
Int J Parallel Prog (2018) 46:23–41
https://doi.org/10.1007/s10766-017-0497-y

High-Level Programming for Many-Cores Using C++14
and the STL

Michael Haidl1 · Sergei Gorlatch1

Received: 3 October 2016 / Accepted: 28 February 2017 / Published online: 13 March 2017
© Springer Science+Business Media New York 2017

Abstract Programming many-core systems with accelerators (e.g., GPUs) remains a
challenging task, even for expert programmers. In the current, low-level approaches—
OpenCL and CUDA—two distinct programming models are employed: the host
code for the CPU is written in C/C++ with a restricted memory model, while the
device code for the accelerator is written using a device-dependent model of CUDA
or OpenCL. The programmer is responsible for explicitly specifying parallelism,
memory transfers, and synchronization, and also for configuring the program and
optimizing its performance for a particular many-core system. This leads to long,
poorly structured and error-prone codes, often with a suboptimal performance. We
present PACXX—an alternative, unified programming approach for accelerators.
In PACXX, both host and device programs are written in the same programming
language—the newest C++14 standard with the Standard Template Library (STL),
including all modern features: type inference (auto), variadic templates, generic
lambda expressions, and the newly proposed parallel extensions of the STL. PACXX
includes an easy-to-use and type-safe API for multi-stage programming which allows
for aggressive runtime compiler optimizations. We implement PACXX by developing
a custom compiler (based on the Clang and LLVM frameworks) and a runtime sys-
tem, that together perform memory management and synchronization automatically
and transparently for the programmer. We evaluate our approach by comparing it to
OpenCL regarding program size and target performance.

B Michael Haidl
m.haidl@uni-muenster.de

Sergei Gorlatch
gorlatch@uni-muenster.de

1 Department of Computer Science, University of Muenster, Münster, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-017-0497-y&domain=pdf
http://orcid.org/0000-0003-0225-498X


24 Int J Parallel Prog (2018) 46:23–41

Keywords Parallel programming · High-level programming · Accelerators · C++ ·
Compiler optimizations

1 Motivation

Various many-core accelerators, e.g., Graphics Processing Units (GPUs) are increas-
ingly used in today’s computer systems. However, writing efficient parallel programs
for systems with accelerators remains a complicated task. Special low-level program-
ming models like CUDA [19] or OpenCL [12] must be mastered for writing the parts
of an application program (so-called kernels) which are executed on an accelerator.

The main problems of the programming approaches based on CUDA and OpenCL
are as follows:

– Kernels are written in an extended dialect of C or C++ and are distinct from
the host program which runs on a CPU. In OpenCL—the only programming
approach which is portable across accelerators of different vendors—kernels are
represented as strings in the host program which brings non-trivial engineering
issues. In particular, type definitions must be duplicated and attention must be
paid to the alignment of the data structures in memory which may be different
between the host compiler and the OpenCL compiler even for equal types and
thus leads to subtle and hard- to-track errors. Besides the cumbersome develop-
ment, the kernel code in a string is readable by a non-authorized party from the
compiled code, which is often undesired, especially in commercial applications.

– Transfers between the host memory and the accelerator’s memory must be man-
aged manually, which leads to long and error-prone code.

– Kernels are launched asynchronously; this implies additional programming effort
to synchronize the execution on the CPU with the accelerator, which often results
in performance penalties.

– Threads must be explicitly managed by the developer which requires detailed
knowledge of parallel programming to avoid numerous possible pitfalls (e.g., race
conditions); work must be efficiently partitioned across threads, and threads must
be properly synchronized with each other.

Managing all these cumbersome details in low-level programming approaches is
time-consuming, but high performance is still not guaranteed: kernel optimizations
require a deep understanding of the target many-core architecture.

To overcome the weaknesses of current many-core programming models, we
develop the PACXX (Programming Accelerators with C++) approach, with the fol-
lowing novel contributions:

– PACXX provides a unified programming model, i.e., host and kernel code are
written in the same widely-used programming language: C++. PACXX fully sup-
ports the latest C++14 standard [8] with all advanced language features (e.g.,
variadic templates and generic lambda expressions), as well as modern features
from the Standard Template Library (STL) [8]. Through the compilation approach
used by PACXX, parallel programs are portable across hardware architectures
without the disadvantages of OpenCL: (1) the kernel source code is not readable

123



Int J Parallel Prog (2018) 46:23–41 25

by unauthorized parties, and (2) parts of the code can be shared between the host
program and the kernels without duplications; problems with memory alignment
are avoided by design.

– STL containers (e.g., std::vector) are used in PACXX to liberate the
programmer from tedious memory management tasks and perform memory allo-
cations and transfers transparently for the developer.

– Synchronization of the host with kernels is achieved with std::future objects
from the STL, which allows for a fine-grained synchronization as used for stan-
dard C++ threads.

– STL algorithms relieve the developer from the error-prone tasks of work par-
titioning across threads and thread synchronization which could result in race
conditions or even deadlocks. The work distribution is optimized for each STL
algorithm in its PACXX implementation.

The structure of this paper is as follows: in Sect. 2, we present the unified pro-
gramming model of PACXX and compare it with CUDA using a simple example.
In Sect. 3, we demonstrate how the newest C++14 standard together with the paral-
lel extension for STL [11] can be conveniently used for high-level programming of
many-core systems and we advocate using ranges [9]—a powerful new concept in
C++. In Section 4, we describe the architecture of PACXX and its implementation.
In Sect. 5, we show how the advanced technique of multi-stage programming is sup-
ported by PACXX for many-core-specific optimizations. In Sect. 6, we evaluate the
performance and the portability of PACXX on a variety of benchmark applications.
We discuss related work in Sect. 7, and we conclude in Sect. 8.

2 The PACXX Programming Model

To explain our C++-based approach to many-core programming, we consider a pop-
ular example in parallel computing: vector addition. We start with a C++ sequential
program and then we compare how this program is parallelized for GPU using CUDA
versus our PACXX approach.

1 std::vector<int> a(N), b(N), c(N);
2 for (int i = 0; i < N; ++i)
3 c[i] = a[i] + b[i];

Listing 1 Sequential vector addition in C++.

Listing 1 shows the sequential C++ source code for the vector addition. Here, the
memory is implicitly allocated and initialized during the construction of the three STL
containers of type std::vector in line 1 according to the RAII (Resource Acqui-
sition Is Initialization) idiom of C++. The calculation is performed straightforwardly
by the for-loop in line 2.

Listing 2 shows how the vector addition is parallelized for GPU using the popular
CUDA approach. The CUDA kernel (lines 1–4) replaces the sequential for-loop of
the C++ version with a data-parallel version of the vector addition. The vadd ker-
nel is annotated with the global keyword (line 1) and is, according to the CUDA

123



26 Int J Parallel Prog (2018) 46:23–41

standard, a free function with void as return type. In CUDA, functions called by
a kernel have to be annotated with the device keyword to explicitly mark them
as GPU functions and instruct the CUDA compiler to generate GPU code for these
functions. This restriction restricts code sharing between host and GPU. In particu-
lar, STL functions, e.g., algorithms or member functions of std::vector, are not
annotated with device and thus not usable in a kernel.

1 _ _global_ _ void vadd (int* a, int* b, int* c, size_t size){
2 auto i = threadIdx.x + blockIdx.x * blockDim.x;
3 if (i >= size) return;
4 c[i] = a[i] + b{i]; }
5

6 std::vector<int> a(N), b(N), c(N);
7 int* da, db, dc;
8 size_t size = N * sizeof(int);
9 cudaMalloc(&da, size);

10 cudaMemcpy(da, &a[0], size, cudaMemcpyHostToDevice);
11 ... // three additional lines: two for b and one for c
12 vadd<<<N/1024 + 1, 1024>>>(da, db, dc, N);
13 cudaDeviceSynchronize();
14 cudaFree(da); // free db and dc

Listing 2 Parallel vector addition in CUDA

Memory accessed by the kernel must be managed by the developer explicitly in
the host part of the CUDA program (lines 9–14) and requires double memory allo-
cation: the first allocation happens with the construction of the std::vector in
line 6 on the host and the second allocation is performed by cudaMalloc in line 9
on the GPU, thus making the developer responsible for ensuring consistency between
both memories by copying data explicitly (line 10) and, since C arrays without RAII
property are used, also for initializing memory. On the host side, three instances of
std::vector are used to store the data. Since the STL cannot be used in CUDA
kernels, three raw integer pointers are defined in line 7 to access the data in the GPU’s
memory; thereby, the convenient features of std::vector are lost and the pro-
grammer has to use pointers or build own wrappers to get an easier and safer memory
access than using raw pointers. Memory is allocated using the CUDA Runtime API;
for brevity, the calls to this API are only shown here in line 9 and 10 for one vector.
For each memory allocation and transfer, an additional line of code is necessary.

To launch the kernel, a launch configuration is specified within «< »> in each
kernel call (line 12), i.e., a CUDA-specific, non-C++ syntax is used. CUDA threads
are organized as a grid of blocks with up to three dimensions: in our example, 1024
threads are the maximal number of threads in one block, and N/1024 + 1 blocks (N
is the size of the vectors) form the so-called launch grid. All threads execute the same
kernel code, and the work is partitioned among them using indices: in our example,
each thread computes a single addition depending on the thread’s index in the x-
dimension (line 2). The indices of a thread within the grid and the block are obtained
using special variables threadIdx, blockIdx and blockDim (Listing 2). To
prevent an out-of-bounds access, an if-statement guards the access to the memory
(line 3). The size of the input vector has to be known in the kernel code and is passed
as additional parameter to the kernel (line 1). The GPU works asynchronously to

123



Int J Parallel Prog (2018) 46:23–41 27

the host, therefore, the host execution must be explicitly synchronized with the GPU
using the CUDA Runtime API (line 13).

Summarizing, the CUDA code in Listing 2 is very different from the original C++
program in Listing 1: a complete program restructuring and new syntax are necessary,
and the size of code increases by more than three times up to 17 lines of code (due to
the omitted code in line 11).

1 std::vector<int> a(N), b(N), c(n);
2 auto vadd = kernel([](const auto& a, const auto& b auto& c){
3 auto i = Thread::get().global;
4 if (i >= a.size()) return;
5 c[i.x] = a[i.x] + b[i.x];
6 }, {{N/1024 + 1}, {1024}};);
7 std::future<void> F = std::async(vadd, a, b);
8 F.wait();

Listing 3 Parallel vector addition in PACXX

Listing 3 shows how our PACXX approach works for the same example: the
PACXX program is a pure C++14 code without any extensions (e.g., new keywords or
special syntax), with the kernel code inside of the host (main) code. PACXX provides
the C++ template class kernel to identify kernels: instances of kernel will be
executed in parallel on the GPU. In PACXX, there are no restrictions on the functions
which can be called from the kernel code, however, their source code must be avail-
able at runtime, i.e., functions from pre-compiled libraries cannot be used. The listing
demonstrates how code is shared between the host part and a kernel: std::vector
is used in the host code and passed to the kernel by reference as common in C++. Like
in CUDA, a PACXX kernel is implicitly data-parallel: it is defined by a C++ lambda
function (lines 2–6). The launch configuration (the second parameter in line 6) is
defined similar to CUDA, and threads are identified with up to three-dimensional
indices which are used to partition the work among the GPU’s cores. The thread’s
index can be obtained through the Thread class (line 3). We use std::async
and std::future from the newest version of the STL concurrency library [8]
to express parallelism: the kernel instance created in line 2 is passed to the STL-
function std::async (line 7) that invokes the kernel’s execution asynchronously
on the GPU. The kernel function in line 2 decorates the lambda expression with a
special type which is recognized by our modified implementation of std::async.
According to the type of the first parameter of std::async in line 7, our imple-
mentation decides whether the execution happens on the GPU or CPU. The additional
parameters of std::async are forwarded to the kernel.

By comparing Listings 3 to 2, we observe that PACXX provides a much more
convenient, implicit memory management than CUDA, using the C++ STL contain-
ers std::vector (for dynamic arrays) and std::array (for static arrays): we
avoid double memory allocations and explicit memory transfers. To ensure data con-
sistency between the host and the GPU, a lazy copying is supported in the PACXX
implementation of the STL, as discussed in Sect. 4. A PACXX kernel also requires
guarding the memory access by an if-statement to prevent out-of-bounds access, but
there is no need to pass the size of the vector to the kernel, because each instance

123



28 Int J Parallel Prog (2018) 46:23–41

of std::vector can obtain the number of elements by using the size func-
tion (line 4). The std::async function used to execute the kernel returns an
std::future object associated with the kernel launch (line 7); this object is used
to synchronize the host and kernel execution more flexibly than in CUDA: since the
std::future instance is a C++ object, synchronization with the kernel can hap-
pen anytime during the program execution. The wait function (line 8) from the
std::future class blocks the host execution if the associated kernel has not yet
terminated.

Summarizing, due to the exclusive usage of the modern C++14 and STL features
and implicit memory management of STL containers, programming using PACXX is
easier and yields shorter code than when using CUDA.

3 High-Level Programming Using C++ and STL

In this section, we demonstrate how C++ and STL implemented in PACXX are used
for programming a case study—the N-Body simulation—which we also use for the
performance evaluation in Sect. 6. N-Body simulations [22] are an important class of
physical applications. For a number of particles, the interaction between all particles
is computed in an iterative process which updates the position and velocity of each
particle in every step. Our PACXX-based implementation of the N-Body simulation
on a GPU follows the ideas described in the CUDA Toolkit [20] as example code.
More sophisticated algorithms (e.g., Barnes-Hut [4]) require a lot more development
effort, making them impractical as illustrative examples.
STL Containers and Iterators We start our N-Body case study using PACXX by
defining the memory to hold the properties (i.e., position and velocity) of particles. In
Listing 4 (line 1), we declare three instances of the STL container std::vector.
Since all STL containers are template classes, a type (in this case a custom type
Float4) is provided which defines the type of vector’s elements.

1 std::vector<Float4> pos1(N), pos2(N), velo(N);
2 for (auto I = pos1.begin(), E = pos1.end(); I != E; ++I)
3 *I = get_random_position();

Listing 4 Using containers and iterators for N-Body.

The std::vector provides all properties we need for efficient N-Body simu-
lation: (1) contiguous memory with constant access time, and (2) dynamic size to
simulate an arbitrary number of particles. Listing 4 defines N (i.e., an arbitrary num-
ber of) Float4 instances allocated by vector’s constructor, and each vector element
is initialized with the default constructor. In our case, Float4 defines a data type
holding four 32-bit floating point numbers, and the constructor initializes them with
0. In contrast to dynamic memory handling in C++ (using new and delete), an STL
container releases all its resources when the lifetime of the container ends. Together
with RAII, this reduces possible sources of errors and memory leaks.

In Listing 4, we use iterators offered by containers to initialize the pos1 vec-
tor with random positions of particles: in the for-loop (line 2), the begin (I) and
the end (E) iterator are returned by begin() and end(). The first iterator (I)

123



Int J Parallel Prog (2018) 46:23–41 29

is used to iterate over the elements of a container while the second iterator (E)
defines the position where the iteration must stop. We use the type inference
feature of C++ (auto) to obtain the type of iterator I (i.e., auto resolves to
std::vector<Float4>::iterator in line 2). According to the C++ stan-
dard, each iterator must be dereferenceable and incrementable, i.e., iterator’s type
implements the * operator (line 3) to access the data an iterator points at, and it
implements the prefix ++ operator (line 2) to iterate over the elements of a container.
Iterators of std::vector satisfy the RandomAccessIterator concept of the C++
standard, which allows us to access each element of the vector in constant time by
simply adding an integer to an iterator. In terms of [9], all STL containers are iter-
ables, i.e., they offer a begin() and end() function to obtain a pair of iterators.
STL Algorithms STL algorithms are very popular in the C++ community, and they
are one of the main programming means in our PACXX approach.

1 std::vector<Float4> pos1(N), pos2(N), velo(N);
2 std::generate(pos1.begin(), pos1.end(), get_random_position);

Listing 5 Using an STL algorithm to initialize data.

In Listing 5, we use the std::generate algorithm in line 2 to abstract from the
for-loop of Listing 4, such that the code becomes shorter.
Ranges To provide an easier interface to STL algorithms and to allow more effi-
cient implementation of data structures representing sequences of data, ranges [9]
are proposed for the upcoming C++17 standard. Ranges are iterables and provide the
same interface as containers, i.e., the begin() and end() functions. However, the
types returned by begin() (the iterator type) and end() (the sentinel type) may
be different while they are equality comparable, i.e., they implement the operators
== and !=. Allowing different types for the iterator and the sentinel type brings two
advantages: (1) data structures can be implemented more efficiently, e.g., iterating
over a null-terminated string does not require to search for the null-byte in advance in
order to find the end; (2) dynamic conditions can be implemented in the sentinel type
to terminate an STL algorithm early, which is impossible with iterators of the same
type. Compared to containers, ranges are lightweight objects without own memory
which can be copied or moved very efficiently. They can be used to provide different
views on the actual data, e.g., one can combine multiple ranges (and containers) to
one range, as we show later in Listing 8.

1 std::vector<Float4> pos1(N), pos2(N), velo(N);
2 std::generate(pos1, get_random_position);

Listing 6 Using an STL algorithm with iterables (e.g., a container or range).

Listing 6 illustrates the interface to STL algorithms with iterables: the instance
pos1 of std::vector is passed directly to the std::generate algorithm,
which expects an iterable (e.g., a container or range) as input (line 2); retrieving
the begin and the end of the range or container is now performed inside the STL
algorithm.

123



30 Int J Parallel Prog (2018) 46:23–41

Computations in N-Body Listing 7 shows our implementation of the N-Body com-
putation part (we use the same formulas as in [22]), using a C++ lambda expression
(nbody) in lines 2–10. We use the type inference for the arguments of the lambda
expression (to keep it independent of the used data types) and for the expression
itself, since a lambda expression has an anonymous type. Its first two arguments (p
and v) are the position and the velocity of the particle to update, the third (np) is the
new position after updating, and the last argument (part) is a vector of all particles’
positions. The velocity can be updated in-place (line 9); for the position of a particle,
however, dependencies between computations exist, so we use np (line 8).

1 constexpr float G = -6.673e-11f, dt = 3600.f, eps2 = 0.00125f;
2 auto nbody = [=](auto p, auto &v, auto &np, const auto &part) {
3 auto a = std::accumulate(part, Float4{},[&](auto F, auto q} {
4 Float4 r = p - q;
5 r.w = rsqrt(sq(r.x) + sq(r.y) + sq(r.z) + eps2);
6 F.w = G * q.w * cu(r.w);
7 return F + F.w * r; });
8 np = p + v * dt + a * 0.5f * sq(dt);
9 v += a * dt;

10 };

Listing 7 Defining the computations of N-Body.

Our user-defined Float4 type provides overloads for the *, + and - operators
to allow convenient multiplication with scalar floating point values and element-wise
addition and subtraction of two Float4 objects. Only the x, y and z values partic-
ipate in these operations while w is used for padding the data structure to the 128 bit
width. This ensures coalesced memory loads on Nvidia GPUs whose hardware sup-
ports coalesced loading of 32, 64 and 128 bit. Without padding, 2 loads (64 and 32
bit) would be required and the second load would prevent coalesced loading because
consecutive threads do not access consecutive memory. For the position vector, we
use the padding space to store the mass of each particle together with its position,
because the mass of each particle is needed to calculate the attracting force.

In C++, lambda expressions provide the possibility to capture variables from the
surrounding scope and use them in the body of the lambda expression. PACXX allows
to use this C++ feature, however, currently it is only safe to capture variables by value
because a value captured by reference remains in the address space of the host which
is (currently) unaccessable by the majority of many-core architectures. The constants
G and dt are captured by value which is indicated by the capture clause [=] in line 2.
The eps2 constant taken from [22] is used during the computation of the distance
between two particles: it prevents that the square root in line 5 becomes 0 when the
distance of a particle to itself is computed which would result in a division by 0. Using
the eps2 value makes it unnecessary to add an if-statement which would prevent the
division by 0 but would have a negative effect on the performance on GPU [22].

In line 3 of Listing 7, we apply the STL algorithm std::accumulate which
uses the interface for ranges explained in Listing 6. The std::accumulate algo-
rithm is designed as a higher-order function; it takes in this case a binary lambda
expression as argument (lines 3–7) which is used as operator in a sequential sum-
mation. To customize the std::accumulate algorithm, we use again a lambda

123



Int J Parallel Prog (2018) 46:23–41 31

expression. This time it is safe to capture values by reference ([&]), because the
lambda expression and all variables from the surrounding scope are in the address
space of the accelerator.

The lambda expression in lines 3–7 in Listing 7 computes the gravitational forces
from all other particles that influence the current particle. Listing 8 demonstrates how
these forces are computed for all particles in a vector. We use the std::for_each
algorithm in line 5, which accepts a unary operator as customizing function. To pre-
pare the input for the std::for_each algorithm we are using ranges (our ranges
are implemented in the range namespace): in line 3, we use the repeat range on
the pos1 vector; repeat is an infinite range whose iterators return a reference to
the vector when dereferenced. Iterators from infinite ranges never reach the sentinel
of the range, i.e., comparing an iterator with the sentinel always evaluates to false.

1 // initialize data
2 auto nbody = [=] ... // the lambda expression from Listing 7
3 auto ref = range::repeat(pos1);
4 auto data = range::zip(pos1, velo, pos2, ref);
5 std::for_each(data, [=](auto&& t){std::apply(nbody, t);});

Listing 8 The N-Body computation using std::for_each and ranges.

To meet the requirement of std::for_each that the customizing function is
unary, we merge in Listing 8 all input ranges together using the zip range which
stores references to the underlying ranges and returns an instance of std::tuple—
a fixed-size collection of heterogeneous values. In our case, we use an std::tuple
with references to the values obtained by dereferencing all iterators from the zipped
ranges. The equality operator of the zip’s sentinel type, which is called inside the
std::for_each algorithm, will stop the execution of the algorithm when the end
of one of the merged ranges is reached; this is necessary because repeat in line 3
is an infinite range. However, this is all hidden from the developer inside the STL
implementation. To make the parameters of the nbody lambda expression which
expects four arguments compatible with the type resulting from dereferencing an
iterator of our zip range, we unwrap the values stored in the std::tuple in
line 5. We provide an anonymous lambda expression as the customizing function
to std::for_each expecting an std::tuple from our zipped ranges as a sin-
gle argument. Inside the lambda expression, std::apply is called which is also
proposed for the C++17 standard [10]: it unwraps an std::tuple (here t) and
forwards the unwrapped values to nbody.
Parallel STL Algorithms Until the proposed C++17 standard, all algorithms in the
STL have been implemented sequentially. The proposed parallelism in the STL [11]
extends the interface of the STL algorithms by a so-called execution policy which
defines how the algorithm should be executed: the STL implementation is responsi-
ble for executing the algorithm in parallel, without breaking backward compatibility
with the sequential version. Three standard execution policies are proposed for
C++17: sequential execution (std::seq), parallel execution (std::par) and
parallel_vectorized execution (std::par_vec); it is also possible to specify addi-
tional (implementation-defined) execution policies.

123



32 Int J Parallel Prog (2018) 46:23–41

1 // initialize data
2 auto nbody = [=] ... // the lambda expression from Listing 7
3 auto ref = range::repeat(pos1);
4 auto data = range::zip(pos1, velo, pos2, ref);
5 std::execution_policy pacxx = pacxx_execution_policy{};
6 std::for_each(pacxx, data,[=](auto&& t){std::apply(nbody, t);});

Listing 9 Computing N-Body in parallel using an execution policy.

In Listing 9 we show the use of a parallel STL algorithm with a new execution
policy provided by PACXX, named pacxx_execution_policy (line 5). Call-
ing std::for_each with the PACXX execution policy in line 6 will execute the
algorithm in parallel on an available GPU. If no many-core accelerator is available, a
fallback (e.g., sequential) implementation is used.

The complete code for the N-Body simulation comprises the previously described
codes of Listings 6, 7 and 9.

4 Architecture and Implementation of PACXX

The PACXX framework transforms C++ code using a combination of offline and
online compilation to a representation executable on a many-core architecture. Cur-
rently, PACXX supports two target representations: PTX [21] for Nvidia GPUs, and
SPIR [13] for AMD GPUs and Intel Xeon Phi.

Figure 1 shows an overview of our PACXX implementation which comprises two
main components:

1) the PACXX Offline Compiler is based on Clang 3.8 [15]—an open-source com-
piler front-end with feature-complete C++14 support;

2) the PACXX Runtime library is statically linked into the executable; it consists of
the online just-in-time (JIT) compiler implemented using the LLVM library [15],
and specific GPU back-ends which use the CUDA and OpenCL runtime libraries.

Correspondingly, a C++ code is compiled by PACXX in two stages: (1) the offline
compilation stage (blue shaded in Fig. 1) separates the many-core code (kernel) from
the CPU code (host) and prepares an executable for the PACXX runtime, (2) the
online compilation stage (red shaded in Fig. 1) JIT compiles the code for the GPU
during program execution using our LLVM-based online compiler contained in the
PACXX runtime library.

Our offline compiler performs two steps: (1) preparing the GPU code generation
at runtime, and (2) compiling the CPU program. In the first step, the Clang front-
end builds an abstract syntax tree (AST) which is lowered to the LLVM intermediate
representation (IR), and kernel functions are enriched with metadata to identify them
as GPU code in the IR. The enriched IR is then transformed using LLVM as follows:
(a) aggressive dead code elimination removes from the IR all code not reachable
from a kernel; (b) the PACXX inliner inlines as many function calls as possible; (c)
standard optimizations (equal to Clang’s O3 optimizations) are performed on the IR;
and (d) the resulting IR is wrapped in an object file and passed to the linker. In the
second step, the offline compiler lowers the AST to LLVM IR a second time: the

123



Int J Parallel Prog (2018) 46:23–41 33

Fig. 1 Key components of the PACXX framework

calls to kernel functions are replaced with calls to the PACXX runtime library for
managing data transfers and launching the GPU code. Finally, the generated IR is
lowered for the specific host architecture, and object files are generated as usual for
C++ programs. As shown in Fig. 1, our runtime library is statically linked into the
final executable.

During program execution, our runtime library loads the integrated IR from inside
the executable. Additional optimizer passes perform architecture-specific optimiza-
tions, such as loop-unrolling and rearranging of load instructions. Finally, the IR is
lowered to executable code for the available many-core architecture using the most
appropriate LLVM compiler back-end: we use PTX [21] together with the CUDA
runtime library when targeting Nvidia GPUs, and SPIR [13] for GPUs and other
accelerators with an OpenCL implementation (e.g., from AMD and Intel).

PACXX implements an automatic lazy copying for STL containers from CPU to
GPU that is completely hidden from the developer. It is the lazy copying that allows
the developer to write an application for accelerators in the same way as for sequential
execution on a CPU. To avoid unnecessary data transfers of output containers, we use
a compiler-based approach: the lazy copying is implemented in the STL and in the
PACXX runtime library, but it is guided by the compiler. To steer the data movement,
each container carries a flag indicating which copy of the data is the most recent
one. The PACXX offline compiler classifies containers passed to a kernel in three
categories:

– input if only load instructions are performed on the parameter, then a data transfer
occurs prior to a kernel launch, the flag is not raised for the container, i.e., the
container is not modified by the kernel and the data in the CPU’s main memory
stay valid;

– output if only store instructions are performed on the parameter, then the data is
not transferred from host to the accelerator. The flag is raised which indicates that
the copy on the accelerator is the most recent one and has to be transferred back
to CPU’s main memory prior to the next access to this container;

– random access if both load and store instructions are performed, then a data trans-
fer occurs prior to a kernel launch and the flag is raised.

123



34 Int J Parallel Prog (2018) 46:23–41

For the instances of std::vector, used in our N-Body implementation as data
containers, the lazy coping ensures data consistency between the host and accel-
erator’s memory. The vector for position (pos1) is categorized as input while the
container storing the velocity (velo) is categorized as random access. The vector for
the new position (pos2) is marked as output. When executing the N-Body code, two
data transfers to the accelerator and one back to the host are performed transparently
by the PACXX runtime.

5 Support for Multi-Stage Programming

Multi-Stage Programming (MSP) [27] is an optimization technique based on runtime
code generation: parts of the source code are compiled not at the offline compila-
tion stage, but rather during the runtime of the program. This allows the values only
known at runtime to be included into the generated code. Branch conditions and stop
conditions of loops are good candidates to be optimized with MSP since performance
on accelerators, e.g., GPUs, suffers from a diverging control flow between threads.
Moreover, MSP can be used as a meta-programming technique allowing for special-
ized kernel generation, e.g., the size of input data can be included into the generated
code, which results in kernels optimized for particular input sizes.

1 auto vadd = kernel([](const auto& a, const auto& b auto& c){
2 auto i =Thread::get().global;
3 if (i >= stage([&]{return a.size()})) return;
4 c[i.x] = a[i.x] + b[i.x];
5 }, {{N/1024 + 1}, {1024}};);

Listing 10 Using MSP to optimize vector addition.

Listing 10 shows how the kernel from Listing 3 is optimized with multi-stage pro-
gramming for a particular input size. PACXX provides an easy-to-use and safe API
for MSP: the stage function is used to specify which expressions should be evalu-
ated prior to the execution of a kernel. The value of such an expression is incorporated
into the kernel’s IR by the PACXX runtime and the kernel is then optimized by the
online compiler introduced in Sect. 4. The code in the listing differs from the original
kernel only in line 3: the call to the size function is wrapped into an anonymous
lambda expression which is the input to the stage function. Since the vector size
becomes a constant value, the entire branch in line 3 is removed by the optimizer in
the online stage from the kernel code, because the online compiler knows the number
of threads executing the kernel.

The implementation of multi-stage programming in the PACXX framework is as
follows. When performing the kernel compilation pass, our offline compiler separates
the code wrapped by the stage function from the rest of the kernel code in order
to prevent inlining and, therefore, combining the staged code with the kernel code,
which would lead to the same kernel code as the first version of the vector addition
in Listing 3. The stage function is a variadic template function annotated with the
[[staged]] generalized attribute known to the PACXX offline compiler. As the
first parameter, a lambda expression is required; parameters will be forwarded to the

123



Int J Parallel Prog (2018) 46:23–41 35

lambda. After the separation of the MSP-related code, the usual steps of dead code
elimination, inlining, and optimizations are performed. Before wrapping the final IR
in the object file, the code for calling all instantiations of stage and the instanti-
ations of the stage functions themselves are generated. For each instantiation, a
corresponding new function is generated which will eventually be evaluated on the
host at runtime prior to executing the GPU code. The code for stage is removed
from the kernel program, and calls to this function are replaced by calls to a proxy
function pacxx_eval. They will be replaced at runtime with the values obtained
by evaluating the staged function on the host.

Let us now describe how the PACXX runtime evaluates the staged functions on the
host at runtime and how the computed values are embedded into the kernel program
prior to its execution on the accelerator. The offline compiler integrates the kernel’s
IR and the IR for the staged functions into the executable. For executing a kernel,
four steps are performed: (1) the kernel’s parameters are set; (2) the kernel’s launch
configuration is set; (3) the staged functions are just-in-time compiled, evaluated, and
the results are incorporated into the IR; and (4) the IR is just-in-time compiled and
launched. Our offline compiler generates the code for calling the PACXX runtime
to perform these four steps. After the staged values have been embedded into the
kernel program, our runtime performs additional optimizations on the code using the
information of the launch configuration (i.e., the numbers of threads and blocks).
This can be viewed as an implicit staging of the launch configuration. A special pass
optimizes the control flow graph by removing branches that are never entered. For
branches like line 3 in Listing 10, the pass calculates the lower and the upper bound
of the thread id: if the comparison evaluates to false for the lower and upper bound
the branch can be removed safely. We use the multi-staging API to optimize the STL
algorithms for different platforms: the optimized version is created at runtime when
the target accelerator becomes known.

6 Evaluation

In this section, we evaluate the performance of PACXX, first using popular parallel
benchmarks, and then using our N-Body simulation which makes use of C++, parallel
STL, and multi-stage programming.
Benchmarking PACXX To evaluate the performance of PACXX, we implement
seven benchmark applications and we compare their runtime with implementations
using Nvidia’s highly-tuned Thrust [3] library. Thrust provides an STL-like interface
and a set of containers and iterator types designed specifically for GPU program-
ming. We evaluate all benchmarks on an Nvidia Tesla K20c GPU with CUDA 7.5.
All benchmarks make use of either the transform or the reduce STL algorithm.

We study simple benchmarks—vector addition (vadd), saxpy, vector sum (sum)
and dot product of two vectors (dot)—to evaluate the performance of our implementa-
tion of the STL algorithms, which are currently optimized for the Nvidia architecture.
The fifth benchmark is a Monte Carlo simulation which estimates the number Pi
through pseudo-random number generation. This benchmark shows the ability of
PACXX to compile any C++ code: PACXX uses the random number generator from

123



36 Int J Parallel Prog (2018) 46:23–41

Fig. 2 Speedup of PACXX compared to Nvidia’s Thrust library

the Thrust library without modifying Thrust’s source code. The final two benchmarks
are the Mandelbrot-set computation and the computation of the Voronoi diagram [23]
which is an iterative stencil computation.

Figure 2 shows the speedup of our implementations compared to Thrust. We mea-
sured the execution time of each benchmark in 1000 runs for different input sizes and
report the median speedup.

For the vadd, saxpy andMandelbrot-set benchmarks that use the STL transform
algorithm, the slightly better performance of our implementation results from a differ-
ent thread configuration for the executed kernel. Our implementation of the transform
algorithm starts 128 concurrent threads per block while Thrust always starts the
maximum number of threads per block allowed by the GPU architecture. For these
benchmarks, starting fewer threads per block results in a better block scheduling on
the GPU and thus better performance for small input sizes while the effect becomes
weaker for larger input.

The results for the STL reduction algorithm used in the sum, dot and Monte
Carlo benchmarks show an average speedup for PACXX up to 1.82. This results
from the different implementation strategies for the reduction: while Thrust executes
two reductions on the GPU and copies the final result back to the CPU, the PACXX
implementation performs the second reduction phase on the CPU. Thus we avoid the
overhead of starting a second kernel on the GPU and we exploit the fact that transfer-
ring a single value (commonly 4–8 bytes) is as expensive as transferring 128 values
(512–1024 bytes) over the PCIExpress bus. Moreover, after transferring data from
the GPU memory back to the main memory the data is already in the CPU’s cache
hierarchy, allowing for a fast reduction on the CPU. This strategy results in an aver-
age speedup for small input sizes (215 − 218 32 bit values) of up to 3.2 while both
implementations are on par for larger input sizes.

The Voronoi diagram computation is the only benchmark dominated by Thrust.
Again the STL transform algorithm is used, however, in this benchmark the input to
the algorithm is a composition of positions in the input array. In the Thrust imple-
mentation, the neighborhood relations are defined through different offsets (positive
and negative) added to the begin iterator of the input vector which is a raw pointer for

123



Int J Parallel Prog (2018) 46:23–41 37

Fig. 3 Size in LoC of
implementations for N-Body
simulation

Thrust’s device_vector container. In our implementation, we have to wrap raw
pointers first into a range to use our proposed STL algorithms with ranges. This adds
an overhead of retrieving the values required for the computation, which results in an
average advantage of Thrust over our implementation of 7.4%.

For all benchmarks Thrust and PACXX are on par regarding code length because
both approaches provide a similar level of abstraction.
Evaluation: N-Body Simulation with MSP optimization Besides the presented
PACXX version of the N-Body simulation, we implemented an identical version
using OpenCL for the comparison purpose. We evaluate two versions of each imple-
mentation: one with runtime values incorporated through multi-staging and one
without multi-staging. In the OpenCL implementation with multi-staging the runtime
values are incorporated into the kernel code using string replacement.
Code Size In Fig. 3, we compare the lines of code (LoC) needed to implement all-
pairs N-Body simulation with our PACXX approach using the C++ STL versus using
OpenCL. We observe that using C++ and STL in PACXX significantly reduces the
development effort, which results from a higher level of abstraction: whereas OpenCL
requires manual management of the GPU, the PACXX runtime performs all neces-
sary steps and initializes the GPU transparently. Moreover, the lazy copying feature
of PACXX further reduces the length of code. As shown in our case study on N-
Body simulation, no additional MSP code is used inside the PACXX program: In this
benchmark, we used an MSP optimized version of the STL std::accumulate
algorithm shown in Listing 7, thus there is no difference in the code size for a PACXX
implementation with and without multi-staging.
Performance To demonstrate the portability and performance of PACXX, we use
three different GPUs and one Intel Xeon Phi co-processor for the evaluation of the
presented N-Body simulation: (1) an Nvidia Tesla K20c GPU (Kepler architecture)
with OpenCL 1.2 and CUDA 7.5; (2) an Nvidia GTX 480 GPU (Fermi architecture)
with OpenCL 1.1 and CUDA 6.5; (3) an AMD R9 295X2 GPU (Hawaii architecture)
with OpenCL 2.0; (4) an Intel Xeon Phi 5110p (Knights Corner architecture) with
OpenCL 2.0. Kernel runtimes are measured with the OpenCL profiling API and the
Nvidia profiler. The median of 1000 measurements is reported.

Figure 4 shows the measured speedup over the OpenCL reference implementation
without MSP. We compute 221 particles on the Nvidia K20c and 220 particles on the
other architectures.

123



38 Int J Parallel Prog (2018) 46:23–41

Fig. 4 Speedup of PACXX compared to the OpenCL implementation

We observe that, on the Nvidia K20c, MSP improves the performance in all cases
by 3% for the OpenCL code and by 5% for the PACXX code. However, our PACXX
compiler achieves additional performance through its aggressive optimizations: the
PACXX version with MSP outperforms the OpenCL reference implementation by
13%.

On the Nvidia GTX 480, the results are different. The OpenCL implementation
with MSP only achieves 0.1% higher performance compared to the version without
MSP. For the PACXX code without MSP we observe a slowdown of 6% compared
to the OpenCL reference implementation. We explain this by the fact that the Nvidia
GTX 480 is programmed with an OpenCL 1.1 implementation, which allows the
compiler to use non-IEEE 754 conform floating point optimizations, i.e., the perfor-
mance benefit is achieved due to a decreased precision. Our PACXX compiler, on the
other hand, respects the IEEE 754 standard. At the same time, PACXX can make up
for this performance loss with MSP and is on par with OpenCL.

On the AMD R9 295X2, the PACXX code is 3% faster than its OpenCL equiva-
lent. However, MSP increases performance for PACXX by only 0.3% while it brings
2.2% for OpenCL. On the AMD GPU the performance benefit of MSP is not so high
compared to the GPUs from Nvidia. In contrast to the Nvidia GPUs which have a
specialized optimizer pipeline, our online compiler uses a generic optimizer pipeline
not tailored especially for AMD GPUs.

On the Intel Xeon Phi 5110p, MSP significantly improves the performance for
OpenCL and PACXX: by 76 and 78% correspondingly. The PACXX code without
MSP is 17% faster than the OpenCL reference implementation. The performance
increase of the MSP-optimized kernels results from an automatic vectorization per-
formed by Intel’s OpenCL implementation. The auto-vectorization benefits from the
additional information about the input size, because no additional control flow (simi-
lar to the if-statement shown in Listing 3) is required to prevent out-of-bounds access.

7 Related Work

The C++ AMP standard [17] extends C++ by an explicit data-parallel construct
(parallel_for_each), and so-called array_views provide functions for

123



Int J Parallel Prog (2018) 46:23–41 39

memory transfers. The developer still needs to use a wrapper (i.e., has to write an
additional line of code) for each allocation and has to use the C++ AMP views instead
of the original C++ data types in order to handle the memory synchronization by C++
AMP. SYCL [14]—a high-level interface to the OpenCL infrastructure—integrates
the OpenCL programming model into C++ by using the lambda features of C++11.
However, SYCL still requires multiple memory allocations for so-called Buffers
in the host code and the kernel code. Our PACXX approach avoids these restrictions
of C++ AMP and SYCL by design.

Thrust [3] and Bolt [2] are parallel libraries implementing STL algorithms on
GPUs. Thrust uses CUDA while Bolt uses OpenCL. Both libraries suffer from the
limitations of the corresponding low-level programming model, especially when
specifying a user-function to customize an algorithm. In PACXX, the developer can
customize the STL algorithms with standard C++ features. Portability is another issue
of these libraries: for Thrust only a CUDA implementation exists, Bolt is only sup-
ported on AMD architectures.

First implementations of the parallel STL [11]—by Microsoft [18] and Paral-
lelSTL [16]—use multi-threading on CPUs for parallel execution. Our PACXX
implementation is portable across architectures and can be executed on GPUs of dif-
ferent vendors, on Intel Xeon Phi, and on multi-core CPUs.

High-level libraries FastFlow [1], Muesli [6], SkelCL [25] and SkePU [5] provide
higher-order functions (a.k.a. algorithmic skeletons [7]) comparable with the STL
algorithms for a broad class of applications. None of these libraries provide data
types similar to C++ ranges used in PACXX, so the skeletons in these libraries are
not as easily customized as STL algorithms, e.g., in SkelCL customizing functions
must be expressed as strings and additional data can only be used inside a customizing
function by exploiting side effects. Lazy copying strategies implemented in high-level
libraries [5,25] require additional information from the developer to decide when
data is write-only: this is achieved either using type decorators (as in SkelCL) or
by contract, i.e., output parameters must be the first parameter of a function (as in
SkePU). In contrast, the compiler-supported lazy copying in PACXX does not require
any additional information from the developer.

Multi-stage programming [27] in the Lightweight Modular Staging [24] frame-
work implemented in Scala builds the foundation of the Delite [26] project which
simplifies the development of domain-specific languages (DSL) for parallel proces-
sors. While Delite provides a framework for DSL development and execution on
GPUs only, we support a general-purpose use of multi-staging across different many-
core architectures.

8 Conclusion

We presented PACXX—a unified and portable programming model, providing the
state-of-the-art C++14 standard with all modern features as a programming language
for a diversity of many-cores. The main advantages of using exclusively C++ and the
STL for programming accelerators are as follows:

123



40 Int J Parallel Prog (2018) 46:23–41

– With the parallel extension for the STL enriched with ranges, PACXX provides a
new way to express parallelism within C++ and offers a modern interface famil-
iar to C++ developers. Cumbersome tasks of low-level accelerator programming
(e.g., partitioning of work across threads) are hidden inside the implementation
of the STL algorithms.

– With lazy copying for STL containers (e.g., std::vector) managed by the
PACXX runtime, programs become shorter and less error-prone. The necessity of
allocating memory twice is removed completely, and parallel programs for many-
cores are written just like sequential C++ programs.

– Exploiting std::async and std::future allows for a fine-grained and flex-
ible synchronization between the host and the accelerator execution.

The multi-stage programming API provided by PACXX enables program opti-
mizations beneficial on a GPU without performance penalties on other architectures
(e.g., Intel Xeon Phi). We show that PACXX programs provide competitive and in
some cases even better performance than low-level OpenCL implementations while
being significantly shorter.

Acknowledgements We would like to thank Michel Steuwer for many fruitful discussions and Nvidia
Corp. for their generous hardware donation.

References

1. Aldinucci, M., Campa, S., Danelutto, M., Kilpatrick, P., Torquati, M.: Targeting distributed systems
in fastflow. In: Euro-Par 2012: Parallel Processing Workshops, pp. 47–56, Springer (2012)

2. AMD: Bolt C++ Template Library. Version 1.2 (2014)
3. Bell, N., Hoberock, J.: Thrust: a parallel template library. GPU Computing Gems Jade Edition. pp.

359–372 (2011)
4. Bischof, H., Gorlatch, S., Leshchinskiy, R., Müller, J.: Data parallelism in C++ template programs: a

Barnes-Hut case study. Parallel Process. Lett. 15(03), 257–272 (2005)
5. Enmyren, J., Kessler, C.: SkePU: A multi-backend skeleton programming library for multi-GPU Sys-

tems. In: Proceedings of the Fourth International Workshop on High-Level Parallel Programming and
Applications, ACM, pp 5–14 (2010)

6. Ernsting, S., Kuchen, H.: Algorithmic skeletons for multi-core, multi-GPU systems and clusters. Int.
J. High Perform. Comput. Netw. 7(2), 129–138 (2012)

7. Gorlatch, S., Cole, M.: Parallel skeletons. In: Encyclopedia of Parallel Computing. pp. 1417–1422,
Springer (2011)

8. isocpp (2014a) Programming languages - C++ (committee draft)
9. isocpp (2014b) Working draft, C++ extensions for ranges [N4569]

10. isocpp (2015a) Programming languages—C++ extensions for library fundamentals [N4480]
11. isocpp (2015b) Technical specification for C++ extensions for parallelism [N4578]
12. Khronos Group: the OpenCL specification. Version 1.2 (2012)
13. Khronos Group: the SPIR specification. Version 1.2 (2014)
14. Khronos Group: SYCL specifcation. Version 1.2 (2015)
15. Lattner, C.: LLVM and Clang: next generation compiler technology. In: Proceedings of the BSD

Conference, pp 1–2 (2008)
16. Lutz, T.: ParallelSTL. https://github.com/t-lutz/ParallelSTL. Accessed 30 Apr 2016
17. Microsoft: C++ AMP: language and programming model. Version 1.0 (2012)
18. Microsoft: Parallel STL. https://parallelstl.codeplex.com/ Accessed 30 Apr 2016
19. Nvidia: CUDA programming guide. Version 7.5 (2015a)
20. Nvidia: CUDA Toolkit 7.5 (2015b)
21. Nvidia: Parallel thread execution ISA. Version 4.3 (2015c)

123

https://github.com/t-lutz/ParallelSTL
https://parallelstl.codeplex.com/


Int J Parallel Prog (2018) 46:23–41 41

22. Nyland, L., Harris, M., Prins, J.: Fast N-body simulation with CUDA. GPU Gems 3(1), 677–696
(2007)

23. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of
Voronoi Diagrams, vol. 501. Wiley, Hoboken (2009)

24. Rompf, T., Odersky, M.: Lightweight modular staging: a pragmatic approach to runtime code gener-
ation and compiled DSLs. ACM SIGPLAN Notices, vol. 46, pp 127–136, ACM (2010)

25. Steuwer, M., Kegel, P., Gorlatch, S.: SkelCL—a portable skeleton library for high-level GPU pro-
gramming. In: Workshop on High-Level Parallel Programming Models and Supportive Environments
at IPDPS 2011, IEEE, pp 1176–1182 (2011)

26. Sujeeth, A.K., Brown, K.J., Lee, H., et al.: Delite: a compiler architecture for performance-oriented
embedded domain-specific languages. ACM Trans. Embed. Comput. Syst. 13(4s), 134:1–134:25
(2014)

27. Taha, W.: A gentle introduction to multi-stage programming. In: Domain-Specific Program Genera-
tion, pp 30–50, Springer (2004)

123


	High-Level Programming for Many-Cores Using C++14 and the STL
	Abstract
	1 Motivation
	2 The PACXX Programming Model
	3 High-Level Programming Using C++ and STL
	4 Architecture and Implementation of PACXX
	5 Support for Multi-Stage Programming
	6 Evaluation
	7 Related Work
	8 Conclusion
	Acknowledgements
	References




