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Abstract Parallel sorting algorithms are widely studied nowadays. After the intro-
duction of parallel processors such as graphics processing unit (GPU) and easy to use
parallel programming languages such as CUDA and OpenCL, literature on parallel
sorting algorithms has become vast and richer with new ideas and techniques applied
to solve the famous problem of sorting. This paper presents a survey of GPU based
sorting algorithms. Four sorting algorithms have been selected for this survey: Radix
sort, Merge sort, Sample sort and Quick sort. Methods used in those algorithms are
described in brief. The performance of these algorithms as claimed by their authors is
also presented. A comparative analysis based on the literature is depicted.
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1 Introduction

Sorting algorithms are commonly designed on GPUs these days. Algorithms using
the divide and conquer strategy are mainly mapped on GPUs since they are apposite
for parallel environment. However, GPUs are constructed for facilitating arithmetic
and calculation-intensive computations; therefore, it is not straight-forward to convert
sequential sorting algorithms to parallel. Still, the literature reports that a wide range
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of algorithms are implemented on GPUs. Sorting on a Central Processing Unit (CPU)
is slower than sorting on a GPU.

In the current generation of processors like GPUs and multicore CPUs, several
computing cores are packed on a single chip. Common design practice in the modern
CPU is to devote most of the chip area to the cache mechanism and memory man-
agement. In contrast, in many core processors most of the chip area is devoted to
computation. For this reason, parallel processors excel over CPUs in computationally
intensive operations. However, it is difficult for the programmer to write applications
for many core processors that fully utilize the parallelism provided by the hardware.

Compute unified device architecture (CUDA) greatly helps programmers to write
applications for GPUs. It provides a set of C programming language extensions. These
extensions are familiar, easy to use and express parallelism in a logical manner. Due to
these extensions, programmers are straightway able to use multiple levels of memory
hierarchy that are quite different from the CPU memory hierarchy model. Specific
memory layouts used by the program play a major role in affecting the performance
of the program in the case of CUDA, since it leaves the full responsibility of taking
full advantage of all levels of the CUDA’s explicit memory hierarchy to CUDA pro-
grammers. That is the reason CUDA programs are difficult to optimize. Performance
modeling of CUDA programs is less well understood than that of OpenCL programs.
In addition, GPU hardware is evolving fast. Previous generations of the GPU are very
different in terms of architectural features than the current generation. A program per-
forming well on one generation cannot be expected to perform in the same manner on
the next generation. Optimizing a program for a specific GPU is of no avail since this
is very tedious and time-consuming. We need an analysis of GPU sorting algorithms.
How do specific algorithms perform in a specific environment? How far are factors
such as reducing memory latency and scalability being addressed in the algorithm?

In this paper, four GPU sorting algorithms available in the literature—Radix sort,
Quick sort, Merge sort and Sample sort are reviewed, and the methods used in those
algorithms are described in brief. Finally the performance of these algorithms as
claimed by their authors is presented.

2 Radix Sort

Radix sort has been one of the fastest sorting algorithms for 32 and 64 bit keys on both
CPU and GPU for a long time due to its linear time performance [1]. The Radix sort
algorithm has low and variable computational granularities (shift and mask operations
in this case). Radix sort has fewer I/O operations. Redundant computation can be
covered due to fewer I/O operations [2]. It has stronger dependence between successive
elements compared to other approaches. This issue is addressed by Ha et al. [3].

Satish et al. [4] describe twoGPU sorting algorithms, namely Radix sort andMerge
sort. In Radix sort, fine grained parallelism is achieved by parallel scan operation. On-
chip memory is used to impose block structuring on the sorting algorithm and also,
for local ordering of data to improve coherence. Radix sort is a counting based sorting
algorithm. It sorts one digit at a time starting from least significant digit to most
significant digit of a d digit number. Either of the algorithms, Counting sort or Bucket
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sort can be used inside each pass of Radix sort. For each digit, the sum of the number of
keys having smaller digit and the number of keys having the same digit but occurring
earlier in the sequence is counted, it is referred to as the rank of the element. The
element is rewritten at this position in the output sequence. This counting preserves
the relative ordering of data and hence it is stable i.e. the output sequence is sorted
after d passes.

A sequence is divided into tiles and assigned to different thread blocks; let us say
p thread blocks. Two factors are taken care of: the number of scatters is minimized to
global memory and the coherence of scatters is maximized. The first goal is accom-
plished by data blocking and using a digit size greater than one. To achieve the second
goal, data blocks are locally sorted by the current radix 2b digit using On-chip shared
memory.

In [5], an empirical optimization technique is proposed for the generation of efficient
code. It focuses on algorithmic parameters that can be altered according to different
environments and GPU architectural factors. Demonstration of this empirical opti-
mization is performed using Radix sort. d passes of Radix sort can be written as:

d =
⌈
b

r

⌉
(1)

where b is the number of bits in keys and r is the number of bits processed in each pass.
The rank is calculated using three steps: the first step traverses the input sequence and
counts the number of elements in each of the 2r buckets. Buckets are collected in such
a way that the new value of the current bucket is calculated by adding all the lower
numbered buckets and the original value of the current bucket in the second step. The
x th bucket contains the starting position of all the elements whose i th element is x.
The rank of an element is the value of its corresponding bucket plus the number of
elements in front of it. The third step is a scattering operation in which elements are
finally assigned positions according to their ranks.

The first step of the algorithm is parallelized by dividing the input sequence into
blocks; each CUDA thread block will work on a different data block. The second step
is parallelized using a publicaly available prefix sum primitive in the CUDA Data
Parallel Primitives (CUDPP) library.

Two algorithmic parameters are identified in Radix sort. The first one determines
the division of workload among GPU resources. Division of the workload is specified
using a three tuple (number_of_thread_block, number_of_thread_per_block, num-
ber_of_element_per_block). Two such tuples are needed, one for the counting step
and the other for the scattering step. The second parameter is the width of the digit i.e.
the number of digits processed in each pass. In earlier implementations of Radix sort,
r was fixed, e.g. CUDPP uses r=1 in [6] and r=4 in [4], but here a different r is used
for every pass. For prefix sum step, a three number tuple and a vector of r is needed.

Architectural factors affecting the performance of Radix sort are the number of
cores, the global memory bandwidth and the frequency of GPU core and global mem-
ory.

Number of Cores When the number of available cores increases, each thread will
process fewer elements. Consequently, more threads can be spawned on an increased
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number of cores. On the other hand, increasing the number of cores will increase the
amortization of overhead of execution of threads. It is a matter of a trade-off between
the two.

Global Memory Bandwidth Global memory utilization depends on the value of
r. When higher r is selected, fewer passes are required and therefore, the overhead
incurred by each pass is reduced. In contrast, higher r willmean that the input sequence
is written to more diversified memory locations, resulting in un-coalesced memory
access. It is a matter of a trade-off between the two.

Frequency of GPU Core and Global Memory When the frequency of the core is
increased, the number of elements processed per thread should also be increased to
fully utilize theGPU resources.However, increasing the number of elements processed
per thread will increase un-coalesced memory access. It is a matter of a trade-off
between the two.

Ha et al. [3] present a hardware optimized parallel Radix sort algorithm and its
implementation. The presented solution does not require any special hardware exten-
sion such as atomic counting, making it general and applicable to a wide range of
hardware. Contrary to previous approaches like the Radix sort of the CUDPP library,
this paper shows how to implement the 4-way Radix sort. The performance of the
algorithm is doubled and also the number of loops is reduced by half. An efficient
order checking strategy is also implemented which would terminate the sorter early if
a sorted state is reached or the input is already sorted. This algorithm is applicable for
arbitrary types of data such as floats, pointers, general records and negative numbers
that make it a generalized solution.

Four subsystems of the 4-way GPU Radix sort algorithm are: the order checking
function, 4-way radix counting, prefix sum positioning and final mapping. The order
of the input elements is checked at the beginning of the loop. If the elements of the
input sequence are in order, the loop is immediately terminated. A test is implemented
based on the optimized reduction operation proposed by Harris [7]. The next step of
the algorithm is to compute the frequency of every element in the list. This is the first
step of Radix sort. The input array is divided into blocks to make sure that the first
step is being run in a parallel manner. In each of these blocks, the local frequency of
all possible elements is computed. Four counters are generated so as to sort two bits
per pass. For each of the four possible digits, a bit mask is generated. Shared memory
parallel optimized prefix sum computation is applied to every mask at the same time
on four counting bit combinations and the total count of every element in a block in the
global memory is stored. The order of the data in the sorted chunk of the same radix
counting bit is indicated by the local prefix sum. Data is shuffled locally in order to
prevent a non-coalesced scattering effect of element-wise mapping at the final state. In
the next step, by computing the prefix sum over the block sum array, local frequency
lists are converted into global positions. The sorted position is calculated as

Sorted Posi tion = Pd [n] + m (2)

where d is a digit, n is the input chunk and m is the local prefix sum value.
In [8], a Radix sort algorithm is presented which is implemented in the Thrust

library of CUDA. Operations of the algorithm involve iterating over digit places of
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numbers to be sorted from the least significant to the most significant digits. A stable
distribution sort is performed for each digit place based upon their digit at that digit
position. For an m-element sequence with l-bit keys and radix s = 2d , a Radix sort of
these keys will require l

d passes of a distribution sort over all m keys. The asymptotic
complexity of the distribution sort is O(n). The reason behind this is that each input
item needs only a fixed number of comparisons to get its position. The entire sorting
process is O(n) if the number of digit-places is definite.

This approach is a hybrid composition of several algorithms. Hardware is effi-
ciently used by employingmemory bound parallel prefix scan routines. The prefix scan
enables computing elements to dynamically and co-operatively find proper memory
locations into which their output data can be placed. Keys are processed in a data par-
allel manner, for a given digit place, in Radix sort. Co-operation between processing
elements is necessary to find out appropriate destinations for relocating their keys.

One more reason behind efficient use of hardware is applying a visitor pattern [9]
of task composition in the prefix scan primitive. In this way, kernel fusion is achieved.
With this pattern, the arithmetic intensity of memory bound primitives is increased.
There is no need tomove between the intermediate states of the program through global
device memory. So, the number of memory transactions needed by the application is
reduced. Elimination of load and store instructions also allows the pattern to exploit
the resources. Thus, the memory workload is reduced. The prefix scan requires only a
small, constant number of intermediate values that must be exchanged through global
memory.

2.1 Experimental Evaluation

Satish et al. [4] evaluated their algorithms on a range of GPUs: GTX 200, 9800 GTX,
8800 Ultra, 8800 GT and 8600 GT. Their implementation of Radix sort outperformed
Radix sort by Le Grand [10] implemented in GPU Gems, Radix sort by Sengupta et
al. [11] implemented in CUDPP library [6], GPUSort and Merge sort implemented
by Govindaraju et al. [12]. Radix sort achieved a speed increase of a factor of 4
over GPUSort. Radix sort by Sengupta et al. [11] is two times slower than the Radix
sort presented in this paper. When compared with GPU-quicksort [13] on GTX 280
for uniform random sequences of 1M to 16M elements, it is three times faster than
GPU-quicksort [13].

In [5], empirically optimized Radix sort implementation outperformed the Radix
sort implemented by Satish et al. [4] by 17.1, 15.9, 15.7 and 23.1% on average on four
different NVIDIA GPUs GTX 280, 8800 GTX, 9600M GT and 9400M respectively.

Ha et al. [3] evaluated the performance of their algorithm on an Opteron AMD 275
quad dual-core 2.2 Ghz, system with 6 GB of memory and 1024K L1 cache equipped
with an NVIDIA Geforce 8800 GTX GPU. Algorithms with which the 4-way Radix
sort was compared were: the optimized CPU Radix sort as proposed by Herf [14], the
STL sort [15], the multi-threaded TBB parallel Quick sort by Intel [16], the Radix-
16 sort by Le Grand [10] and an 8-way parallel version of this Radix sort. Both with
uniform andGaussian distribution inputs, the coalesced 4-wayRadix sort gave the best
performance; that was between 1.5 and 2.2 times faster than the Radix-16 that also ran
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on CUDA by Le Grand [10]. A Speed increase of 1.5 was achieved from the 4-way
non-coalesced mapping radix to the final version of 4-way radix. This demonstrates
the impact of coalesced access on the performance of CUDA GPU implementation.
CPU Radix sort was 1.5-2.2 times slower than this algorithm. STL sort [15] was
reportedly slower than this algorithm due to expensive thread creation. In comparison
to the performance of value sorting, a reduction by a factor between 1.5 and 1.8 is
experienced. A non-coalesced shuffling pattern is the reason for the slow performance.

The algorithm of [8] is at least two times faster than the sorting algorithm described
by Satish et al. [4] on all fully programmable NVIDIA GPUs and 3.7 times faster on
the GT200 based models. Running this algorithm on older GPUs like the GT80, it was
observed that it outperformed Intel Core 2 quad-core processors.

3 Merge Sort

Belonging to the Insertion sort family, the Merge sort is an apposite algorithm for
parallel processors. Merge sort is of divide and conquer nature, which is why it is
suitable for implementation on GPUs. It has been observed that the Merge sort is
used with some other algorithms to form a hybrid approach for sorting. For external
sorting, when the input sequence is stored in a large external memory, Merge sort is
the preferred technique [4].

In [17], an algorithm is presented for sorting large lists in n logn time complexity.
Initially, a list is partitioned into sub-lists to fully utilize the parallelism of the GPU.
The list is partitioned using a GPU based Bucket sort or Quick sort. Partitions are
sorted independently using a custom Merge sort. Merge sort works on flout4 vectors
instead of one element.

The Bucket sort divides the list such that elements of list k are smaller than elements
of list k+1. The Bucket sort has two passes. The first pass makes of list of pivot points
which can be obtained either by interpolation or by constructing a histogram. It counts
the number of elements moving in each bucket. It also remembers the bucket number
and position inside the bucket for each element. Elements are moved to their new
position in the second pass.

The number of partitions of the list is at least double the number of streaming
processors in the GPU. Parallelism in the algorithm is increased by increasing the
number of partitions. Since, the number of threads executing in parallel will never be
less than the number of partitions at any point in time. However, increasing the number
of partitions too much will increase the work of the Bucket sort or Quick sort.

Sub-lists can be independently sorted using Merge sort. Flout4 elements are inter-
nally sorted using a kernel. One thread is assigned a pair of lists to be merged. The
output is the sortedmerge of these two lists. Flout4 vectors are taken from lists depend-
ing on which one has the lowest element on the top. This flout4 element is compared
with the flout4 element already taken in the previous step such that the lowest four
elements are separated from the highest four elements. Internal sorting of these two
flout4 vectors take place. The list with the lowest four elements joins the sorted stream
of elements.
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The Merge sort [4] performs sorting by merging sorted sequences in parallel and
pair-wise. It has three steps:

1. Input is divided into p equal sized tiles.
2. p tiles are sorted in parallel through thread blocks.
3. Sorted tiles are merged.

For sorting individual data tiles, Batchers odd-even Merge sort is used. The third
step of the algorithm is performed using a pair-wise merge tree of log p depth.

When the number of sub-sequences to be merged decreases geometrically, parallel
merging becomes less efficient due to reduced utilization of resources. This algorithm
tries to show the fine grained parallelism in the merging step. Parallel merging is the
most time-consuming process. It uses two strategies to design an efficient parallel
merge routine. The first is to use a divide and conquer approach at each level of the
merge tree. The second is to employ parallel binary searches to find out the final
position of each element in the sorted sequence.

If the sub-sequences are less than t=256, they are merged using single thread block
t. The rank of every element present in both the sub-sequences in the merged sequence
is computed. Rank of an element let ai ε A is calculated as

rank(ai ;C) = i + rank(ai ; B) (3)

where C is the merged sequence and A and B are the two sub-sequences. rank(ai ; B)

is count of the elements b j ε B with b j < ai and it is computed efficiently using
binary search. Previous steps are followed for the contents of B also.

Larger arrays can be merged by dividing them into tiles of size t that can be merged
independently through thread blocks. Splitters are used to divide the array. Splitters
are sequences constructed after selecting every t th element in every sub-sequence.
Splitters of two sub-sequences are than merged to form a single splitter.

The algorithm [18] is based on Merge sort. It introduces a new sorting algorithm,
namely GPU-Warp sort. Firstly, the input sequence is divided into sub-sequences
which are sorted using bitonic networks. This is followed byMerge sort, whichmerges
all the sub-sequences to get the final sequence. In a warp, threads are executed syn-
chronously. The algorithm takes advantage of this synchronous execution in order to
map sorting tasks efficiently to GPU architecture. An adequate homogeneous parallel
comparison is given to all the threads in a warp to circumvent branch divergence.
Merge sort sustains coalesced global memory accesses. This algorithm performs the
following four operations.

Barrier Free Bitonic Sort If blocks are taken as a unit to sort each sub-sequence,
each adjacent stage needs to be globally synchronized. This is the reason that warp
is chosen here as a unit instead of block. The algorithm becomes barrier free due to
the synchronous execution of threads in a warp. Some other features to be noticed
are: firstly, n elements correspond to n

2 compare and swap operations in each stage.
Secondly, half of the compare and swap operations form ascending pairs. Descending
pairs are formed by the rest of the operations except the last phase, where all the
comparisons have the same sequence order. At least 128 elements are kept in every sub-
sequence. All 32 threads within a warp perform distinct compare and swap operations
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at the same time to avoid divergent operations appearing within a warp and all these
operations form sorted pairs with the same order. Sub-sequences are loaded in the
shared memory.

Bitonic Based Merge Sort If the sub-sequences to be merged are A and B, the warp
fetches the lowest t

2 elements from both A and B where, t is the size of warp buffer
in shared memory. After a Bitonic merge sort, the lowest t

2 elements of the result are
the output and the remaining t

2 elements remain in the buffer. The next t
2 entries of

the buffer are filled with either t
2 elements from A or B, depending on the outcome of

comparing the maximum elements fetched last time.
Split into Small TilesThe number of sequences to bemerged geometrically decrease

in theMerge sort. The efficiency and parallelism of the algorithm are reduced. To cope
with this situation, sequences are divided into smaller tiles. Suppose l is the number
of sequences of size n before split operation and each sequence is divided into s
sub-sequences. The following equation should be satisfied

∀a ε sub-sequence (x, i),∀b ε sub-sequence (y, j) : a ≤ b, where

0 ≤ x < l, 0 ≤ y < l, 0 ≤ i < j < s.

Final Merge Sort Merging of sub-sequences created in the step 3 is done in step
4. All the sub-sequences can be independently merged. Therefore, it is generating
sufficient parallelism. Complexity of GPU-warpsort is defined as:

O(n) + O(nlogn) = O(nlogn) (4)

3.1 Experimental Evaluation

Sintorn et al. [17] used Intel Core 2 Duo system working at 2.66 GHz for the exper-
imental evaluation. They used a single GeForce 8800 GTS-512 graphics card and
also dual cards. As claimed by the authors, the algorithm is 6.2 times faster than STL
Introsort [19] which ran on a single core of a CPU, on a single GPU and 11 times faster
if compared with the dual GPU version. The authors claimed the dual GPU version
was 1.8 times faster than the single GPU version. It was 10% faster than the GPU
Radix sort [11] and 2.5 times faster than the GPUSort algorithm [12].

In [4], the algorithm was tested on a range of GPUs—GTX 200, 9800 GTX, 8800
Ultra, 8800 GT and 8600 GT. In the case of Merge sort, a speed increase of two was
achieved over GPUSort [12]. Performance of this algorithm and the one suggested by
Le Grand [10] was almost the same for up to 1M elements, after which this algorithm
excelled. It was slower than the Radix sort algorithm implemented in the paper [4].
For large input sizes, it outperformed CUDPP Radix sort [11].

The processor used for testing the algorithm of [18] wasAMDOpteron880working
at 2.4 GHz and the graphics card used was NVIDIA 9800GTX+. The algorithm was
compared with the sorting algorithm designed by Satish et al. [4], the Quick sort
designed by Cederman et al. [13] and the Bitonic sort of Baraglia et al. [20]. GPU-
Warpsort [18] performed 20%efficientwhen compared to theMerge sort of Satish et al.
[4] and 30% efficient for sequences larger than 4M. GPU-Warpsort [18] was 1.7 times
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faster than GPU-quicksort [13] for key only sequences. It performed substantially
better than the Bitonic sort of Baragalia et al. [20].

4 Sample Sort

Sample sort is or has been the fastest sorting algorithm if the inter-process com-
munication is high [4]. It selects a subset of the input. This subset is referred to as
splitters. Splitters are sorted by some other procedure. The input sequence is divided
into buckets using these splitters. Each bucket is sorted in parallel and the result is the
concatenation of these buckets. However, performance of the Sample sort degrades if
the number of elements per processor is low [21,22].

Leischner et al. [23] describe GPU based Sample sort algorithm. The algorithm
needs a comparison procedure on keys only. On the other hand, other approaches
directlymanipulate the binary representation of data. This algorithmdecreases number
of access to global memory. The reason behind the reduction is that it processes the
data in variousmulti-way phases instead of a larger number of two-way phases. Coarse
level parallelism is achieved by imposing block structuring. This enables data parallel
computation of individual input tiles. Computation is performed by blocks of fine
grained concurrent threads. Memory intensive data structures are stored in fast per-
block memory, which is why global memory accesses are reduced. Huge volumes of
data can also be processed by assigning a variable number of elements per thread.

The first step of the algorithm [23] is for the splitters to split the input sequence
into k buckets bound by successive splitters. All the buckets are sorted recursively and
the output is a concatenation of these buckets. The input sequence is divided into p
number of tiles and p is evaluated as:

p =
⌈

n

t × l

⌉
(5)

where t is the number of threads in a block and l is the number of elements processed by
each thread. In step 2, for all elements in its tile, the thread block computes the bucket
indices. The number of elements in each bucket is computed by the thread block. A
per-block k-entry histogram is also stored in the global memory by the thread block. In
step 3, global bucket offsets in the output are calculated by perfoming a prefix sum over
the k × p histogram tables stored in a column-major order. In step 4, bucket indices
are again calculated by each thread block for all elements in its tile. Thread block also
calculates local offsets in the buckets. Elements are stored at their appropriate output
locations using the global offsets calculated in the previous step.

Dehne et al. [24] present GPU Bucket sort. The performance of GPU Bucket sort
is the same as that of the randomized sample sort method in [23], as far as the best
case is concerned. However, the performance of GPU Bucket sort is similar for any
kind of data distribution. There are two reasons for this. Firstly, the buckets are created
deterministically. Secondly, bucket sizes are guaranteed. The authors also claim the
algorithm to be memory efficient since it is able to sort considerably larger data sets
within the same memory limits of the GPUs.
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In the GPU Backet sort [24], first the array is split into m sub-lists A1, . . . , Am

containing n
m elements. Where, n

m is the size of the shared memory at each streaming
multiprocessor (SM). All the sub-lists are sorted locally on the SM, using its shared
memory as cache. Equidistant samples are selected from each sorted sub-list. If the
number of samples in each sub-list is s, the total number of samples is sm. All samples
are sorted in global memory. Equidistant samples are selected from the sorted list of
sm samples. These samples are called global samples and are s in number. The location
of each of the s global samples in Ai is determined. This operation will create for each
Ai a partitioning into s buckets. For each bucket, its starting location in the final sorted
sequence is calculated through a parallel prefix sum operation. Buckets are relocated
to the location found in the previous step and the newly created array consists of s
sub-lists. These sub-lists are sorted locally on every SM.

4.1 Experimental Evaluation

Experimental evaluation of Sample sort algorithm [23]was performedon a sequence of
floats: 32-bit and 64-bit integers and key-value pairs where both keys and values were
32-bit integers. Performance of the algorithm was compared with many algorithms
such asThrust [8] andCUDPP [6]Radix sort andThrustMerge sort [4].GPU-quicksort
[13], hybrid sort [17] and bbsort [25] were also included. The processor used in
the experimental evaluation was an Intel Q6600 2.4 GHz machine. The NVIDIA
Tesla C1060 was the GPU used. The performance gain of Sample sort over the best
comparison-based sorting algorithm GPU Thrust Merge sort [4] was at least 25% and
on average 68% for uniformly distributed keys. For the same data distribution, Sample
sort was two times faster than GPU-quicksort [13] on average. The performance gain
over the highly optimized GPU Thrust Radix sort [8] was at least 63% and on average
was double for 64 bit integer keys.

Dehne et al. [24] used NVIDIA Tesla, GTX 285 and GTX 260 for the experimental
evaluation. The performance of the algorithm was compared with the sorting methods
presented by Satish et al. [4] and Leischner et al. [23]. Compared with Tesla and GTX
260, GPU Bucket sort performed better on the GTX 285. Performance was better on
the GTX 260 than the Tesla. It outperformed the Thrust Merge procedure proposed
by Satish et al. [4]. This algorithm and the Randomized Sample sort performed nearly
identically on the GTX 285 and Tesla C1060. For the entire range of data sizes, a
linear growth rate was claimed by authors in the case of GPU Bucket sort for GTX
285 and Tesla C1060 and it maintained a fixed sorting rate (number of sorted data item
per time unit).

5 Quick Sort

In the Quick sort algorithm, a list of elements is taken and partitioned around a specific
pivot element. The exact position of the pivot element in the sorted list is found. The
lists are recursively partitioned until they become too small to partition. Quick sort is
the fastest andmost studied algorithm inCPU architecture. However, it was reported as
not particularly suitable for GPUs until Cederman et al. [13] presentedGPU-quicksort.
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Sengupta et al. [11] essentially illustrates implementation of segmented scan prim-
itives. These general purpose data parallel primitives are useful for a broad range of
applications. As part of the demonstration of applications of segmented scan primi-
tives, authors have implemented a parallel version of the Quick sort algorithm. The
authors used themethod proposed by Blelloch [26] to implement Quick sort in CUDA.

Segments of the input are processed in parallel. The algorithm is suitable for seg-
mented scan primitive due to communications between elements (threads) inside a
single segment. A pivot element is chosen in each segment (the first element of the
segment). The pivot element is distributed across the segments. The input element is
compared to the pivot. Greater-than or greater-than-or-equal are compared accordingly
in alternating passes of the algorithm. A segmented vector containing true and false
is produced by the comparison operation. This segmented vector is used to split-and-
segment the input. As a result, smaller elements are placed at the head of the vector
and larger elements are placed at the end of the vector. Instead of the 3-way split used
by Blelloch [26], here a 2-way split is used. Whether or not the output is sorted is
checked by global reduction at each step. In the last step, a parallel merge operation
is applied to all the blocks.

Cederman et al. [13] introduce a Quick sort algorithm suitable for a highly parallel
multicore GPU. It takes advantage of the high bandwidth of GPUs by reducing the
amount of book-keeping and inter-thread synchronization needed. Inter-thread syn-
chronization can be minimized by coalescing read operations and constraining threads
so that memory accesses are kept to a minimum. This algorithm partitions the list iter-
atively. The next iteration begins when lists of previous iterations are partitioned.

A sequence to be partitioned is divided logically into sections. Each section is
processed by a thread block. Each thread in the thread block keeps track of the number
of elements it has seen larger and smaller than the pivot. Each thread stores this
information in two arrays in shared local memory. A cumulative sum is calculated to
find out the index of each element. Threads will write their assigned elements in new
position in the auxiliary buffer.When the number of sub-sequences is large enough that
each thread block can be assigned one, the algorithm enters in the second phase. There
is no need for inter-thread block synchronization. When the sub-sequences become
small enough to be sorted entirely in the fast local memory, the authors suggest using
a different sorting algorithm which performs well when the size of the list approaches
the number of threads.

In [27], a recursive version of Quick sort is proposed. It solves two problems
associated with GPU-quicksort. First, partitioning of data is not guaranteed to be
uniform. Some sub-listsmay be longer than others. SinceGPU-quicksort is an iterative
algorithm and the iteration is completed when all the sub-lists of that iteration are
processed, smaller lists will have to wait for the longer ones to complete. Second, in
GPU-quicksort, kernel launch for partitioning the list is done on the CPU side. After
every iteration, the information of the index and size of the sub-list is communicated
back to theCPUand it will decide the number of threads and thread blocks accordingly.

With the increase in the depth of the recursion tree, the number of kernel launches
is also increased. Communication between the CPU and GPU becomes an important
factor. NVIDIA CUDA Quick sort [27] solves this problem by dynamic parallelism.
Dynamic parallelism enables recursive parallelism in GPU. At the top level, a single
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kernel partitions the sequence into two groups, and then launches two Quick sort
kernels. One kernel is assigned to the group having elements smaller than the pivot
and the other is assigned to the group having elements larger than the pivot. The kernel
at the top knows the index and the size of the two groups; it will have the information
onwhether to launch a kernel and howmany threads to use. The parent kernel is able to
launch its child kernels immediately after partitioning the list. The program progresses
in an asynchronous manner. The kernel launches its two children in a separate stream.
CUDA streams are executed simultaneously, which means the two sub-sorts will run
in parallel.

Manca et al. [28] suggest an iterative versionofQuick sort namelyCUDA-quicksort.
It is an improvement over GPU-quicksort [13]. Low inter-block synchronization and
coalesced memory access make it faster than GPU-quicksort and NVIDIA CUDA
Quick sort [27] by factors of 3 and 2 respectively. In GPU-quicksort, list is divided
into k equally sized sections. The number of thread blocks is fixed a priori. Section size
is decided by dividing the list size by the number of thread blocks available. However,
in this algorithm the section size is fixed. The number of thread blocks is decided by
dividing the list size by the section size. In the beginning, as in the original Quick
sort, a list is partitioned into two sub-lists around a pivot element. Elements smaller
than the pivot go to the left partition and elements larger than the pivot go to the right
partition. A pivot is placed in between these two partitions. Thread blocks work on
their assigned section independently of each other. Each section is divided into two
sub-lists. These sub-lists are created in shared memory. Then the sub-lists are written
to global memory.

In this algorithm, inter-thread block synchronization takes place through atomic
primitives. It differs from the GPU-quicksort [13] in the way sub-lists are written
to global memory. In the GPU-quicksort, each thread moves its assigned data to the
global memory using the cumulative sum. Threads access the global memory in an un-
coalescedmanner. CUDA-quicksort optimizesmemory access by sorting the elements
in the sharedmemory before being written to the global memory. Threads compute the
offset of their assigned elements using the cumulative sum. Offset is used to move the
items to their proper sub-list in the shared memory. In the shared memory, elements
which are smaller than the pivot are separated from the elements which are larger
than the pivot. Threads write the elements in the consecutive memory locations in the
global memory.

5.1 Experimental Evaluation

In [11], the processor used for testing the algorithm was an Intel Xeon working at 3.00
GHz. The graphics card used was an NVIDIA GeForce 8800 GTX. The algorithm
was compared with four algorithms: Split based Radix sort per block [29], STL sort
[15], CPU C implementation of Quicksort and Split based Global Radix sort. GPU
based Quick sort was the slowest among all of them. Book-keeping instructions made
the program slow. Book-keeping instructions managed the active regions of shared
memory. Book-keeping instructions and staging of regions together result in a large
number of registers. The occupancy of the programwas inevitably reduced (according

123



Int J Parallel Prog (2018) 46:1017–1034 1029

to the authors, profiler show occupancy of only 1
6 ). These were the two reasons cited

by the authors for the slow performance of Quick sort.
Experimental evaluation of [13] was performed on a dual-processor, dual-core

AMDOpteron 1.8 GHz machine. NVIDIA 8600GTS 256MiB with four multiproces-
sors and the high-end NVIDIA 8800GTX 768 MiB with 16 multiprocessors were the
two graphics processors used to run the algorithm. Algorithms compared with GPU-
quicksort [13] were GPUsort [30], Radix Merge [29], Global Radix [11], Hybrid sort
[17] and STL Introsort [19]. Performance on the high-end GPU was three times better
than the low-end GPU. GPU-quicksort [13] performed better on all the distributions
than the compared sorting algorithms on the high-end processors. On the low-end
processors it was also on a par with the all compared algorithms.

In [27], reportedly, the algorithm was 1.5 times faster than GPU-quicksort [13]
when tested on 12 core Intel Xeon E5-2667 2.90 GHz and a GPU NVIDIA Tesla
Kepler k20.

CUDA-quicksort [28] was tested on a 12 core Intel Xeon E5-2667 2.90 GHz pro-
cessor and a GPU NVIDIA Tesla Kepler k20 machine. The algorithm was compared
with GPU-quicksort [13], CDP Quick sort [27], the Radix sort of the thrust library
[8], based on [4], Bitonic sort [31] and Merge sort [4]. CUDA-quicksort was able to
outperform all of them except the Radix sort due to the complexity factor. However,
when compared with 96-bit data structure items CUDA-quicksort outperformed the
Thrust Radix sort [8] and achieved a speed increase ranging from 1.58× to 2.18×.

6 Result Analysis

It can be observed in the Table 1 that Radix sort is a highly studied algorithm on the
GPU. Quick sort and Merge sort are also quite often executed on GPUs due to their
divide and conquer nature. In Fig. 1, a comparative analysis of the performance of the
algorithms presented in this survey is shown. Algorithms connected with an arrow are
compared in the literature. The arrow points towards the slower algorithm.

Satish et al. [4] presented Radix sort and Merge sort. Radix sort outperformed
the Merge sort algorithm presented in the same paper and it was the fastest sorting
algorithm of that time. That is why it is observed in Fig. 1 that much research has
focused on surpassing the performance achieved by Radix sort of Satish et al. [4] and
much has succeeded in doing so. Radix sort implemented in Thrust library of CUDA
is a perfect example of this. Radix sort by Huang et al. [5] provided an optimization
technique derived empirically and, as claimed by the authors, it also outmatched Radix
sort of Satish et al. [4]. Merge sort is often accompanied with some other algorithm to
form a hybrid solution for sorting, as in [17]. The most important part of the Merge
sort, the merge routine is often used due to its divide and conquer nature.

Deterministic Sample sort is one of the fastest sorting algorithm presented in [24].
Though the authors have not compared their algorithm with all the relevant and com-
peting algorithms. Their algorithm was shown to be faster than GPU Sample sort [23],
which in turn was faster than many algorithms such as GPU-quicksort [13], Hybrid
sort by Sintorn et al.[17] etc.
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Fig. 1 Performance comparison of the algorithms

Sengupta et al. [11] made a first attempt to implement Quick sort on the GPU.
However, the performance of Quick sort was slow. Cederman et al. [13] implemented
Quick sort on a GPU and it was the first comprehensive and appropriate attempt to
do so. NVIDIA CUDA Dynamic Parallel Quick sort [27] uses dynamic parallelism to
implement Quick sort. Dynamic parallelism is an appropriate solution for Quick sort
since it is of a recursive nature. Manca et al. [28] improved upon GPU-quicksort [13]
and achieved appreciable results. CUDA-quicksort [28] being the most recent algo-
rithm, it outperforms many of its predecessors including NVIDIA CUDA Dynamic
Parallel Quick sort [27], Thrust Radix sort [8] for certain distributions and Bitonic
sort [31].

7 Conclusion

This paper presented a survey ofGPU sorting algorithms. Four sorting algorithmswere
selected for this survey: Radix sort, Merge sort, Sample sort and Quick sort. Working
and performances of these algorithms as claimed by their authors were also presented.
Finally, specific details of these algorithms are summarized in a table. A study of
these algorithms shows that CUDA-quicksort, being the most recent algorithm and it
outperforms many of its predecessors, including NVIDIA CUDA Dynamic Parallel
Quick sort which uses dynamic parallelism, Thrust Radix sort for certain distributions,
and Bitonic sort. Deterministic Sample sort also performs better than its counterparts.
Deterministic Sample sort outperforms GPU Sample sort which in turn is better than
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many sorting algorithms such as GPU-quicksort, Hybrid sort etc. Due to the highly
optimal complexity of Radix sort, it is a difficult to outrival algorithm on GPU.
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