of k is larger than a specific
threshold value, the advantage in parallelizing on the GPU is no longer obvious. This
is because that: in the RBF-based spatial interpolation, it is needed to first form a
coefficient matrix and then solve a system of linear equations to obtain the weights.
The size of the coefficient matrix and the computational cost needed for the solving
the system of linear equations are strongly determined by the value of k.

With the increase of the value k, the computational cost for calculating the prediction
value of each interpolated point increase, and the power of the GPU parallelization
is highly exploited. But, with the increase of the value k, the memory requirements
for storing the coefficient matrix in the solving of the linear equations on the GPU
global memory significantly increase. This would strongly decrease the computational
efficiency.
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(a)

(b)

Fig. 6 Speedups achieved by the GPU-accelerated spatial interpolation algorithm when fixing the value
of k. a On the PC No. 1. b On the PC NO.2
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(a)

(b)

Fig. 7 Speedups achieved by the GPU-accelerated spatial interpolation algorithm when fixing the size of
data sets. a On the PC NO.1. b On the PC NO.2
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5.2 Impact of the Size of Data Set and the Value of k on the Interpolation
Accuracy

In this subsection, we will discuss the impact of the size of data sets (i.e., the input
data points and the interpolated points) and the different values of k on the interpola-
tion accuracy of the proposed RBF-bases spatial interpolation algorithm for building
explicit surfaces.

5.2.1 Impact of the Size of Data Set on the Interpolation Accuracy

To evaluate the impact the size of data set on the interpolation accuracy, we specifically
re-organize the experimental results by fixing the value of k for five different sizes of
data set; see Fig. 8.

The experimental results illustrated in Fig. 8 clearly indicate that: with the increase
of the size of data sets, the interpolation error indicating by two metrics, NME and
NRSME, always decreases. This behavior is quite reasonable since with the increase
in the data size, i.e., the number of data points locating in the interpolation region
increase, the density of data points (i.e., the number of data point locating in a unit
square) increases.

If the density of data points is high, then the found k nearest data points for each
interpolated point would be closely distributed. And in this case, the found k nearest
data point would fit the underlying parametric surface quite well. When using those
data points that well fit the underlying parametric surface to calculate the prediction
value of an interpolated point, the interpolated point will be also well fit the underlying
parametric surface; and thus, according to the definitions of the two metrics NME and
NRSME, the interpolation accuracy is quite high.

5.2.2 Impact of the Value of k on the Interpolation Accuracy

In our experiment tests, we have observed that: with the increase of the value of k,
the interpolation accuracy in the same group of experimental tests become worse;
see Fig. 9. The above behavior is interesting because in general the interpolation
accuracy would be getting better when using a larger size of data points to calculate
the prediction value.

We think it is mainly due to the following reason that leads to the above behavior.
The general concluding remark that the interpolation accuracy would be getting

better when using a larger size of data points is highly dependent on the distribution
pattern of the input data points and interpolated points. In this work, we create five
groups of data points by randomly distributing them on a parametric surface (Eq. 11);
and the interpolated points are also expected to be located on the parametric surface
after predicting the z coordinates.

We have to carefully give notice that: the shape of the underlying parametric surface
is not regular; see Fig. 5. Thus, the distribution pattern of all data points located on the
underlying parametric surface is also not regular. When using a local set of data points
to interpolate the prediction value of an interpolated point, the bigger is the size of the
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(a)

(b)

Fig. 8 Interpolation accuracy of the GPU-accelerated spatial interpolation algorithm when fixing the value
of k. a NME. b NRMSE

used local set of data points, the more regularly the local set of data points distribute
and the worse is the fitness of the local set of data points to the underlying parametric
surface. In this case, the interpolation error arising in the predicting using a larger size
of data points would correspondingly become larger.
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(a)

(b)

Fig. 9 Interpolation accuracy of the GPU-accelerated spatial interpolation algorithm when fixing the size
of data sets. a NME. b NRMSE

5.3 Key Factors that Limit the Efficiency of the GPU-Accelerated Spatial
Interpolation Algorithm

5.3.1 The Memory Bottleneck in Developing GPU-Accelerated RBF Interpolation

In the GPU-accelerated spatial interpolation algorithm using RBFs, one of the perfor-
mance bottlenecks is the memory allocation for storing the coefficient matrix in each
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Table 15 Workload between the solving of linear equations and the rest part of calculation of the sequential
version on the CPU on the PC NO.1 when the third group of data set is used

Value of k Time of solving
equations(/ms)

Time of the rest
calculation (/ms)

Total time (/ms) Percentage of the
time of solving
equations (%)

Percentage of the
time of the rest
calculation (%)

10 692 837 1529 45.3 54.7

20 2914 2226 5140 56.7 43.3

40 16953 7383 24336 69.7 30.3

60 49651 15448 65099 76.3 23.7

80 113319 26052 139371 81.3 18.7

thread. In the RBF-based spatial interpolation, it is needed first to form a coefficient
matrix and then solve a system of linear equations to obtain the weights. The size of
the coefficient matrix and the computational cost needed for the solving the system of
linear equations are strongly determined by the value of k.

With the increase of the value k, the computational cost for calculating the predic-
tion value of each interpolated point increase, and the power of theGPUparallelization
is highly exploited. However, with the increase of the value k, the memory require-
ments for storing the coefficient matrix in the solving of the linear equations on the
GPU global memory significantly increase. The global memory residing on a GPU is
limited. All of the interpolated points cannot be mapped to the GPU to calculate the
prediction values concurrently. To deal with the above problem, we have to first divide
the interpolation points into several pieces on the CPU, and then transfer each piece
of data points from the CPU to the GPU side. On the GPU, those interpolated points
in each piece can be predicted in parallel.

Obviously, With the increase of the value k, the memory for storing the coefficient
matrix becomes large, and the size of a piece of data point has to decrease. This
further leads to the increase of the number of pieces and also the computational cost
of transferring the data points from the CPU side to the GPU side.

In summary, due to the inherent feature in the GPU-accelerated spatial interpolation
using RBFs, the memory for storing the coefficient matrix in each GPU thread is
needed. And this memory allocation requirement strongly limits the computational
efficiency.

5.3.2 Cost for Solving the System of Linear Equations

We have also found that: the solving of the system of linear equations in each thread
is the major performance bottleneck that limits the computational efficiency of the
parallel RBF-based spatial interpolation algorithm. To evaluate the computational cost
on the solving of linear equations in the two implementations, we have specifically
surveyed the time of solving equations, the time of the rest calculation, and the total
time for the third group of data sets; see Tables 15 and 16.
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Table 16 Workload between the solving of linear equations and the rest part of calculation of the parallel
version on the GPU on the PC NO.1 when the third group of data set is used

Value of k Time of solving
equations (/ms)

Time of the rest
calculation (/ms)

Total time (/ms) Percentage of the
time of solving
equations (%)

Percentage of the
time of the rest
calculation (%)

10 167 56 223 74.9 25.1

20 229 168 397 57.7 42.3

40 1552 426 1978 78.5 21.5

60 3772 891 4663 80.9 19.1

80 11509 1869 13378 86.0 14.0

We have found that: the time cost on solving the equations significantly increase
with the increase of the value of k. This is because that the number of linear equations
is precisely the value of k. with the increase in the value of k, the size of the system
of linear equations become larger. And correspondingly, the computational cost for
solving the larger system of linear equations increases; see Fig. 10.

The computational efficiency of the parallel RBF-based spatial interpolation algo-
rithm on many-core GPU is not much better than that of the parallel one on many-core
CPU. The primary cause leading to the above behavior is the unsatisfied efficiency in
solving the linear equations on the GPU.

The solving of a large system of linear equations can be well parallelized on
the GPU. However, the solving of a relatively small system of linear equations in
each GPU thread is not computationally efficient. This is because the solving of
a system of linear equations using, for example, the Gaussian elimination method
adopted in this work, is not suitable to be executed in a GPU thread. This is due
to the fact that there are too many switch routines in the Gaussian elimination
method.

In summary, in the parallel RBF-based spatial interpolation algorithm, it is needed to
solve a system of linear equations using the Gaussian elimination method. However,
the solving of linear equations is not suitable to be executed in a GPU thread, and
thus strongly limits the computational efficiency of the parallel RBF-based spatial
interpolation algorithm on the GPU.

5.4 Outlook and Future Work

In the presentedGPU-accelerated spatial interpolation algorithmusingRBFs for build-
ing explicit surfaces, there are two key ideas behind our method. The first idea is to
employ a local set of data points rather than a global set of data points to calculate the
prediction value of an interpolated point. The second is to use GS-RBFs rather than
CS-RBFs to predict the desired z coordinate of an interpolation point. In the future,
we plan to implement and evaluate the spatial interpolation using CS-RBFs to build
explicit surfaces on the GPU.
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(a)

(b)

Fig. 10 Workload between the solving of linear equations and the rest part of calculation. a The sequential
version on the CPU. b The parallel version on the GPU
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6 Conclusions

In this paper, we have presented a parallel RBF-based spatial interpolation algorithm
for building explicit surfaces by utilizing the power of modern GPUs. We have carried
out five groups of experimental tests to evaluate the computational performance of
the GPU-accelerated RBF interpolation algorithm by comparing it with the parallel
implementation developed on multi-core CPUs. We have observed that: in most cases
of our experimental tests, the presented parallel RBF-based spatial interpolation algo-
rithm developed on many-core GPUs does not have any significant advantages over
the parallel version implemented on multi-core CPUs in terms of computational effi-
ciency. We have revealed that: (1) both the limited size of global memory and number
of registers residing on the GPU are critical bottlenecks in developing an efficient
GPU-accelerated spatial interpolation algorithm with RBFs; and (2) the need to solve
a system of linear equations in eachGPU thread to calculate the weights and prediction
value of each interpolated point is another critical cause that results in the performance
decrease of GPU-accelerated RBF interpolation algorithm.
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