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Abstract Support Vector Machines (SVMs) are considered as a state-of-the-art clas-
sification algorithm capable of high accuracy rates for a different range of applications.
When arranged in a cascade structure, SVMs can efficiently handle problems where
the majority of data belongs to one of the two classes, such as image object classi-
fication, and hence can provide speedups over monolithic (single) SVM classifiers.
However, the SVMclassification process is still computationally demanding due to the
number of support vectors. Consequently, in this paper we propose a hardware archi-
tecture optimized for cascaded SVM processing to boost performance and hardware
efficiency, along with a hardware reduction method in order to reduce the overheads
from the implementation of additional stages in the cascade, leading to significant
resource and power savings. The architecture was evaluated for the application of
object detection on 800× 600 resolution images on a Spartan 6 Industrial Video Pro-
cessing FPGA platform achieving over 30 frames-per-second. Moreover, by utilizing
the proposed hardware reduction method we were able to reduce the utilization of
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FPGA custom-logic resources by ∼30%, and simultaneously observed ∼20% peak
power reduction compared to a baseline implementation.

Keywords Field Programmable Gate Arrays (FPGAs) · Support Vector Machines
(SVMs) · Cascade classifier · Real-time and embedded systems · Hardware
architecture · Parallel processing

1 Introduction

Support Vector Machines (SVMs) have been widely adopted since their introduction
by Cortes and Vapnik [1], and are now considered one of the most powerful clas-
sification engines due to their mathematical background that is based on statistical
learning and is able to accurately model complex classification boundaries. Conse-
quently, there has been growing interest in utilizing SVMs in numerous applications,
including visual object detection systems, demonstrating high classification accura-
cies [2–4]. However, for large-scale problems the good classification accuracy rates
of SVMs come with the cost of longer classification times, as the classification com-
plexity of SVMs is proportional to the number of samples needed to specify the
separating hyperplane between classes, referred to as support vectors (SVs). As such,
SVM-based classification systems with hundreds of support vectors, find it difficult
to meet real-time processing demands, without sacrificing accuracy, especially for
embedded applications such as object detection with thousands of data that need to
be classified [4]. Relevant literature on SVMs [5–7] suggests a cascaded classification
structure in order to speed-up the SVM classification process for a class of the afore-
mentioned applications where the majority of data that need to be classified belongs
to one of the two classes. In the cascade classification approach, multiple SVM clas-
sifiers are arranged in stages of increasing computational complexity and accuracy.
The early stage classifiers are computationally less demanding and are responsible
for the removal of a large amount of negative class data, which do not exhibit simi-
lar patterns to the positive samples. On the other hand, the latter stages have higher
accuracy and thus higher computational complexity, in order to be able to distinguish
between similar samples belonging to different classes. However, they only classify
the samples that successfully pass the previous stages. Consequently, when utilizing
the cascade approach significant speedups overmonolithic (single) SVMclassification
are possible [5,7]. Still, when considering embedded applications (e.g. automotive,
home entertainment, and robotics) with real-time and power consumption constraints
and limited resources, the design of SVM-based classification systems that process
hundreds of support vectors and need to classify a large number of instances, is still
challenging to achieve.

Recent advances in hardware acceleration of SVMs feature extensive use of parallel
computing platforms such as Graphics Processing Units (GPUs), and reconfigurable
hardware fabric (Field ProgrammableGateArrays—FPGAs in particular) [8–10]. Rel-
evant research has produced quite promising results in terms of performance for use
in embedded systems. However, even if implementations of SVMs on GPU platforms
have gained considerable attention due to the high-level programming capabilities,
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GPUs still face challenges with regards to power consumption, especially with the
increasing development of portable resource-limited platforms, requiring specific
hardware solutions and large scale problems [11,12]. Hence at present, computing
systems based on FPGAs and customized hardware accelerators allow to exploit the
inherit parallelism of algorithms such as SVMs, whilst achieving efficient imple-
mentation suitable for real-time processing and low-power operation. Furthermore,
FPGA platforms provide flexibility and hence allow hardware/software co-design
techniques. Justifiably then, there has been a considerable amount of research work
on SVM hardware architectures. However, existing hardware architectures proposed
for the acceleration of SVMs, consider only monolithic classifiers, which are not opti-
mized to efficiently handle problems, where the majority of data belong to one of
the two classes. As such, designing specialized hardware accelerators for multistage
cascade SVMs based on existing approaches is a challenging task, especially due to
the increase in the number of classifiers and subsequent hardware complexity, and
their different computational demands, which require flexibility, low power, real-time
operation, and often with limited available resources.

This work extends and improves our preliminary research in [13] which presented a
hybrid hardware architecture that exploited the cascade SVMflow, where classifiers at
the beginning are used more frequently than subsequent stages, to provide a hardware-
efficient implementation capable of real-time classification while outperforming a
monolithic SVM classifier. In this work, we further elaborate on the advantages of
the proposed architecture first presented in [13], and demonstrate its applicability for
embedded applications by evaluating it on larger-scale benchmark applications with
different data sets and computational demands. We also outline the trade-offs of the
proposed design optimization method that is based on approximating the support vec-
tors with power of two values in order to replace multiplications with shift units and
reduce the resource requirements. In addition, a feature extractionmechanismbased on
the hardware-efficient local binary patterns (LBPs), is selectively incorporated into the
architecture in order to improve the accuracy of the SVM cascade for object detection
applications. The cascade architecture optimized with the proposed hardware reduc-
tion method is implemented as part of a complete classification system on a Spartan-6
industrial video processing FPGA platform. The system was evaluated on a larger test
set and higher resolution images (800 × 600) than our previous work for the applica-
tions of face and pedestrian detection. As it will be shown in Sect. 4.6 the proposed
system achieves over 30 frames-per-second (fps), which is capable for real-time video
processing, while processing more windows than other works, with 80% detection
accuracy which is on par with cascade SVM software implementations for the tar-
geted applications [5–7]. Furthermore, the hardware reduction method resulted in the
utilization of∼30% less FPGA logic resources and reduction of peak power by∼20%.

The paper is organized as follows. Section 2 provides the background on SVMs,
cascade classifiers, object detection, and related work on the hardware acceleration of
SVMs. Section 3 details the hardware architecture for cascade SVM processing and
the hardware reduction method. Section 4 presents FPGA-based experimental results
on the achieved frame-rate, detection accuracy, and resource utilization trade-offs,
for face and pedestrian detection, as well as comparison with related works. Finally,
Sect. 5 concludes the paper.
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2 Background

2.1 Support Vector Machines (SVMs)

A Support Vector Machine (SVM) is a supervised binary classification algorithm
which maps data into a high-dimensional space where an optimal separating hyper-
plane is constructed [1,2]. SVMs are presented with a training set consisting of pairs
of data samples xi , and class labels yi (−1 for negative and 1 for positive samples),
and find a mapping function f , such that f (xi ) = yi for sample i in the training set.
This function captures the relationship between the data samples and their respective
class labels. An SVM tries to separate the data samples of two different classes, by
finding the hyperplane with the maximum margin from the training samples that lie
at the boundary of each class (Fig. 1a). The training samples that are on the boundary
are called support vectors (SVs) and influence the formation of the hyperplane [1,2].
The support vectors obtained during the SVM training phase, correspond to non-zero
alpha coefficients derived from the training optimization problem [2], and constitute
the SVM classification model with which to classify new input data. In many real-
world applications, the data samples may not be linearly separable. SVMs utilize a
technique called the kernel trick [2], to project the data into higher dimensional space
where linear separation is possible and then proceed to find the decision surface. This
formulation allows projecting data into a higher dimensional space, where linear sepa-
ration is possible (Fig. 1b), though a kernel function K (xi , x j ) = ϕ(xi )ϕ(x j ), without
the need to explicitly use a mapping function ϕ. Overall, the classification decision
function (CDF) for SVMs is given in (1), where Ns is the number of support vectors
obtained from training, ai are the alpha coefficients, yiyi are the class labels of each
sample, si are the support vectors, z is the input vector, k(z, si ) is the chosen kernel
function, and b is the bias. The support vectors correspond to training set samples
which have non-zero alpha coefficients.

C(z) : sign

⎛
⎝
NS∑

i=1

αiyiK (z, si) + b

⎞
⎠ (1)

The computational demands ofSVMclassifiers dependon the choice of kernel function
the most common of which are illustrated below:

Fig. 1 a SVM concepts: separating hyperplane, support vectors, normal vector w, bias, and margin. b
The kernel Trick visualization. c Cascade classification scheme overview
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Linear (Dot Product) : K (z, s) = (z•s) (2)

Polynomial : K (z, s) = ((z•s) + const)d , d > 0 (3)

Radial Basis Function (RBF) : K (z, s) = exp
(
−‖z − s‖2/2σ2

)
(4)

The linear kernel (2) for SVMs corresponds to a dot-product operation between the
input data and a feature vector w, which is the decision hyperplane normal vector
(Fig. 1a), and is computed directly from the support vectors using w = ∑Ns

i=1 yiai si .
However, in the case of non-linear SVMs (3)–(4), the kernel is amore complex function
and the feature vector cannot be directly obtained from the support vectors. Hence,
the input vector needs to be processed with all support vectors, and the kernel-specific
operations need to be performed, before a classification outcome can be obtained.
To reduce the computational demands of non-linear kernels the reduced-set-method
[14] has been proposed, which tries to find a smaller set of vectors, called reduced-set-
vectors (RSVs), in order to approximate the decision function of the full SVM retaining
most of the classification capabilities [7]; which yields a reduced-set-vector-machine
(RSVM). This results in losing the association with the original training problem, i.e.
for image classification problems the SVs are not images any more.

2.2 Cascade Support Vector Machines

In many applications, achieving linear separation of a data set is quite rare. Hence,
non-linear kernels are necessary in order to obtain accurate classification results; how-
ever, classification speeds can be slow with such kernels. It is possible to accelerate
SVM-based classification for a certain class of applications, such as video object
detection, that exhibit the following characteristics: (a) the majority of the instances
presented to the classifier belong to one of the two class and (b) the majority of
those instances are not similar to the instances of the other class. Based on these
characteristics software implementations in the literature [15,16] have tried to take
advantage of these two observations by utilizing stages of SVMs of increasing com-
plexity, which are sequentially applied to the input data (Fig. 1c). Such structures
mostly follow a cascade structure [5–7] where SVMs of increasing complexity are
arranged in a hierarchy of stages. The stages can be separate classifiers or the decom-
position of one larger classifier. Regardless, the commonality of these structures is
that the SVM stages at the beginning of the hierarchy [usually linear kernels (2)]
have lower computational complexity (i.e. need to process only a small number of
SVs) and are tasked with removing the majority of samples from the negative class.
The latter stages [usually kernels (3), (4)] then are able to perform more accurate
classification on the remaining samples, which, however, incurs a higher computa-
tional cost (i.e. need to process more SVs). Hence, an input sample needs to pass
all stages to be classified as positive (Fig. 1c), otherwise it is classified as neg-
ative. Under this scheme a large amount of input samples are discarded early in
the classification process by the stages at the beginning of the cascade, resulting
in significant speedups. Since the latter stages need to discriminate better between
positive and negative samples, feature extraction algorithms may be used to improve
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accuracy, which however, further increases computational demands. In such cases,
it is possible to use the reduced-set-method [14], to reduce the number of support
vectors required by the non-linear kernel stages in order to improve classification
times.

2.3 Object Detection

The process of visual object detection deals with determining whether an object of
interest is present in an image/video frame or not and also determine its location
within the frame. The overall visual object detection process begins by first receiving
an input image/video frame from a camera or other adequate image source, which
subsequently will then be searched in order to find possible objects of interest. This
search is done by extracting smaller regions from the frame, called search windows,
of m × n pixels, which are processed by a classification algorithm to determine if
they belong to the object of interest class or not [4]. Thus, the classification algorithm,
such an SVM, learns to categorize search windows of a particular size. However, the
object of interest may appear in the image/video frame at a larger size than the size
of the search window. In such a case, the classification algorithm will not be able to
detect the object. To account for this scenario an object detection system typically
decreases the size of the input image (downscaling), effectively reducing the size of
the object of interest, and then reexamines the downscaled image with the same search
window size. The downscaling process is done in steps to account for various object
sizes, down to the size of the search window and scaling happens by mapping old
coordinates to new ones using a scaling f actor . Hence, many downscaled images are
produced from a single input image/video frame, each in turn produce a number of
search windows, which increases the amount of data that must be processed by the
classification algorithm such an SVM. Search windows can be extracted from every
pixel location in the image (exhaustively) or every few pixels and is called the window
pixel step. This search process is what generates a large number of windows that
need to be classified. Also considering that a substantial number of those windows
are background and not an object of interest, it becomes apparent that visual object
detection is a prime example of an application that can benefit from the cascade
classification structure.

It is important to consider the metrics used to measure the performance of an object
detection system.An image object detection system is characterized by how accurately
it can classify data as well as howmany image frames it can process per second. Thus,
the two commonly used performance metrics are the detection accuracy, and frames
per second (FPS) or frame rate. Detection accuracy is usually measured on a given
test set where the expected outcome for a sample is compared to the actual outcome
of the object detection system. The detection accuracy is the percentage of samples
for which the expected outcome matches the actual outcome of the detection system.
FPS concerns the throughput of a system and is the maximum number of digital
video/image frames, of a given size, that the detection system can process in one
second. A performance of 30FPS is usually considered a minimum in order for an
object detection system to be capable for real-time video processing.
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2.4 Local Binary Patterns (LBP)

Each window that is extracted from the image is processed to produce features that
provide invariance to different lighting conditions and other environmental variations.
These features can either be shape, color, intensity, or the result of various filters
and feature extraction algorithms. Using features makes the detection process more
robust since it provides a more representative description of the object and reduces the
within-object-class variability. However, the addition of feature extraction approaches
and preprocessing methods can have a negative effect on the classification speed even
though the accuracy can be improved. In this paper we use the features called Local
Binary Patterns (LBPs) [17], that describe the relationship between a pixel and its
neighborhood, and have been used in a wide range of computer vision applications
[18,19]. The major advantage of LBPs is their low computational complexity while
providing sufficient accuracy which makes them particularly attractive for embedded
applications where the available resources may be limited and low power operation
is needed. Many variants of LBPs exist in the literature that are tailored to different
objects [19]. The approaches that are of interest in this work are the standard LBP
[19] and Center-Symmetric LBP (CS-LBP) variation, The former has been used for
face detection and recognition while the latter for pedestrian detection. The process
of extracting the LBP features first begins by thresholding a 3 × 3 neighbourhood
(image sliding window). For the standard LBP (Fig. 2a) the values are threshold with
the center value of that neighborhood placing 1 where the value is greater or equal than
the mean, and 0 otherwise. For the CS-LBP the difference of opposite direction pixels,
symmetrically to the center, is compared against a predetermined threshold and if it is
grater the resulting value is 1 and 0 otherwise. The produced binary map is multiplied
with a predefined mask (usually incremental powers of two). The values are then
summed to obtain the LBP Code. The result of LBP processing is an image assembled
by LBP features (Fig. 2b). In order to improve the robustness of LBP features it is
suggested [19] that the LBP code is further processed to compute rotation invariant
features. This is done by characterizing the code as uniform and non-uniform based on
the bit transitions in the code. The number of transitions in the code is found next by
xor operations on the LBP code bits. This is necessary to identify a pattern as uniform
LBP code (which has 2 or less transitions e.g. 11110000) or non-uniform LBP code
(which have more than 2 transitions e.g. 10100101). This offers a more meaningful
interpretation of the LBP codes which can achieve higher discrimination. The next
and final step to creating the LBP-based descriptor requires dividing the LBP-based
in k blocks of i × j pixels. A local histogram is generated for each block in the image.

Fig. 2 Local binary patterns: a LBP Code generation using improved LBP and Center Symmetric LBP. b
LBP histogram processing
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The local histograms can have any number of bins depending on the application. The
local histograms are then concatenated to form a single global histogram descriptor,
as shown in Fig. 2b.

2.5 Related Work

Software implementations of cascade SVM classification schemes [6,7,14,15,20,21],
have shown speedups over monolithic SVMs and although noteworthy and suitable
for some applications, are yet to offer adequate performance for real-time resource-
constrained applications. This is due to the fact that the latter stages become the
bottleneck since they require processing an increased number of SVs and the require-
ment for parallel processing arises. Hence, hardware accelerators based on parallel
computing platforms (e.g. [22,23]) for SVM classification have been proposed in the
literature in order to take advantage of the inherit parallelism of the SVM computa-
tion flow in an attempt to provide real-time and low-cost/low-power solutions. A brief
description of related works follows next.

The majority of proposed hardware architectures attempt to improve performance
by employing parallel processing modules, which process the elements of the input
vector in parallel on FPGA platforms. However, for such architectures the parallelism
depends on the vector dimensionality for a given problem in terms of computational
resources. When the vector dimensionality is high and the hardware resources are
not available for a full parallel processing the architecture can be folded to process
the elements in groups, however, this increases the cycles needed to process a sin-
gle vector. Hence, works that utilize such architectures have optimized it specifically
for the vector dimensionality of the given problem and have been restricted to small
scale data, with only a few hundred vectors and low dimensionality (∼100 elements)
[9,24,25] and small-scale multiclass implementations [26] in order to be able to meet
real-time constraints. In addition, these architectures cannot trade-off processing more
SVs rather than vector elements, and hence, cannot efficiently deal with the differ-
ent computational demands of the cascade SVM stages. The works in [10,27] target
image recognition problems for 32 × 32 resolution images. However, the datasets
consist of only a few images corresponding to low vector dimensionality. Barcode
detection is the targeted application for [28] operating on 512×512 resolution images
and scanning window size of 16× 16 (256 element vector) and requires 352 cycles to
classify an input vector. Alternative approaches include FPGA coprocessors for par-
allel vector processing in order to speedup SVM computations [8,29]. However, these
architectures do not consider the kernel implementation and the FPGA is only used for
the dot-product operations of the SVM classification flow. Furthermore, the parallel
processing capabilities depend on parallel input through the PCI express and external
DRAM which have high power consumption and are thus unsuitable for embedded
applications.

In addition, research has also been done on potential simplifications to make SVM
classification more hardware friendly and improve its suitability for devices with lim-
ited computational resources. These approaches include using CORDIC algorithms
to compute the kernel functions [10,24,27,30,31]. However, the iterative operations
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of these algorithms make it challenging to achieve high performance for applications
that require high data throughput such as object detection, since compact implemen-
tations of CORDIC algorithms which require less hardware, have increased latency
[32]. Other works [33,34] proposed that the computations be done in the logarithmic
number system so that all multiplications are substituted by additions, thus reducing
computational resources. However, they only consider a single processing module,
hence, when adopting a more parallel architecture, to facilitate real-time operation,
the additional cost from converting between the decimal number system to the loga-
rithmic one and back again for all inputs increases. Alternatively, a pseudo-logarithmic
number system was proposed in [35], however, the overhead for converting between
number systems, in order to perform additions, remains. The works in [36–38] have
looked at how the bitwidth precision impacts the classification error, in an effort to find
the best trade-off between hardware resources, performance and classification speed.

Parallel computing using GPUs has been increasingly used in recent years in order
to speedup SVM classification by taking advantage of the parallel processing capabili-
ties of a GPU showing improved results compared to CPU implementations [20,39]. A
hybrid FPGA-GPU pedestrian detection is presented in [40] where the SVM is imple-
mented on the GPU and a feature extraction algorithm on the FPGA for 800 × 600
images and achieves over 10 frames-per-second for the classification of 1000windows.
However, GPUs are power hungry devices compared to FPGAs [29,41], (FPGAs con-
sume approximately an order of magnitude less power as shown in [12]) and as such
they are not suitable for power-constrained embedded applications. In addition, exist-
ing GPU implementations do not translate well to the more energy-efficient embedded
GPUs due to less available resources [42].

It is evident from the above that there is limited work for the hardware implemen-
tation of cascade SVMs as most of the related works consider only monolithic SVM
classifiers. Hence, efficient ways to utilize the different computational demands of
cascade SVMs stages have not been sufficiently examined. Only recently there has
been some work in the hardware implementation of cascade SVM classifiers [13,41].
Moving towards large scale embedded applications and problems where thousands of
samples need to be classified, the majority of which belong to one of the two classes,
cascade SVMs will need to be utilized to provide speedups. As such, single SVM
architectures, which do not exploit the properties of the cascade classification scheme,
are not suited for this purpose.

3 Proposed Design Method and Hardware Architecture

Motivated by the aforementioned discussion and the need to consider efficient hard-
ware architectures for cascade SVM classifiers we propose parallel hybrid hardware
architecture, with two main processing modules that offer different parallelism with
respect to theSVs, to provide higher classification throughput and a hardware reduction
method leading to a more compact hardware implementation suitable for embedded
system applications. We also show how a suitable I/O structure can be designed to
facilitate data input to each processing module. In addition, the architecture also incor-
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porates a novel compact feature extraction processor based on local binary pattern
(LBP) descriptors [19], targeting object detection applications.

3.1 Cascade SVM Hardware Reduction Method

Existing cascade SVM classification schemes utilize a hierarchy of SVM classifiers
which can be different classifiers or expansions of a single classifier. Nonetheless,
the common feature of these cascade structures is that stages at the beginning of
the cascade usually require processing less SVs than subsequent stages making
them computationally less demanding. This is because the objective of the early
SVM stages is to guarantee that the positive samples will go through to the final
stage while a large amount of negative samples will be discarded rather quickly.
However, this implies that a few negative samples will be classified as positive.
In contrast, subsequent stages need to be more accurate and discriminate better
between positive and negative samples; and hence build decision functions with more
SVs.

The fact that the early SVMs stages are not optimal classifiers can be exploited
to reduce the resources required for their hardware implementation by adapting their
parameters (SVs and alpha coefficients), while maintaining their ability to discard
a large amount of negative samples. The proposed hardware reduction method is to
approximate the support vector and alpha values of the low complexity kernels with
the nearest power of two values. This will result in all the multiplication operations in
the SVM classification phase (the kernel dot-product calculations and computations
related to the alpha coefficients) becoming shift operations. Additionally, since the
support vectors and alpha coefficients are now power of two values there is no need to
store the binary representations of decimal numbers but only shift data (shift amount,
shift direction, and number sign). Hence, this results in an adapted cascade SVM
with reduced storage and computational demands. However, by approximating the
support vectors and alpha coefficients the resulting classification accuracy will be
different from that of the initial SVM cascade. To adjust the accuracy of each cascade
stage rounded off to the nearest power of two, to similar rates of that of the initial
cascade stages the receiver-operating-characteristic (ROC) curve is used. The ROC
curve shows the performance of a binary classification system by illustrating the
corresponding true positive and false positive rates, as the discrimination threshold
is varied. As such, by setting the appropriate threshold the performance of the adapted
stages in the SVM cascade can be adjusted to match the true positive rate of the initial
SVM cascade stages. This is important since the true positive rate of the classifier
must be maintained. Adapted stages, which do not yield the targeted accuracy, are
reverted back to the initial model. The process is summarized in Fig. 3. The hardware
reduction process takes place after the cascade structure is decided, meaning that the
kernel function, and number of support vectors or reduced-set-vectors for each SVM
cascade stage are determined. As such, the proposed method can easily be used with
different SVM training frameworks. Furthermore, the method does not depend on the
specific hardware architecture used for the implementation of the cascade and as such
can be optimized to different architecture requirements.
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Fig. 3 Cascade hardware reduction method: the initial cascade SVM obtained after training is altered to
become more hardware friendly resulting in an adapted cascade SVM

Fig. 4 SVMcascade systemarchitecture comprised of the sequential processingmodule (SPM), the parallel
processing module (PPM), the register array, frame buffer memory, and the visual feature processor

3.2 Hybrid Cascade Hardware Architecture

The proposed architecture (Fig. 4) consists of themain cascade processing components
as well as additional components, which relate to the targeted benchmark application
of object detection [5]. The presented architecture is flexible, and the parameters of
each component can be adjusted to meet the requirements of the given classification
problem. Furthermore, the modular design means that the architecture can support
different processor modules, which makes it suitable for different cascade implemen-
tations. Due to the nature of the cascade classification scheme, each successive SVM
stage will have fewer input data to process and more SVs to process than the pre-
vious stage. Hence, efficient hardware architectures need to take into consideration
the throughput and processing needs of each stage in the cascade. Accordingly, the
proposed hardware architecture for the cascaded SVM classifier consists of two main
processing modules, which provide different parallelism with respect to the input data
and SVs, in order tomeet the different demands of the cascade stages. The first is a fully
parallel processing module (PPM) which performs the processing necessary for all the
adapted SVM stages. The PPM is used to process a single vector in parallel and can be
designed to process vectors of different dimensionalities and can be unrolled to be as
parallel as the available resources allow. The second is a sequential processing module
(SPM), optimized for the high complexity SVM stages which demand processing a
large number of SVs but only a fraction of the input data. Thus parallelism focuses on
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processing multiple SVs in parallel. The vectors can have different dimensionality and
the number of parallel SVs that can be processed can also be adapted to the available
amount of resources. In addition, a specialized processor for LBP histogram extraction
is implemented with a low-resource consuming architecture as a means to efficiently
improve accuracy.

3.2.1 Parallel Processing Module (PPM)

The parallel processing module (PPM) carries out the processing of the low complex-
ity SVM stages which have been adapted using the previously described hardware
reduction method. Specifically, the proposed architecture can process linear and 2nd
degree polynomial kernels, but the plug-and-play approach of the architecture means
that other kernel modules implementing different kernel functions can be used instead
[43]. The characteristic of the early cascade stages is that they require processing only
a few SVs per input vector, while having to process the majority of input vectors. As
such, parallelism focuses on processing vector elements in parallel with a single SV
to reduce the processing time per vector.

The architecture of the PPM (Fig. 5) is designed to perform the SVM shift oper-
ations, accumulations via an adder tree pipeline, and the final kernel computations.
As such, it is comprised of parallel SV data memories, arithmetic shifters and parallel
sign conversion units. In addition, it is also comprised of a tree of adders that sum
the results of the previous stage in order to calculate the dot-product scalar value. The
final components are dedicated to kernel processing and are also mostly implemented
using arithmetic shift units. The shift data are fetched in parallel from small ROMs,
and include the sign of the support vector, the shift amount, and the direction of the
shift operation. The parallel processing module starts by first processing the input
vector elements with a sign conversion unit which that converts the input to positive
or negative according to the SV sign bit so that the initial multiplication operation
can be preserved. The signed numbers are then processed by arithmetic shift units

Fig. 5 Parallel processing module (PPM) architecture: Handles the processing of the nearest power of two
adapted SVM stages. The shift units and adder tree are used by all kernels while only non-linear kernels
use the rest of the kernel module
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which perform the shift according to the data that they receive from the ROMs, while
preserving the sign bit, and correspond to the multiplication operation with the SV.
The partial results are added together using a pipelined tree of adders so that the dot-
product outcome can be obtained. The length of the adder tree impacts the latency of
the PPM and depends on the number of operands of individual adders used and the
vector dimensionality. The latency of the adder tree is thus given by:

adder_tree_stages = � log (vector_dimensionality)

log (adder_input_size)
� (5)

When the dot-product scalar value becomes available the kernel computation follows.
In the case of linear kernels (2), adding a bias value to the dot-product outcome will
suffice in order to obtain the classification result. However, for 2nd degree polynomial
kernels (3), as well as other kernels [e.g. (4)] additional operations are necessary. The
kernel computationmodule handles the latter steps of the classification phase. A single
multiplier is used in the parallel processing module and is necessary to perform the
squaring operation of kernel (3). The alpha coefficients are also approximated with
power of two values, and hence, their processing is done with a sign conversion unit
and an arithmetic shift unit similarly to the processing of the SVs. An accumulator
is used to gather and process the result of each SV processing, and once all SVs are
processed an adder is used to process the bias with the accumulated result. The PPM
stages are pipelined, so one SV enters the pipeline every cycle. Hence, the total number
of cycles needed to process the input vector at stage n is given by Eq. (6), where NS (i)
is the number of support vectors that need to be processed by stage i .

⎛
⎝

n∑

i=1

NS (i) + adder_tree_stages + 1

⎞
⎠ (6)

3.2.2 Sequential Processing Module

The processing of the latter SVM stages (typically the final SVM stage) is performed
via the sequential processing module (SPM). This final stage will most likely process
only a small percentage of the input data; however, it will have the largest number of
SVs. Hence, a different architecture is needed for such purposes, instead of the PPM,
which needs to be compact and also offer parallel processing. Using the SPM architec-
ture allows us to processmultiple SVswith a single vector element at a time facilitating
both parallel processing and amore compact andmodular design. Therefore, instead of
processing the input vector in parallel the focus is on processing more support vectors
in parallel. This is achieved with the architecture shown in Fig. 6, which is comprised
of a series of pipelined processing and memory units. The majority of the units in the
module are vector processing units (VUs) and each unit handles the dot-product for
one support vector with the input vector. They are comprised of a multiply-accumulate
unit, and also a ROM which contains the data for one or more support vectors, along
with register and multiplexer logic for data transfer between vector units. The last unit
in the pipeline is the kernel processing unit which is equipped with multipliers and
accumulators to carry out the scalar operations of the SVM processing flow.
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Fig. 6 Sequential processing module (SPM) architecture: Consists of two processing units: The dot-
product processing units handle the dot-product computation, and the kernel processing unit, which is
shared amongst the dot-product units, handles the kernel-related operations

The input vector is processed with a group of support vectors at a time, and each
vector processing unit handles the processing of one support vector. When processing
more than one group of SVs which happens in cases when the processing resources
are not enough to process all SVs, then each group is processed after the other. In
total depending on the number of groups a total of �NSV /num_of _VUs� processing
repetitions are necessary. Hence, the size of the pipeline can be adjusted to fit the
available resources and processing requirements by fine-tuning the number of support
vector groups. Each vector processing unit in the pipeline processes one element of
the support vector with one element of the input vector at a time. The data in the SPM
flows in a pipelined manner as the input vector values are propagated from one unit to
the next, through the dedicated transfer mechanisms; while the ROMs feed each VU
with SV data in parallel.When the processing of the input vector with the group of SVs
is done, after vector_dim cycles, the multiplexers and registers in each vector unit are
used to switch from propagating input vector values to scalar results. The scalar values
are transferred sequentially through the pipeline and it takes num_of _VUs cycles for
them to be processed by the kernel processing unit (with a 2 cycle initial delay due to
the pipeline stages). In this way the kernel processing unit is shared between the units,
reducing hardware requirements and also making it easy for the designer to substitute
it with the desired kernel without having to change much of the system functionality.
Each scalar value that enters the kernel unit is processed by the kernel operation and
the alpha coefficient. In the case of the kernel described by (3), the operation involves a
multiplier to find the square of the value and multiply-accumulate units to process the
alpha coefficients. Once all scalar values are processed, the final classification result
is obtained by adding the bias to the accumulated result. Overall, the number of cycles
needed to process an input vector is given by Eq. (7).

�NSV/num_of_VUs� × (vector_dim + num_of_VUs + 2) (7)

3.3 Local Binary Processor Architecture

The LBP processor will only selectively be used by the latter cascade stages to improve
the discrimination capabilities for a small number of samples that exhibit common
features but belong to different classes. Hence, it must have low area overhead. This is
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Fig. 7 a Local binary pattern processor architecture, b histogram update process

different to works such as [44] where the goal is to parallelize the LBP processing. As
such, a fully parallel implementation thatmay consume substantial hardware resources
is not suitable. Through efficient design, we are able to develop a novel and compact
LBP processor suitable for the targeted applications (Fig. 7a). The developed LBP
processor architecture features parallel processing of the values of only a single 3 ×
3 window from the input image located in the register array. In addition, the LBP
processing begins from the second row and column, i.e. the image boundary is ignored,
hence, no additional hardware was necessary to pad the image with additional values.
The processor is essentially comprised of two main blocks. In the first block, which
is the LBP code generation, the values corresponding to a 3 × 3 window are loaded
from the register array and processed accordingly either for CS-LBP or standard LBP
features, as discussed in Sect. 2.4, to produce a binary array which is then multiplied
with a power of two mask. Effectively, however, the multiplication with the mask
can be implemented by simply concatenating the threshold bits to generate the LBP
code. Once a window is processed the next 3× 3 window follows the next cycle. The
LBP code is then processed to characterize it as uniform or non-uniform. We employ
a look-up table memory approach in order to achieve a fast processing of the LBP
code. The code is used as the address to the memory and the output is the number of
transitions in the code.

The second major block is the histogram generation circuit which receives the
processed LBP codes for each 3× 3 window and computes the histogram descriptors.
A major issue when dealing with histogram generation is that of collisions to the
histogram memory from increments to the same location. The architecture generates
and processes a single LBP code every clock cycle, hence it is collision-free which
results in amuch simpler implementation. The actual histogram computation is carried
out in two phases. As the histogram is stored in a central memory (of size k × i × j)
which contains all local histograms; the first phase is to find the starting address for
the local histogram which the LBP code belongs to (Fig. 7b). This is achieved by
counting the row and column of each LBP code. By keeping track of the MSBs of
the row and column coordinates it is possible to identify the block which it belongs
to. Then by setting the appropriate address offset the corresponding histogram region
is selected. From there the desired most significant bits (MSBs) of the LBP code are
added to the address offset in order to select the appropriate bin (memory location)
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where the LBP code belongs to in the local histogram, and increment its value (Fig. 7c).
A dual ported memory is utilized to store the histogram. In this way, an immediate
reset can be performed right after a memory value is loaded to the SVM processing
core from the second port, which receives the same address but delayed by a single
cycle. Using this dual-ported memory scheme leads to a more simple implementation,
without needing to use a pool of registers, multiplexers, and additional wiring. Overall,
the LBP feature processing unit is generic and can thus deal with processing different
image sizes, number of blocks, and different number of histogram bins.

3.4 Cascade Optimized I/O and Processing Flow

The different throughput requirements of the cascade SVM processing modules
require an I/O mechanism that can adjust to the different needs of each module;
that is parallel as well as sequential data transfer. It should also take advantage of
the application-specific characteristics to facilitate data reuse and reduce memory
accesses. Furthermore, different classifiers may utilize different data points or need to
preprocess the data. The cascade I/O structure should be able to handle this. To illus-
trate the above features we consider the design of such a structure for object detection
applications.An optimized I/Omechanism for object detection can be developed based
on an array of shift registers that incorporates the above features and also acts as local
storage for the image segment that is currently being processed (Fig. 4). The input
image pixels enter the register array and are propagated column-wise within the struc-
ture. The register array has a size of size Hmax ×Wbu f −si ze, where Hmax is the height
of the maximumwindow andWbu f −si ze corresponds to the width of the array, i.e. how
may additional image columns are stored. The input image pixels enter the register
array and are propagated column-wise into the structure. The image region that is at
the right-most part of the register array corresponds to a Hmax × Wmax window and
each unit receives data from specific registers that window. Specifically, the LBP pro-
cessor receives 9 pixels from the right-most 3×3 window (HLBP = 3,WLBP = 3) to
produce a Hmax −1×Wmax −1 image made up of LBP codes which is later processed
in ki × j blocks to produce a histogram descriptor. The PPM can receive register data
corresponding to either a Hmax × Wmax window or any other downscaled version
[e.g. a (Hmax/2) × ( Wmax/2) window] if it is necessary, by selecting the appropriate
registers, thus achieving dynamic downscaling of the larger Hmax × Wmax window.
With this data flow the image region is processed in a window-by-window fashion.
Once, a window has been processed a part of it is shifted out of the array, while new
pixels are shifted in; thus a new window is formed at the leftmost region of the scan-
line buffer and is ready to be processed next. The data flow of the right-most registers
changes depending on whether the data are used for parallel or sequential processing.
In the case of parallel processing module, window data are outputted and processed
in parallel. In the case of sequential processing, which happens when the LBP fea-
tures are generated, the registers form a chain so that data are outputted sequentially
from the leftmost top row register. Furthermore, during sequential output operation,
the window data are looped back to the scanline buffers, using a multiplexer on the
start of the chain, so that the window is formed again (Fig. 3). This is required so that
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Fig. 8 a Block diagram of the FPGA system components. b Xilinx Spartan 6 FPGA industrial video
processing board and setup for Face Detection Implementation

the window is placed correctly with respect to the rest of the image in the register
array in order to maintain consistency. Moreover, this is necessary so that the same
window can be processed again with a new group of support vectors when needed.
The register array structure, which stores the part of the image to be processed, can be
implemented with different number of rows and columns to fit the desired image size
given the available hardware resources.

4 Experimental Platform and Results

The proposed hybrid hardware architecture and methods were evaluated using the
embedded applications of face and pedestrian detections considering 800 × 600
(SVGA) resolution images. For both applications the architecture was evaluated in
terms of frame-rate, detection accuracy, power consumption, as well as requirements
in terms of computing resources. The cascade structure, was trained using Matlab
and was used to evaluate the hardware architecture and proposed design methodolo-
gies. Additionally, the proposed hardware architecture, which will be referred to as
the adapted cascade, is compared against a baseline system which implements the
same cascade SVM structure, but without applying the hardware reduction method,
and thus the parallel processing module is implemented using multipliers and not shift
units. Both implementations were evaluated and compared using a Xilinx Spartan-6
Industrial Video Processing board equipped with a Spartan-6 XC6SLX150T FPGA
(Fig. 8). A Microblaze-based [45] video-pipeline system was used for I/O and veri-
fication purposes, while for both systems an on-chip buffer is used to store the input
image and a register array for data loading and processing which was experimentally
found to provide an adequate between balancing I/O delays and hardware resources.
The following sections detail the evaluation process and the results.

4.1 SVM Cascade Structure and Training

To evaluate the proposed hardware architecture and approaches we designed an SVM
cascade structure for each application, with kernels, and parameters similar towhat has
been used in the literature [5–7]. The parameters for each application are summarized
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in Table 1. The early stages tasked with the fast rejection of samples correspond
to linear SVMs, or non-linear kernels with low computational demands [5]. Hence,
for both applications the cascade structure is similar to the one depicted in Fig. 9.
Specifically, for the face detection application, the cascade structure is comprised of
two linear and two polynomial non-linear SVMs The search window size is 20 × 20
pixels and are extracted every 5 pixels,which is similar to otherworks of cascadeSVMs
in the literature [5]. This window size results in a 400-dimensional vector, which is
provided to the first three SVMcascade stages for rapid processing.Once awindowhas
passed all three stages successfully, it is further processed to produce an 18× 18 LBP
feature image which corresponds to a 1062-dimensional LBP histogram vector which
in turn is passed as input to the final SVM cascade stage. Similarly, for the pedestrian
detection application, the cascade structure was comprised of 4 linear SVM stages and
1 non-linear polynomial SVM stage. This structure processed 36× 18 pixel windows
extracted every 5 pixels resulting in a 648-dimensional vector. Prior to the final stage,
the windows that passed all previous stages, were processed by the LBP processor
that produced a 1512-dimensional vector, which was propagated to the final stage.

Positive and negative samples for both applications were collected from commonly
used databases [46,47], and used to setup an initial training set which was then
enhanced with additional samples. The early cascade stages were trained in incre-
mental fashion [1–3]. The first stage was trained on the initial training set and adapted
using the hardware reduction method. Then, the initial training set was enhanced with
negative samples that were misclassified by the first stage, and the new training set was
used to train the second classifier, and the same was done for the next stages except the
last one. The final SVM stage was excluded from the process and was trained using
the complete training set which was first processed using the LBP feature extrac-
tion. Consequently, a 80 SV polynomial SVM was generated for face detection and a
100 SV polynomial SVM was generated for pedestrian detection. The adapted stages
retained similar accuracy level after being rounded-off to the nearest power of two and
hence where implemented on the PPM. However, for the final SVMs there was a sig-
nificant discrepancy between the classification accuracies of the adapted and original
model, since it approximates a more complex decision function. Hence, those were
not approximated and were implemented on the SPM.

4.2 FPGA Implementation and Logic Resource Utilization

The two cascade implementations (baseline and adapted) have the same basic archi-
tecture (Fig. 3) and data flow for both applications. The PPM architecture was based
on a fully unrolled implementation, while the SPM was implemented with a number
of DSP units equal to the number of SVs (num_of _VUs = NS) meaning that the
input data to the SPM is processed only once with a single group of SVs. The only
difference between the two implementations is that in the adapted cascade case the
PPM was optimized using the hardware reduction method. Consequently, the multi-
plication units where replaced with shift units and the data stored in the training data
ROMs corresponded to shift values instead of support vector values. Each ROM holds
the support vector data for the first three cascade SVM stages for the specific vector
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Fig. 9 Cascade hardware reduction method: The parameters of the initial cascade SVM obtained after
training are changed to produce a more hardware friendly adapted cascade SVM

Table 2 FPGA resource utilization breakdown per unit and system for face detection system

FPGAResources LUTs (92152) Registers (184304) BRAMs (268) DSPs (180)

SPM 4482 (4%) 3472 (2%) 51 (19%) 50 (27%)

Adapted PPM 19,006 (20%) 2679 (2%) 1 (< 1%) —

Baseline PPM 30,791 (46%) 3724 (3%)

Generic LBP processor 150 (1%) 40 (< 1%) 2 (< 1%) —

Memory & I/O Units 1200 (1%) 1831 (1%) 180 (67%) —

Microblaze video pipeline 9891 (10%) 10,780 (5%) 20 (7%) 3 (2%)

Baseline cascade system 47,396 (51%) 21,214 (11%) 256 (96%) 89 (32%)

Adapted cascade system 35,532 (38%) 20,153 (11%)

elements. In the adapted cascade implementation, 6 bits are needed to store the shift
data: 4 bits for the shift amount, corresponding to a maximum shift amount of 15 bits,
one bit for the sign of the support vector, and one for the arithmetic shift direction.
For the baseline implementation, 8 bits are needed to represent the decimal number
SVs to maintain the same accuracy. In addition, adder trees, used by the PPM, utilize
ternary adders instead of two-input adders, to reduce the latency.

Both implementations on the Xilinx Spartan-6 XC6SLX150T FPGA have the same
critical path, which is the SPM kernel unit mapped on the DSPs, and as such have the
same operating frequency of 70MHz. The results in Table 2 provide a more detailed
breakdown of the the utilized resources for each component for the face detection
system,while the same trend applies for the pedestrian detection system. Specifications
and resources for the complete system for both applications are shown later in Table 3.
Overall, for both the face and pedestrian detection applications the implementation
of the adapted PPM requires ∼40% fewer FPGA logic resources compared to the
baseline PPM. This is reflected with a 25full system implementations.

4.3 Detection Accuracy and Frame-Rate

Accuracy and frame-rate are two important metrics in object detection and thus this
section outlines these results. The accuracy of the adapted cascade SVMwas evaluated
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Fig. 10 (top) Detection results on 800× 600 images for face detection [49] and pedestrian detection [50].
(bottom) Activity in the image. The darkness of the pixels indicates that the image region has gone through
more stages

Fig. 11 Window rejection rates for each stage for a pedestrian detection and b face detection. Number of
windows that reach each stage for c pedestrian detection and d face detection

on the widely used face image databases [48,49] as well as pedestrian databases [50]
and images from the world-wide-web, cropped and resized to 800 × 600 (SVGA)
resolution. Full frame detection results are shown in Fig. 10. The same set was used
to evaluate the frame-rate of the cascade SVM implementations. Each 800 × 600
image generates a total of over 54,000 search windows for 18 scales and a window
step of 5 pixels. Each frame requires a different time to be processed, by the cascade
implementations, depending on how many windows reach each stage, and by how
many cycles it takes a stage to process an input. All generated windows are processed
by the first SVM stage; however, only ∼1% of them reach the final SVM stage. This
is shown in Fig. 11, which illustrates the percentage of windows rejected at each stage
and the number of windows that each stage, after the first one, needs to process. In
addition, to the actual processing time, the I/O delays per frame also negatively affect
the classification speed. In order to achieve higher detection rates, I/O and memory
operations such as filling the register-array buffers, overlap with window processing.
Overall, the implemented architectures were able to operate in real-time achieving of
36 FPS for face and 34 FPS pedestrian detection respectively. In addition, the detection
accuracies for each implemented hardware architecture were∼81% for face detection
and ∼84% for pedestrian detection respectively, while for both cases a considerably
low false positive rate was achieved (<0.1%).

4.4 Trade-Off between Resource Utilization and Accuracy

The penalty to pay for any form of approximation is that the accuracy changes com-
pared to the original model. However, the main benefit from the proposed hardware
reduction method of approximating the SVs and alpha coefficients by rounding them
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Fig. 12 Trade-off between accuracy and resources

to the nearest power of two is that it allows for a more compact and parallel imple-
mentation without a significant impact on accuracy. To better understand the benefits
consider the alternative which is the conventional approach where the coefficients are
approximated by a fixed point number of a certain bitwidth selected in such a way as to
retain a similar accuracy to the original model and in which case the main processing
units are multipliers. We illustrate in Fig. 12 for one of the SVMs in the cascade for the
face detection application, the accuracy that we get and the LUT resources necessary
for one multiplication unit as the bitwidth that we use to represent the SVs and alpha
coefficients increases.We also illustrate (in the last column of each figure) the accuracy
of the equivalent SVM approximated with power of two values and the LUT resources
for one shift unit. In order to maintain an accuracy of over 90% for the convention-
ally adapted SVM we need 6 bits which results in a multiplication unit requiring 73
FPGA LUTs. Conversely, a shifter for the SVM with power of two values requires 46
FPGA LUTs with a slightly reduced accuracy but still approaching 90%. Maintaining
a similar number of LUTs using a multiplier resulted in a very low accuracy of 48%.
It is evident that increasing the number of bits increases accuracy as we get closer
to the actual values, however, the required resources for the multiplication units also
increase. Especially when considering parallel implementations where the increased
number of LUTs needed by the multipliers accumulates and results in a resource
hungry implementation. However, through the proposed cascade design approach we
are able to achieve an adequate trade-off and reduce the hardware implementation
requirements without sacrificing accuracy.

4.5 Power Consumption

Power analysis tools from Xilinx were used to measure power consumption figures of
the adapted and baseline cascade SVM FPGA implementations for both benchmark
applications. The characteristic of the cascade architectures is that the PPM and SPM
are not used at the same time since they implement different cascade stages. Hence, the
dynamic power consumption ranges depending on which module is active. The total
power budget, including the Microblaze video pipeline, for the adapted cascade SVM
system ranged from 4.4 to 8.0W for face detection and 4.8 to 8.6W for pedestrian
detection. While for the baseline cascade system, it ranged from 4.4 to 9.9W for face
detection and 4.8 to 10.4W for pedestrian detection. As the peak power consumption
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happens when the PPM module is used, the utilization of less LUT resources by the
adapted PPM results in reducing the peak power needed for the adapted cascade system
by ∼20%.

4.6 Related Work Comparison

Related works for object detection applications are shown in Table 3 along with infor-
mation regarding parameters and performance. These works use different algorithms,
training and test sets, and benchmark applications; hence, it is difficult to make a
direct comparison between implementations. In addition, none of the reported works
target cascade SVMprocessing, hence, the proposed architectures are not optimized to
dynamically handle different SVM processing requirements. Regardless, through the
subsequent discussionwe attempt to highlight the contributions of this work compared
to what is reported in the literature. SVMs have been used in various object detection
applications and as a result FPGA implementations for SVM-based object detection
have used different applications and parameters to benchmark the proposed architec-
tures. However, since the SVM classification flow treats all data as vectors; the number
of samples and SVs processed and vector dimensionality can provide an indication
to the processing performance for each work. The number of samples depends on the
search window size and granularity of the search. Because of the different benchmark
applications, the search window size and feature vector size are different.

A head-shoulder detection system is presented in [44]. It utilizes a linear SVM
and LBP descriptors to classify 19,200 windows from 640× 480 images. It trades-off
accuracy for performance by using a single linear SVM (with a clock frequency of
120MHz) and processes only a few elements of the SV feature vector in parallel to
keep the resource utilization low. In addition, foreground detection is used to compen-
sate for the linear SVM. However, non-linear kernels often provide better and more
robust results compared to linear kernels and thus might be the preferred choice in
many applications in which case such architectures will not be able to handle the
different processing requirements. The implementation in [28] scans a 512 × 512
image in non-overlapping blocks to perform bar-code detection. It performs the dot-
product operations in 352 cycles for one window however; the scalar operations are
not included. Furthermore, it processes only around 1024 16 × 16 window samples,
corresponding to 256-dimensional vectors, per image, and it does not downscale the
input image which simplifies the I/O and memory accesses. The hybrid FPGA-GPU
pedestrian detection system [40] for 800× 600 images is able to classify around 1000
windows. The lower throughput can be attributed to the larger feature size; however,
the number of processed windows is an order of magnitude less than our work. In
addition, the use of GPU may prohibit such implementations to be used in embedded
applications due to power consumption constraints. Overall, in order to achieve real-
time performance existing works rely on processing a few window samples, smaller
image resolutions, or process a few SVs. Through the proposed architecture and meth-
ods it is possible to process higher resolution images (800×600) which generate more
windows (over 54,000), with a higher number of SVs (one to two orders of magnitude
more) while also reducing the implementation requirements for the implementation of
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more complex cascade SVM classifiers. The SVM hardware implementations target
different applications and thus accuracy is difficult to compare. On the other hand,
software based implementations [5–7] that utilize cascade SVMs for face detection
achieve accuracies that range between 78–80% while utilizing similar training set
sizes. The proposed optimized SVM cascade system achieves a detection rate of over
80%, which is on par with these works.

5 Discussion and Concluding Remarks

Overall, the proposed architecture enhanced with the proposed methods achieves a
good trade-off between accuracy, performance, and hardware utilization. In addition,
there are some useful conclusions extracted from the FPGA evaluation. Firstly, the
proposed hardware reduction method provides an efficient way to reduce the required
silicon budget of the cascadewhich is easy to implement and compatiblewith anySVM
training package and hence, can have a wide use. As such, it can be used to design low-
cost SVMpre-processors that can be integrated to other existingworks aswell. Second,
the hybrid processing hardware architecture and flexible I/O structure demonstrated
how it is possible to efficiently utilize the available hardware and provide the necessary
performance; by optimizing the design for the specific data flow, throughput and
processing demands of each cascade stage.

This work presented in this paper demonstrated how application directed design
optimizations can help boost the hardware efficiency of cascade SVM implementa-
tions so that such structures can be used to design intelligent embedded classification
systems. The proposed hardware architecture and designmethods were verified exper-
imentally on a Spartan-6 FPGAusing the applications of face and pedestrian detection.
Through the evaluation we showed the effectiveness of the proposed architecture as
it was capable of processing 800 × 600 resolution images with a real-time perfor-
mance of over 30 frames per second for both benchmark applications. In addition, the
proposed hardware reduction method resulted in reducing the required custom logic
resources by ∼30%. Going forward different applications will also be used to evalu-
ate the proposed architecture to further demonstrate how it can be used to provide a
complete embedded solution for the design of intelligent classification systems.
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