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Abstract It can be challenging to use algorithmic skeletons in parallel program devel-
opment as it is tedious to manually identify parallel computations in an algorithm and
theremay bemismatches between the algorithmand skeletons.Also, parallel programs
defined using skeletons often employ inefficient intermediate data structures. In this
paper, we present a program transformationmethod to address these issues by using an
existing technique called distillation to reduce the use of intermediate data structures
and an encoding technique to combine the inputs of a program into a single input
whose structure matches that of the program. This facilitates automatic identification
of skeletons that suit the algorithmic structure of the transformed program.

Keywords Program transformation · Parallelisation · Algorithmic skeletons

1 Introduction

While parallel programming is vital to effectively utilise the computing power, it is
challenging as it requires manual analysis of an algorithm to identify potential parallel
computations. Parallel program development often uses algorithmic skeletons to hide
the complexity of implementing the parallelism from the developer. In this work, we
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are particularly interested in data parallel skeletons, such as map, map-reduce and
accumulate [1]. While skeleton-based programming eases the task of the developer,
it still requires manual analysis of a program to identify computations that can be
defined using the skeletons.

In the case of data parallel skeletons, a given operation is applied in parallel on
each element in a given input. Consequently, there is a match between the structure of
the input and the recursive structure of the skeleton definition. However, the structure
of the data types and the algorithmic structure of a given program may not match
with those of the skeletons, which is challenging to resolve [2,3]. Further, programs
that are defined using skeletons often introduce inefficient intermediate data structures
[4]. Consider the programs shown in Examples 1 and 2 which compute the product
of two matrices and the dot-product of two binary trees, respectively. In Example
1, (transpose yss) and (zipWith (∗) xs ys) are intermediate data structures that are
subsequently decomposed by map and foldr, respectively.

Example 1 (Matrix multiplication—original program)
mMul :: [[a]] → [[a]] → [[a]]
mMul xss yss
where
mMul [] yss = []
mMul (xs : xss) yss = (map (transpose yss) (dotp xs)) : (mMul xss yss)
dotp xs ys = f oldr (+) 0 (zipWith (∗) xs ys)
transpose xss = transpose′ xss []
transpose′ [] yss = yss
transpose′ (xs : xss) yss = transpose′ xss (rotate xs yss)
rotate [] yss = yss
rotate (x : xs) [] = [x] : (rotate xs yss)
rotate (x : xs) (ys : yss) = (ys ++[x]) : (rotate xs yss)

Example 2 (Dot-product of binary trees—original program)
data BTree a ::= E | B a (BTree a) (BTree a)

dot P :: (BTree a) → (BTree a) → (BTree a)

dot P xt yt
where
dot P E yt = 0
dot P (B x xt1 xt2) E = 0
dot P (B x xt1 xt2) (B y yt1 yt2) = (x ∗ y) + (dot P xt1 yt1) + (dot P xt2 yt2)

Even though these programs can be parallelised using the skeletons map, reduce and
zipWith (defined over lists and binary trees with parallel implementations), Example 3
retails the original intermediate data structures from Example 1, while Example 4
introduces a new intermediate data structure (zipWith (∗) xt yt) due to the used of
skeletons.
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Example 3 (Matrix multiplication—hand-parallel program using skeletons)
mMul xss yss
where
mMul [] yss = []
mMul (xs : xss) yss = (map (dotp xs) (transpose yss)) : (mMul xss yss)
dotp xs ys = reduce (+) 0 (zipWith (∗) xs ys)
transpose xss = transpose′ xss []
transpose′ [] yss = yss
transpose′ (xs : xss) yss = transpose′ xss (rotate xs yss)
rotate xs yss = zipWith (λx .λys.(ys ++[x])) xs yss

Example 4 (Dot-product of binary trees—hand-parallel program using skeletons)
dot P xt yt = reduce (+) 0 (zipWith (∗) xt yt)

The dot-product of binary trees program can also be parallelised by evaluating the two
recursive calls (dot P xt1 yt1) and (dot P xt2 yt2) simultaneously. An example of such
a parallel definition of the dot-product program using the Glasgow Parallel Haskell
(GpH) is shown in Example 5 and this avoids the use of intermediate data structures.

Example 5 (Dot-product of binary trees—hand-parallel program using GpH)
data BTree a ::= E | B a (BTree a) (BTree a)

dot P :: (BTree a) → (BTree a) → (BTree a)

dot P xt yt
where
dot P E yt = 0
dot P (B x xt1 xt2) E = 0
dot P (B x xt1 xt2) (B y yt1 yt2) = runEval $ do

z1 ← rpar (dot P xt1 yt1)
z2 ← rseq (dot P xt2 yt2)
return (x ∗ y) + z1 + z2

However, such parallelisation requires manual analysis of a given program which is
tedious for non-trivial programs. Also, note that there is no obvious skeleton corre-
sponding to the definition of this program. Therefore, we observe that it is challenging
to obtain a parallel version for a given program that uses fewer intermediate data
structures and is defined using skeletons.

In this paper, we propose a transformation method with the following aspects to
resolve these issues:
1. Reduce the number of intermediate data structures in a given program using an

existing transformation called distillation [5].
2. Automatically create a new data type for the program so that the structure of the

new data type matches the algorithmic structure of the program.
3. Automatically create skeletons that operate over the new data type and identify

potential instances of the skeletons in the program. The transformed program can
then be executed in parallel using efficient implementations for the skeletons.

In our earlier works, we presented techniques to transform programs defined over
polytypic [6] and list inputs [7] individually. In this paper, we integrate the two trans-
formations and present it along with evaluation results. In Sect. 2, we introduce the
language used in this work. We present the proposed parallelisation transformation in
Sect. 3. In Sect. 4, we present the results of evaluating three example programs that are
transformed using our proposed method. In Sect. 5, we present concluding remarks
on our transformation method and discuss related work.
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2 The Language

The higher-order language used in this work is shown in Definition 1 and uses call-
by-name evaluation.

Definition 1 (Language grammar)
data T α1 . . . αM ::= c1 t11 . . . t1N | . . . | cK t K1 . . . t KN Type Declaration

t ::= αm | T t1 . . . tM Type Component

e ::= x Variable
| c e1 . . . eN Constructor Application
| e0 Function Definition

where
f p11 . . . p1M x1(M+1) . . . x1N = e1 . . . f pK1 . . . pKM xK(M+1) . . . xKN = eK

| f Function Call
| e0 e1 Application
| let x1 = e1 . . . xN = eN in e0 let–Expression
| λx .e λ–Abstraction

p ::= x | c p1 . . . pN Pattern

A program can contain data type declarations of the form shown in Definition 1. Here,
T is the name of the data type, which can be polymorphic, with type parameters
α1, . . . , αM . A data constructor ck may have zero or more components, each of which
may be a type parameter or a type application. An expression e of type T is denoted
by e :: T .

A programcan also contain an expressionwhich can be a variable, constructor appli-
cation, function definition, function call, application, let-expression or λ-abstraction.
Variables introduced in a function definition, let-expression orλ-abstraction arebound,
while all other variables are free. The free variables in an expression e are denoted by
f v(e). Each constructor has a fixed arity. In an expression c e1 . . . eN , N must be equal
to the arity of the constructor c. For ease of presentation, patterns in function defini-
tion headers are grouped into two – pk1 . . . pkM are inputs that are pattern-matched, and
xk(M+1) . . . xkN are inputs that are not pattern-matched. The series of patterns pk1 . . . pkM
in a function definition must be non-overlapping and exhaustive. We use [] and (:) as
shorthand notations for the Nil and Cons constructors of a cons-list.

Definition 2 (Context) A context E is an expression with holes in place of sub-
expressions. E[e1, . . . , eN ] is the expression obtained by filling holes in context E
with the expressions e1, . . . , eN .

3 Parallelisation Transformation

Given a program defined in the language presented in Definition 1, our proposed
parallelisation transformation is performed in three stages:

1. Apply the distillation transformation on the given program to reduce the number
of intermediate data structures used. This produces a distilled program. (Sect. 3.1)

2. Apply the encoding transformation on the distilled program to combine the inputs
into a data structure that matches the algorithmic structure of the distilled program.
This produces an encoded program. (Sect. 3.2)
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3. Identify potential skeleton instances in the encoded program. This produces an
encoded parallel program. (Sect. 3.4)

3.1 Distillation Transformation

Given a program in the language from Definition 1, distillation [5] is an unfold/fold-
based technique that transforms the program to remove intermediate data structures
and yields a distilled program that can potentially have super-linear speedups. The
syntax of a distilled program de{} is shown in Definition 3. Here, ρ is the set of
variables introduced by let–expressions that are created during generalisation. The
bound variables of let-expressions are not decomposed by pattern-matching in a dis-
tilled program. Consequently, de{} is an expression that has fewer intermediate data
structures.

Definition 3 (Distilled form grammar)
deρ ::= x deρ

1 . . . deρ
N Variable Application

| c deρ
1 . . . deρ

N Constructor Application
| deρ

0 Function Definition
where
f p11 . . . p1M x1(M+1) . . . x1N = deρ

1 . . . f pK1 . . . pKM xK(M+1) . . . xKN = deρ
K

| f x1 . . . xM x(M+1) . . . xN Function Application
s.t. ∀x ∈ {x1, . . . , xM } · x /∈ ρ

| let x1 = deρ
1 . . . xN = deρ

N in deρ ∪ {x1,...,xN }
0 let–Expression

| λx .deρ λ–Abstraction
p ::= x | c p1 . . . pN Pattern

Example 6 presents the distilled version of the matrix multiplication program from
Example 1 and does not use intermediate data structures.

Example 6 (Matrix multplication—distilled program)
mMul xss yss
where
mMul xss yss = mMul1 xss yss yss
mMul1 [] zss yss = []
mMul1 xss [] yss = []
mMul1 (xs : xss) (zs : zss) yss = let v = λxs.g xs

where
g [] = 0
g (x : xs) = x

in (mMul2 zs xs yss v) : (mMul1 xss zss yss)
mMul2 [] xs yss v = []
mMul2 (z : zs) xs yss v = let v′ = λxs.g xs

where
g [] = 0
g (x : xs) = v xs

in (mMul3 xs yss v) : (mMul2 zs xs yss v′)
mMul3 [] yss v = 0
mMul3 (x : xs) [] v = 0
mMul3 (x : xs) (ys : yss) v = (x ∗ (v ys)) + (mMul3 xs yss v)
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3.2 Encoding Transformation

A distilled program is defined over the original program data types. In order to trans-
form these data types into a structure that reflects the structure of the distilled program,
we apply the encoding transformation detailed in this section. In this transformation,
we encode the pattern-matched arguments of each recursive function f in the distilled
program into a single argument which is of a new data type T f and whose structure
reflects the algorithmic structure of function f .

Consider a recursive function f , with arguments x1, . . . , xM , x(M+1), . . . , xN , of
the form shown in Definition 4 in a distilled program. Here, a function body ek cor-
responding to function header f pk1 . . . pkM xk(M+1) . . . xkN in the definition of f may
contain one or more recursive calls to function f .

Definition 4 (Recursive function in distilled program)
f x1 . . . xM x(M+1) . . . xN
where
f p11 . . . p1M x(M+1) . . . xN = e1
...

...

f pK1 . . . pKM x(M+1) . . . xN = eK
where

∃k ∈ {1, . . . , K } · ek = Ek

[
f x11 . . . x1M x1(M+1) . . . x1N , . . . , f x J

1 . . . x J
M x J

(M+1) . . . x J
N

]

3.2.1 Encoding Into New Type

The three steps to encode the pattern-matched arguments of function f into a new
type are as follows:

1. Declare a new data type for the encoded argument:
First, we declare a new data type T f for the new encoded argument. This new data
type corresponds to the data types of the original pattern-matched arguments of
function f . The definition of the new data type T f is shown in Definition 5.

Definition 5 (New encoded data type T f )
data T f α1 . . . αG ::= c1 T 1

1 . . . T 1
L (T f α1 . . . αG)11 . . . (T f α1 . . . αG)1J

...

| cK T K
1 . . . T K

L (T f α1 . . . αG)K1 . . . (T f α1 . . . αG)KJ
where
α1, . . . , αG are type parameters of the data types of pattern-matched arguments
∀k ∈ {1, . . . , K } · ck is a fresh constructor for T f corresponding to pk1 . . . pkM of

the pattern-matched arguments

f pk1 . . . pkM x(M+1) . . . xN = Ek

[
f x11 . . . x1M x1(M+1) . . . x1N , . . . ,

f x J
1 . . . x J

M x J
(M+1) . . . x J

N

]

{
(z1 :: T k

1 ), . . . , (zL :: T k
L )

} = f v(Ek) \ {x(M+1), . . . , xN }

Here, a new constructor ck of the type T f is created for each set pk1 . . . pkM of the
pattern-matched arguments x1 . . . xM of function f that are encoded. As stated above,
our objective is to encode the arguments of function f into a new type whose struc-
ture reflects the recursive structure of f . To achieve this, the components bound by
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constructor ck correspond to the variables in pk1 . . . pkM that occur in the context Ek

and the encoded arguments of the recursive calls to function f .

2. Define a function to build encoded argument:
Given a function f of the form shown in Definition 4, we define a function
encode f , as shown in Definition 6, to build the encoded argument for function f .

Definition 6 (Definition of function encode f )
encode f x1 . . . xM
where
encode f p11 . . . p1M = e′

1
...

...

encode f pK1 . . . pKM = e′
K

where
∀k ∈ {1, . . . , K } · e′

k = ck zk1 . . . zkL (encode f x11 . . . x1M ) . . . (encode f x J
1 . . . x J

M )

f pk1 . . . pkM x(M+1) . . . xN = Ek

[
f x11 . . . x1M x1(M+1) . . . x1N , . . . ,

f x J
1 . . . x J

M x J
(M+1) . . . x J

N

]

{
zk1, . . . , z

k
L

} = f v(Ek) \ {x(M+1), . . . , xN }

Here, the original arguments x1 . . . xM of function f are pattern-matched and con-
sumed by encode f in the sameway as in the definition of f . For each pattern pk1 . . . pkM
of the arguments x1 . . . xM , function encode f uses the corresponding constructor ck
whose components are the variables zk1, . . . , z

k
L in pk1 . . . pkM that occur in the context

Ek and the encoded arguments of the recursive calls to function f .

3. Transform the distilled program:
After creating the encoded data type T f and the encode f function for each function
f , we transform the distilled program as shown in Definition 7 by defining a
function f ′, which operates over the encoded argument, corresponding to function
f .

Definition 7 (Definition of transformed function over encoded argument)
f ′ x x(M+1) . . . xN
where
f ′ (

c1 z11 . . . z1L x11 . . . x J
1

)
x(M+1) . . . xN = e′

1
...

...

f ′ (
cK zK1 . . . zKL x1K . . . x J

K

)
x(M+1) . . . xN = e′

K

where ∀k ∈ {1, . . . , K } · e′
k = Ek

[
f ′ x1k x1(M+1) . . . x1N , . . . , f ′ x J

k x J
(M+1) . . . x J

N

]

f pk1 . . . pkM x(M+1) . . . xN = Ek

[
f x11 . . . x1M x1(M+1) . . . x1N , . . . ,

f x J
1 . . . x J

M x J
(M+1) . . . x J

N

]

The two steps to transform function f into function f ′ that operates over the encoded
argument are:

(a) In each function definition header of f , replace the original pattern-matched
arguments with the corresponding pattern of their encoded data type T f . For
instance, a function header f p1 . . . pM x(M+1) . . . xN is transformed to the header
f ′ p x(M+1) . . . xN , where p is the pattern created by encode f corresponding to
the pattern-matched arguments p1, . . . , pM .
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(b) In each call to function f , replace the original arguments with their corresponding
encoded argument. For instance, a call f x1 . . . xM x(M+1) . . . xN is transformed
to the function call f ′ x x(M+1) . . . xN , where x is the encoded argument corre-
sponding to the original arguments x1, . . . , xM .

3.2.2 Encoding Into List

From Definition 5, we observe that the new encoded data type T f that is created is
essentially an n-ary tree. If we observe that T f is a linear data type (i.e. n = 1),
then we perform the encoding transformation such that the pattern-matched inputs
are encoded into a cons-list instead of into a new data type. This will allow us to
potentially parallelise the encoded program using existing parallel list-based skeletons
as discussed in Sect. 3.4. In this section, we present the version of our encoding
transformation to combine the inputs into a list of type [T ′

f ]. Note that, if the type T f

created by Definition 5 is linear, then each function body ek for the recursive function
f will contain atmost one recursive call. The three steps to encode the pattern-matched
inputs of function f are as follows:

1. Declare a new data type for elements of the encoded list:
First, we declare a new data type T ′

f for the elements of the encoded list. This new
data type corresponds to the data types of the original pattern-matched arguments
of function f . The definition of the new data type T ′

f is shown in Definition 8.

Definition 8 (New encoded data type T ′
f for list)

data T ′
f α1 . . . αG ::= c1 T 1

1 . . . T 1
L | . . . | cK T K

1 . . . T K
L

where
α1, . . . , αG are type parameters of the data types of pattern-matched arguments
∀k ∈ {1, . . . , K } · ck is a fresh constructor for T ′

f corresponding to pk1 . . . pkM of
the pattern-matched arguments

f pk1 . . . pkM x(M+1) . . . xN = ek{
(z1 :: T k

1 ), . . . , (zL :: T k
L )

} ={
f v(Ek) \ {x(M+1), . . . , xN }, if ek = Ek

[
f xk1 . . . xkM xk(M+1) . . . xkN

]

f v(ek) \ {x(M+1), . . . , xN }, otherwise

Here, a new constructor ck of the type T ′
f is created for each set pk1 . . . pkM of the

pattern-matched arguments x1 . . . xM of function f that are encoded. As stated above,
our objective is to encode the arguments of function f into a list where each element
contains pattern-matched variables consumed in an iteration of f . To achieve this, the
variables bound by constructor ck correspond to the variables z1, . . . , zL in pk1 . . . pkM
that occur in the context Ek (if ek contains a recursive call to f ) or the expression ek
(otherwise). Consequently, the type components of constructor ck are the data types
of the variables z1, . . . , zL .

2. Define a function encode f :
Given a recursive function f , we define a function encode f as shown in Defini-
tion 9 to build the encoded list in which each element is of type T ′

f .
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Definition 9 (Definition of function encode f for list)
encode f x1 . . . xM
where
encode f p11 . . . p1M = e′

1
...

...

encode f pK1 . . . pKM = e′
K

where
∀k ∈ {1, . . . , K }·

e′
k =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
ck zk1 . . . zkL

] ++ (encode f xk1 . . . xkM ), if ek = Ek

[
f xk1 . . . xkM xk(M+1) . . . xkN

]

where {zk1, . . . , zkL} = f v(Ek) \ {x(M+1), . . . , xN }
[
ck zk1 . . . zkL

]
, otherwise

where {zk1, . . . , zkL} = f v(ek) \ {x(M+1), . . . , xN }
where f pk1 . . . pkM x(M+1) . . . xN = ek

Here, for each pattern pk1 . . . pkM of the pattern-matched arguments, the encode f func-
tion creates a list element. This element is composed of a new constructor ck of type
T ′
f that binds z

k
1, . . . , z

k
L , which are the variables in pk1 . . . pkM that occur in the con-

text Ek (if ek contains a recursive call to f ) or the expression ek (otherwise). The
encoded input of the recursive call f xk1 . . . xkM xk(M+1) . . . xkN is then computed by

encode f xk1 . . . xkM and appended to the element to build the complete encoded list
for function f .

3. Transform the distilled program:
After creating the data type T ′

f for the encoded list and the encode f function for
each function f , we transform the distilled program as shown in Definition 10 by
defining a recursive function f ′, which operates over the encoded list, correspond-
ing to function f .

Definition 10 (Definition of transformed function over encoded list)
f ′ x x(M+1) . . . xN
where
f ′ (

(c1 z11 . . . z1L) : x1) x(M+1) . . . xN = e′
1

...
...

f ′ (
(cK zK1 . . . zKL ) : xK )

x(M+1) . . . xN = e′
K

where

∀k ∈ {1, . . . , K } · e′
k =

{
Ek

[
f ′ xk xk(M+1) . . . xkN

]
, if ek = Ek

[
f xk1 . . . xkM xk(M+1) . . . xkN

]

ek , otherwise
where f pk1 . . . pkM x(M+1) . . . xN = ek

The two steps to transform function f into function f ′ that operates over the encoded
list are:

– In each function definition header of f , replace the pattern-matched arguments
with a pattern to decompose the encoded list, such that the first element in the
encoded list is matched with the corresponding pattern of the encoded type T ′

f .
– In each call to function f , replace the pattern-matched arguments with their encod-
ing.
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3.3 Steps to Apply Encoding Transformation

In summary, the steps to apply the two versions of our encoding transformation on a
given program are as follows:

1. Apply the distillation transformation on a given program. This produces a distilled
program.

2. For each recursive function f in the distilled program,
(a) Create an encoded data type T f as described in Definition 5. This new data

type T f is essentially an n-ary tree.
(b) IF n > 1

THEN Apply the encoding transformation in Sect. 3.2.1 to combine the inputs
into a new data type T f whose structure matches that of function f .
ELSE Apply the encoding transformation in Sect. 3.2.2 to combine the inputs
into a cons-list of type [T ′

f ].
This produces an encoded program.

For the distilled matrix multiplication program in Example 6, we observe that the
encoded data types TmMul1 , TmMul2 and TmMul3 for recursive functions mMul1,
mMul2 and mMul3 are all linear (i.e. n = 1) as shown below.

data TmMul1 a ::= c1 | c2 | c3 [a] [a] (TmMul1 a)

data TmMul2 a ::= c4 | c5 (TmMul2 a)

data TmMul3 a ::= c6 | c7 | c8 a [a] (TmMul3 a)

Therefore, we apply the encoding transformation presented in Sect. 3.2.2 to obtain
an encoded matrix multplication program that operates over encoded lists of types
[T ′

mMul1
], [T ′

mMul2
] and [T ′

mMul3
] as shown in Example 7.

Example 7 (Matrix multplication—encoded program)
data T ′

mMul1
a ::= c1 | c2 | c3 [a] [a]

data T ′
mMul2

a ::= c4 | c5
data T ′

mMul3
a ::= c6 | c7 | c8 a [a]

encodemMul1 [] zss = [c1]
encodemMul1 xss [] = [c2]
encodemMul1 (xs : xss) (zs : zss) = [c3 xs zs] ++ (encodemMul1 xss zss)
encodemMul2 [] = [c4]
encodemMul2 (z : zs) = [c5] ++ (encodemMul2 xs yss zs)
encodemMul3 [] yss = [c6]
encodemMul3 (x : xs) [] = [c7]
encodemMul3 (x : xs) (ys : yss) = [c8 x ys] ++ (encodemMul3 xs yss)
mMul xss yss
where
mMul xss yss = mMul ′′1 (encodemMul1 xss yss) yss
mMul ′1 (c1 : w) yss = []
mMul ′1 (c2 : w) yss = []
mMul ′1

(
(c3 xs zs) : w

)
yss = let v = λxs.g xs

where
g [] = 0
g (x : xs) = x

in (mMul ′2 (encodemMul2 zs) xs yss v) : (mMul ′1 w yss)
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mMul ′2 (c4 : w) xs yss v = []
mMul ′2 (c5 : w) xs yss v = let v′ = λxs.g xs

where
g [] = 0
g (x : xs) = v xs

in (mMul ′3 (encodemMul3 xs yss) v) : (mMul ′2 w xs yss v′)
mMul ′3 (c6 : w) v = 0
mMul ′3 (c7 : w) v = 0
mMul ′3

(
(c8 x ys) : w

)
v = (x ∗ (v ys)) + (mMul ′3 w v)

3.4 Parallelisation Using Skeletons

In ourwork,we are interested in identifying parallel computations that can bemodelled
using map- and reduce-based skeletons as they are versatile and widely applicable in
parallel programming. In this section, we discuss the definitions and parallelisation of
list-based and polytypic skeletons that are most relevant to the examples used in this
paper.

Using the sequential definitions of these skeletons, we automatically identify their
instances in an encoded program and replace them with suitable calls to their parallel
counterparts. The rules to achieve this are available in our earlier related work [7],
which also discusses in detail the properties of the transformation to encode inputs
into a list.

3.4.1 List-Based Skeletons

In this paper, the sequential definitions of list-based map and map-reduce skeletons
whose instances we identify in an encoded program are as follows:

map :: [a] → (a → b) → [b]
map [] f = []
map (x : xs) f = ( f x) : (map xs f )

mapRedr :: [a] → (b → b → b) → b → (a → b) → b
mapRedr [] g v f = v

mapRedr (x : xs) g v f = g ( f x) (mapRedr xs g v f )

We identify instances of these definitions and replace them with suitable calls to their
parallel counterparts in the Eden library [8] that provides implementations of parallel
map and map-reduce skeletons in the following forms:

farmB :: (Trans a, Trans b) ⇒ I nt → (a → b) → [a] → [b]
parMapRedr :: (Trans a, Trans b) ⇒ (b → b → b) → b → (a → b) → [a] → b
parMapRedr1 :: (Trans a, Trans b) ⇒ (b → b → b) → (a → b) → [a] → b

3.4.2 Polytypic Skeletons

For the discussions in this paper, we present polytypic reduce and map-reduce skele-
tons in Examples 8 and 9, respectively, defined over a data type T f of the form shown
in Definition 5.
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Example 8 (Reduce skeleton for encoded data type T f )
reduce f (c1 x11 . . . x1N ) g1 . . . gK = e1
...

...

reduce f (cK xK1 . . . xKN ) g1 . . . gK = eK
where ∀k ∈ {1, . . . , K } · ek = gk zk1 . . . zkL (reduce f yk1 g1 . . . gK ) . . . (reduce f ykJ g1 . . . gK )

{yk1 , . . . , ykJ } = {
x | (x :: T f ) ∈ {xk1 , . . . , xkN }}

{zk1, . . . , zkL} = {xk1 , . . . , xkN } \ {yk1 , . . . , ykJ }

Example 9 (Map-reduce skeleton for encoded data type T f )
mapReduce f (c1 x11 . . . x1N ) g1 . . . gK f1 . . . fM = e1
...

...

mapReduce f (cK xK1 . . . xKN ) g1 . . . gK f1 . . . fM = eK
where ∀k ∈ {1, . . . , K } · ek = gk ( f k1 zk1) . . . ( f kL zkL) (mapReduce f yk1 g1 . . . gK f1 . . . fM )

...

(mapReduce f ykJ g1 . . . gK f1 . . . fM )

{yk1 , . . . , ykJ } = {
x | (x :: T f ) ∈ {xk1 , . . . , xkN }}

{zk1, . . . , zkL} = {xk1 , . . . , xkN } \ {yk1 , . . . , ykJ }
{ f1, . . . , fM } =

K⋃
k=1

{ f k1 , . . . , f kL }

A simplistic approach to parallelise these polytypic reduce f and mapReduce f defi-
nitions is by evaluating each recursive call simultaneously as shown in Examples 10
and 11, respectively.

Example 10 (Parallel reduce skeleton for type T f using GpH)
reduce f (c1 x11 . . . x1N ) t g1 . . . gK = e1
...

...

reduce f (cK xK1 . . . xKN ) t g1 . . . gK = eK
where ∀k ∈ {1, . . . , K } · ek = h (t ≤ 0)

where
h True = gk zk1 . . . zkL (reduce f yk1 t g1 . . . gK )

...

(reduce f ykJ t g1 . . . gK )

h False = runEval $ do
wk
1 ← rpar (reduce f yk1 (t − 1) g1 . . . gK )

...

wk
J ← rseq (reduce f ykJ (t − 1) g1 . . . gK )

return (gk zk1 . . . zkL wk
1 . . . wk

J )

{yk1 , . . . , ykJ } = {
x | (x :: T f ) ∈ {xk1 , . . . , xkN }}

{zk1, . . . , zkL} = {xk1 , . . . , xkN } \ {yk1 , . . . , ykJ }
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Example 11 (Parallel map-reduce skeleton for type T f using GpH)
mapReduce f (c1 x11 . . . x1N ) t g1 . . . gK f1 . . . fM = e1
...

...

mapReduce f (cK xK1 . . . xKN ) t g1 . . . gK f1 . . . fM = eK
where
∀k ∈ {1, . . . , K } · ek = h (t ≤ 0)

where
h True = gk ( fk zk1) . . . ( f kL zkL) (mapReduce f yk1 t g1 . . . gK f1 . . . fM )

...

(mapReduce f ykJ t g1 . . . gK f1 . . . fM )

h False = runEval $ do
wk
1 ← rpar (mapReduce f yk1 (t − 1) g1 . . . gK f1 . . . fM )

...

wk
J ← rseq (mapReduce f ykJ (t − 1) g1 . . . gK f1 . . . fM )

return (gk ( fk zk1) . . . ( f kL zkL) wk
1 . . . wk

J )

{yk1 , . . . , ykJ } = {
x | (x :: T f ) ∈ {xk1 , . . . , xkN }}

{zk1, . . . , zkL} = {xk1 , . . . , xkN } \ {yk1 , . . . , ykJ }
{ f1, . . . , fM } =

K⋃
k=1

{ f k1 , . . . , f kL }

Here, t is a threshold value to control the number of parallel threads created by the
polytypic skeletons using the rpar construct. For an n-ary encoded data type T f (where
n > 1), the initial value of t can be determined using the following simple rule-of-
thumb where P is the number of processor cores:

IF n = 1 THEN t = P ELSE t = �logn P + 1

Based on our transformation steps presented in Sect. 3.3, if n = 1, then the inputs will
be encoded into a list to identify list-based parallel skeletons.

4 Evaluation

In this paper, we present the evaluation of three programs—matrix multiplication, dot-
product of binary trees and maximum prefix sum—to illustrate interesting aspects of
our transformation. The programs are evaluated on a 12-core Intel Xeon E5 processor
each clocked at 2.7GHz and 64GB of main memory. GHC version 7.10.2 is used
for the sequential versions of the benchmark programs, the Eden language compiler
based on GHC 7.8.2 is used for list-based map and map-reduce skeletons, and the
polytypic skeletons are parallelised using the Glasgow Parallel Haskell extension for
GHC 7.10.2.

For all parallel versions of a benchmark program, only those skeletons that are
present in the top level are executed using their parallel implementations and nested
skeletons are executed using their sequential versions. The reason for this approach
is to avoid uncontrolled creation of too many threads which we observe to result in
inefficient parallel execution where the cost of thread creation and management is
greater than the cost of parallel execution.
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4.1 Example: Matrix Multiplication

The original sequential, hand-parallel, distilled and encoded versions of the matrix
multiplication program were presented in Examples 1, 3, 6 and 7, respectively. Fol-
lowing this, we parallelise the encoded program using the list-basedmap andmapRedr
skeletons presented in Sect. 3.4.1 and obtain the encoded parallel program shown in
Example 12. Here, we observe that the encoded mMul ′1 and mMul ′3 functions are
instances of the map and mapRedr skeletons and hence are defined using the farmB
and parMapRedr1 skeletons from the Eden library. The farmB skeleton requires the
degree of parallelism to be specifiedwhich is usually given as the number of processors
(noPe).

Example 12 (Matrix multplication—encoded parallel program)
mMul ′′1 w yss = f armB noPe f w

where
f c1 = []
f c2 = []
f (c3 xs zs) = let v = λxs.g xs

where
g [] = 0
g (x : xs) = x

in mMul ′′2 (encodemMul2 zs) xs yss v

mMul ′2 (c4 : w) xs yss v = []
mMul ′2 (c5 : w) xs yss v = let v′ = λxs.g xs

where
g [] = 0
g (x : xs) = v xs

in (mMul ′3 (encodemMul3 xs yss) v) : (mMul ′2 w xs yss v′)
mMul ′′3 w v = parMapRedr1 g f w

where
g = (+)

f c6 = 0
f c7 = 0
f (c8 x ys) = x ∗ (v ys)

Figure 1 presents the speedups achieved by the encoded parallel program in com-
parison with the original, distilled and hand-parallel versions. An input of size NxM
denotes the multiplication of matrices of sizes NxM and MxN. When compared to
the original program, we observe that the encoded parallel version achieves a posi-
tive speedup for all input sizes. For input size 100x1000, the speedup achieved is
6x-25x more than the speedups achieved for the other input sizes. This is due to
the intermediate data structure transpose yss, which is of the order of 1000 elements
for input size 100x1000 and of the order of 100 elements for the other inputs, that
is absent in the encoded parallel program. This can be verified from the comparison
with the distilled version, which is also free of intermediate data structures. Hence,
the encoded parallel program has a similar speedup for all input sizes when compared
to the distilled version.

We also observe that even though the hand-parallel and encoded parallel versions
parallelise the equivalent computations in the same fashion as can be seen from Exam-
ples 3 and 12, the encoded parallel version is marginally faster than for input sizes
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Fig. 1 Speedup of matrix multiplication

100x100 and 1000x100, 4x-4.5x faster for input size 250x250 and 15x-32x
faster for input size 100x1000. This is due to the use of intermediate data structures
in the hand-parallel version, which has been removed in the encoded parallel version.
Further, the hand-parallel version scales better with a higher number of cores the input
size 100x1000. This is because the encoded parallel version achieves better speedup
even with fewer cores due to the elimination of intermediate data structures, and hence
does not scale as impressively as the hand-parallel version.

4.2 Example: Dot-Product of Binary Trees

The original program to compute the dot-product of binary trees was presented in
Example 2. The distilled version of this program remains the same as there are no
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intermediate data structures. A hand-parallel version of this program using GpH was
shown in Example 5. By following the steps in Sect. 3.3, we observe that the encoded
data type Tdot P created for function dot P is binary (i.e. n = 2). Hence, we transform
the dot product program to obtain an encoded program that operates over the encoded
data type Tdot P . Following this, we can obtain an encoded parallel program using the
reducedot P skeleton defined over the encoded type Tdot P as shown in Example 13.

Example 13 (Dot product of binary trees—encoded parallel program)
data Tdot P a ::= c1 | c2 | c3 a a (Tdot P a) (Tdot P a)

encodedot P E yt = c1
encodedot P (B x xt1 xt2) E = c2
encodedot P (B x xt1 xt2) (B y yt1 yt2) = c3 x y (encodedot P xt1 yt1) (encodedot P xt2 yt2)
reducedot P c1 t g1 g2 g3 = g1
reducedot P c2 t g1 g2 g3 = g2
reducedot P (c3 x y lt r t) t g1 g2 g3 =⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

h (t ≤ 0)
where
h True = g3 x y (reducedot P lt t g1 g2 g3) (reducedot P r t t g1 g2 g3)
h False = runEval $ do

x ′ ← rpar (reducedot P lt (t − 1) g1 g2 g3)
y′ ← rseq (reducedot P r t (t − 1) g1 g2 g3)
return (g3 x y x ′ y′)

dot P ′′ (encodedot P xt yt) t
where
dot P ′′ w t = reducedot P w t g1 g2 g3

where
g1 = 0
g2 = 0
g3 x y x ′ y′ = (x ∗ y) + x ′ + y′

Figure 2 presents the speedups of the encoded parallel program compared to the
original and the hand-parallel programs. An input size indicated by N denotes the
dot-product of two identical balanced balanced binary trees with N nodes each. When
compared to the original programweobserve that the encodedparallel version achieves
a positive speedup of 1.5x-2.6x for all input sizes. The speedup achieved for the
different input sizes scales equally for varying numbers of cores. When compared to
the hand-parallel version, we observe that both programs achieve similar speedups
for all input sizes. This is primarily because both versions essentially parallelise the
dot-product computation in a similar fashion as can be observed from their definitions.

Further, we also note from our experiments that if the input trees are not well-
balanced, then speedups achieved by both the encoded parallel and hand-parallel
versions are reduced. This is because, from the definitions of these parallel versions,
it is evident that their parallelisation and workloads of the parallel threads are dictated
by the structure of the input tree. As discussed in other existing work [9], better
implementations for n-ary tree skeletons can be obtained using tree-contraction [10,
11] approaches that can efficiently operate over unbalanced trees.

123



168 Int J Parallel Prog (2018) 46:152–172

 1

 1.5

 2

 2.5

 3

 1  2  3  4  5  6  7  8  9  10  11  12

S
pe

ed
up

 F
ac

to
r

Number of Cores

Encoded Parallel Program vs. Original Program

1,000,000
10,000,000
50,000,000

100,000,000

 0.6

 0.8

 1

 1.2

 1.4

 1  2  3  4  5  6  7  8  9  10  11  12

S
pe

ed
up

 F
ac

to
r

Number of Cores

Encoded Parallel Program vs. Hand-Parallel Program

1,000,000
10,000,000
50,000,000

100,000,000

Fig. 2 Speedup of dot-product of binary trees

4.3 Example: Maximum Prefix Sum

The original program to compute the maximum prefix sum of a given list is presented
in Example 14, where mps1 computes the maximum prefix sum of list xs using the
recursive function mps2. Here, we consider max to be a built-in operator.

Example 14 (Maximum prefix sum—original program)
mps1 :: [I nt] → I nt
mps1 xs
where
mps1 [] = 0
mps1 (x : xs) = mps2 xs x
mps2 [] v = v

mps2 (x : xs) v = let v′ = x + v

in max v
(
max v′ (mps2 xs v′)

)

By applying the parallelisation transformation, we encode the input xs of the recursive
function mps2 into a list of type [T ′

mps2 ], and the resulting encoded parallel program
is presented in Example 15. Here, mps′′

2 is found to be an instance of the list-based
accumulate skeleton [1] and is defined using a call to its parallel implementation
(parAccumulate).
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Example 15 (Maximum prefix sum—encoded parallel program)
data T ′

mps2 a = c1 | c2 a
encodemps2 [] = [c1]
encodemps2 (x : xs) = [c2 x] ++ (encodemps2 xs)
mps1 xs
where
mps1 xs = mps′′

2 (encodemps2 xs) 0
mps′′

2 w v = parAccumulate p ⊕ q ⊗ w v

where
p c1 v = v

p (c2 x) v = v

⊕ = max
q c1 = v

q (c2 x) = x
⊗ = (+)

Example 16 presents the hand-parallel version of themaximum prefix sum program
where the recursive function mps2 is identified as an instance of the accumulate
skeleton and is defined using a call to its parallel implementation.

Example 16 (Maximum prefix sum—hand-parallelised program (HPP))
mps1 xs
where
mps1 xs = mps2 xs 0
mps2 xs v = parAccumulate p ⊕ q ⊗ xs v

where
p x v = max v (x + v)

⊕ = max
q = λx .x
⊗ = (+)

Figure 3 presents the speedups of the encoded parallel program compared to the
original and hand-parallel program. An input size indicated by N denotes the compu-
tation of the maximum prefix sum for a list of size N. In comparison to the original
program, the encoded parallel version achieves a positive speedup ranging between
2.2x-4.5x. The speedup achieved also increases, though marginally, for increas-
ingly large input sizes, which shows that the encoded parallel version scales well for
different input sizes. However, the overall speedup gained does not scale linearly with
the number of cores used due to the significant cost of encoding which is a sequential
computation.

Further, the encoded parallel and hand-parallel versions parallelise the maximum
prefix sum program in the same way using the accumulate skeleton, with the hand-
parallel version defined over the original input list and the encoded parallel version
defined over the encoded list. We observe that the hand-parallel program is marginally
faster than the encoded parallel program for all input sizes due to the added cost of
encoding inputs in the encoded program. This is an example where encoding inputs
may be an overhead when the original input structures already match the algorithmic
structure.
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Fig. 3 Speedup of maximum prefix sum

5 Conclusion

5.1 Summary

The proposed transformation facilitates automatic identification of polytypic and list-
based skeletons in a given program using the existing distillation transformation and a
newly-proposed encoding transformation. Distillation provides efficiency by reducing
the number of intermediate data structures used. Thus, the speedup from distillation
is directly proportional to the sizes of intermediate data structures eliminated. The
encoding transformation targets and benefits programs defined over inputs whose
structures does not match that of the algorithm of the program. For instance, the
speedups for matrix multiplication are impressive and the ones for dot product of
binary trees and maximum prefix sum are moderate. This is because the structures
of the inputs of the latter programs match the algorithmic structures of the programs,
while it is not the case for the matrix multiplication example used here.

Thus, the efficiency achieved for matrixmultiplication is partly due to themismatch
in the list-of-lists representation of a matrix compared to the algorithmic structure of
the program. Such a representation may be considered unnatural given that there
exist methods to match the data type structure with the algorithmic structure [12] and
optimised representations of matrices in languages such as Haskell’s Repa and NESL.
Therefore, we need to further evaluate the encoding transformation on its role in the
efficiency achieved, in addition to facilitating the identification of skeleton instances.
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5.2 Related Work

A seminal work to derive parallel programs using fusion and tupling methods is pre-
sented in [3], where the need to extend them to polytypic and nested data structures
is highlighted. In [13], the authors propose a method to systematically derive parallel
programs from sequential definitions and automatically create auxiliary functions to
define associative operators required for parallel evaluation. However, this method is
restricted to a first-order language and functions defined over a single recursive lin-
ear data type that has an associative decomposition operator such as ++ . To address
this, [9] presents the diffusion transformation to decompose recursive functions into
functions that can be described using the accumulate skeleton. While diffusion can
transform a wide range of functions and can be extended using polytypic accumulate
skeleton, it is only applicable to functions with one recursive input, and the properties
and unit values of skeleton operators are verified and derived manually.

Since calculational approaches to program parallelisation were based on homo-
morphisms and the third homomorphism theorem on lists [14], this was extended to
trees in [15] by decomposing a binary tree into a list of sub-trees called zipper, and
deriving parallel computations on the zipper structure. Though it addresses tree-based
programs, this method requires multiple sequential versions of the program to derive
the parallel version. To address polytypic parallel skeletons, [16] presents parallel
map, reduce and accumulate skeletons for n-ary trees which are implicitly converted
to binary trees and uses parallel skeletons for binary trees. Despite introducing poly-
typic parallel skeletons, this approach requires manual check and derivation of the
operator associativity and unit values, respectively. As an alternative, [17] proposes
an analytical method to transform general recursive functions into a composition of
polytypic data parallel skeletons. Even though this method is applicable to a wider
range of problems, the transformed programs are defined by composing skeletons and
employ multiple intermediate data structures.
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