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Abstract In this paper we report our experience in implementing and evaluating the
Data-Driven Multithreading (DDM) model on a heterogeneous multi-core processor.
DDM is a non-blocking multithreading model that decouples the synchronization from
the computation portions of a program, allowing them to execute asynchronously in a
dataflow manner. Thread dependencies are determined by the compiler/programmer
while thread scheduling is done dynamically at runtime based on data availability.
The target processor for this implementation is the Cell processor. We call this imple-
mentation the Data-Driven Multithreading Virtual Machine for the Cell processor
(DDM-VM_,). Thread scheduling is handled in software by the Power Processing Ele-
ment core of the Cell while the Synergistic Processing Element cores execute the
program threads. DDM-VM,. virtualizes the parallel resources of the Cell, handles the
heterogeneity of the cores, manages the Cell memory hierarchy efficiently and supports
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distributed execution across a cluster of Cell nodes. DDM-VM_,. has been implemented
on a single Cell processor with six computation cores, as well as, on a four Cell proces-
sor cluster with 24 computation cores. We present an in-depth performance analysis
of DDM-VM¢, using a suite of standard computational benchmarks. The evaluation
shows that DDM-VM, scales well and tolerates scheduling overheads, memory and
communication latencies effectively. Furthermore, DDM-VM, compares favorably
with other platforms targeting the Cell processor, such as, the CellSs and Sequoia.

Keywords Multi-core systems - Data-Driven Multithreading - Dataflow scheduling -
CacheFlow

1 Introduction

Exploiting concurrency is a major issue in utilizing the ever increasing number of
cores on multi-core and many-core processors. Threaded Dataflow is proposed as a
programming paradigm for exploiting concurrency and tolerating memory and syn-
chronization latencies efficiently [5, 14,20,30]. The majority of the proposed threaded
dataflow systems execute the thread instructions sequentially in program order, while
thread synchronization is achieved using dataflow principles.

Data Driven Multithreading (DDM) [20] is a threaded dataflow model based on the
principles of dataflow execution [6,11,32]. A DDM program consists of a number of
producer-consumer threads that are scheduled based on data availability. DDM threads
are non-blocking threads, i.e., once they are issued for execution, they are executed
to completion. The DDM model combines the latency tolerance and the distributed
concurrency mechanisms of the dataflow model with the efficient execution of the
sequential model. The core of the DDM model is the Thread Scheduling Unit (TSU)
which is responsible for the scheduling of threads at run-time based on data avail-
ability. Several software [2,3,23,24,26,31] and hardware [21,22] implementations of
the DDM model have been developed that target homogeneous and heterogeneous
multi-core systems as well as distributed systems.

Recent research in heterogeneous systems has identified significant advantages of
such systems over homogeneous ones in terms of power and throughput and in address-
ing the effects of Amdahl’s law on the performance of parallel applications [18]. A
heterogeneous multi-core architecture has the potential to match each application to
the core best suited to meet its performance demands. Two representative heteroge-
neous multi-core systems are the Cell microprocessor [17] and the Parallella system
[28]. However, heterogeneous multi-cores make the task of exploiting concurrency
even harder, as different types of resources need to be individually optimized in order
to achieve maximum global performance.

In this paper we report our experience in applying data-driven scheduling on het-
erogeneous multi-core processors through the Data-Driven Multithreading Virtual
Machine for the Cell processor (DDM-VM,) [1,3]. DDM-VM_ is an implementation
of the DDM model that targets a high-performance heterogeneous multi-core sys-
tem that requires the programmer to handle many low-level details, such as memory
management and synchronization tasks. DDM-VM, implements an efficient runtime
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system that provides support for scheduling, execution instantiation, synchronization
and data movement implicitly. It handles the heterogeneity by mapping the decoupled
synchronization and computation tasks to the suitable core(s).

To program the DDM-VMc, the developer uses a set of C macros that describe (i) the
boundaries of the threads, (ii) the producer-consumer relationships amongst the threads
(iii) and the data produced and consumed by each thread. The macros expand to calls
to the runtime to manage the execution of the program according to the DDM model.
In this paper we present the results of the macro-based approach and the initial results
for one of the tools under-development: a source-to-source compiler that generates
DDM-VM, programs from Concurrent Collections (CnC) [9], a platform-independent,
high-level parallel language. In both approaches, the resulting code is compiled using
the Cell SDK compilers and linked with the DDM-VM,. runtime libraries.

DDM-VM, is evaluated using a suite of standard computational benchmarks. The
comprehensive evaluation showed that the platform scales well and tolerates syn-
chronization and scheduling overheads efficiently. Moreover, when comparing the
DDM-VM_ directly with two other alternative execution models on the Cell (CellSs
[7] and Sequoia [13]), DDM-VM_, achieves better performance for the computation-
ally intensive benchmarks.

Finally, we present the evaluation of the distributed DDM-VM, implementation,
on a cluster of four Cell processors with a total of 24 computation cores. We believe
that the work presented in this paper is a major contribution strengthening the case
that hybrid models, that combine dataflow concurrency with efficient control-flow
execution, are a viable option as the basis of a new execution model for multi-core
heterogeneous systems.

2 Background
2.1 The Cell Heterogeneous Multi-core

The Cell Broadband Engine processor (Cell/B.E) [17] is a heterogeneous multi-core
chip composed of one general-purpose RISC processor called the Power Processing
Element (PPE) and eight fully-functional SIMD co-processors called the Synergistic
Processing Elements (SPEs) communicating through a high-speed ring bus called the
Element Interconnect Bus (EIB).

The PPE has two levels of cache and is designed to run the operating system and act
as a coordinator for the other cores (SPEs) in the system. The SPE is a RISC processor
with 128-bit SIMD organization that is capable of delivering 25.6 GFLOPs in single-
precision. It has its own 256 KB software-controlled local store (LS) memory. The
SPE can only execute instructions and access data existing in its LS. The data has to be
explicitly fetched by the programmer from main memory via the asynchronous Direct
Memory Access (DMA) engine of each SPE’s Memory Flow Controller (MFC) unit.

2.2 Data-Driven Multithreading

Data-Driven Multithreading (DDM) [20] is a non-blocking multithreading model that
combines the benefits of the dataflow model [6,11,32] in exploiting concurrency,
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with the highly efficient sequential processing of the commodity microprocessors.
Moreover, DDM can improve the locality of sequential processing by implementing
deterministic data prefetching using data-driven caching policies [19]. The core of the
DDM implementation is the Thread Scheduling Unit (TSU) which is responsible for
the scheduling of threads at runtime based on data availability. Scheduling based on
data availability can effectively tolerate synchronization and communication latencies.

In DDM, a program consists of several threads of instructions that have producer-
consumer relationships. Programming constructs such as loops and functions are
mapped into DDM threads. The TSU schedules a thread for execution once all the
producers of this thread have completed their execution. This ensures that all the
data needed by this thread is available. Once the execution of a thread starts, instruc-
tions within a thread are fetched by the CPU sequentially in control-flow order, thus,
exploiting any optimization available by the CPU hardware.

Threads are identified by the tuple: <ThreadlID, Context>. The former is a static
value. The latter is a dynamic value distinguishing multiple invocations of the same
thread. Each thread is paired with its synchronization template or meta-data specifying
the following attributes:

1. Instruction Frame Pointer (IFP): points to the address of the first instruction of the
thread.

2. Ready Count (RC): a value equal to the number of producer-threads the thread
needs to wait for until starting to execute.

3. Data Frame Pointer List (DFPL): a list of pointers to the data inputs/outputs
assigned for the thread.

4. Consumer List (CL): a list of the thread’s consumers that is used to determine
which RC values to decrement after the thread completes its execution.

The synchronization templates of all the threads in the DDM program constitute
the data-driven synchronization graph which is used by the TSU to schedule threads
dynamically at runtime. The attributes of the DDM synchronization graph are typical
of any dynamic dataflow graph [6,32] with the exception of the DFPL which is needed
in our work for explicit memory management.

2.2.1 DDM Implementations

The first implementation of DDM was the Data-Driven Network of Workstations
D2NOW [20], which was a simulated cluster of distributed machines augmented with
a hardware TSU. D2NOW CacheFlow [19] optimizations showed that data-driven
scheduling could generally improve locality, contrary to the conventional wisdom at
that point. The second implementation of DDM, TFlux [31], focused on portability,
and thus a portable software platform was developed that runs natively on a variety of
commercial multi-core systems. Furthermore, TFlux provided a complete program-
ming tool-chain and developed the first full system simulation of a DDM machine.
The third implementation of DDM, the Data-Driven Multithreading Virtual
Machine (DDM-VM) [2,3], is a virtual machine that supports DDM execution on
homogeneous and heterogeneous multi-core systems. DDM-VM supports distributed
multi-core systems for both homogeneous and heterogeneous systems [26]. Further-
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more, DDM-VM allows both compile-time and run-time dependency resolution [4].
The latest software implementation of DDM, FREDDO [23,24], is a C++ framework
that supports efficient data-driven execution on conventional processors. FREDDO
incorporates new features like recursion support [25] and simpler programming
methodology to the DDM model through object-oriented programming.

In addition to the previously mentioned software implementation of DDM, DDM
was also evaluated by two hardware implementations. In the first one, the TSU was
implemented as a hardware peripheral in the Verilog language and it was evaluated
through a Verilog-based simulation [21]. The results show that the TSU module can
be implemented on an FPGA device with a moderate hardware budget. The second
one [22] was a full hardware implementation with an 8-core system. A software API
and a source-to-source compiler were provided for developing DDM applications. For
evaluation purposes, a Xilinx ML605 Evaluation Board with a Xilinx Virtex-6 FPGA
was used.

3 DDM-VM_, Architecture

The Data-Driven Virtual Machine for the Cell (DDM-VM,) is the DDM imple-
mentation targeting heterogeneous multi-cores with a host/accelerator organization
and a software-managed memory hierarchy. The Cell Broadband Engine processor
(Cell/B.E. or Cell for short) is the principal representative example of such architec-
tures and thus has been chosen as the target for this implementation.

The Thread Scheduling Unit (TSU), which is responsible for scheduling threads
at runtime, is implemented as a software module running primarily on the PPE core.
The execution of the application threads takes place on the SPE cores. This mapping
is an efficient utilization of the Cell’s resources. The code of the TSU that heavily uses
branches and control-flow structures, is more suited to run on the general purpose PPE
core, originally designed for control tasks. The threads are more suited to run on the
SIMD SPE cores which are optimized for computational loads.

The communication between the TSU and the executing threads is facilitated via
DMA calls. The Software CacheFlow (S-CacheFlow) module in the TSU manages
data transfers and prefetching automatically. Thread scheduling and S-CacheFlow
operations running on the PPE are interleaved with the execution of threads on the
SPEs, thus, shortening the critical path of the application. All these operations are
implemented by the runtime requiring no intervention from the programmer. Figure 1
illustrates an overview of the architecture of the DDM-VM.,.

3.1 The TSU Memory Structures
As the TSU runs on the PPE, the structures holding the thread meta-data and the state

of the TSU are allocated in main memory. Part of the structures are common for all
the SPEs and the rest are allocated per SPE.
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Fig. 1 The architecture of the DDM-VM,

3.1.1 Common TSU Structures

Graph Memory (GM) holds the synchronization template of each thread. This
includes: the Thread Identifier (ThreadID), the Instruction Frame Pointer (IFP), the
Consumers List, the Data Frame Pointers (DFPs), the Ready Count (RC) value and
the thread attributes. The thread attributes include:

— The scheduling policy and value of the thread.

ferent implementations are available: direct, associative and hybrid.
— A mask value that is used when the direct implementation is selected.

menting loops.

The Synchronization Memory (SM) implementation that will be used. Three dif-

The arity of the thread which specifies the loop nesting level for threads imple-

Synchronization Memory (SM) holds the RC values for each invocation of a DDM
thread. The SM entries are uniquely indexed using the Context of the invocations.
The RC value in the GM entry is used to initialize the RC entries in the SM. As the
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performance of the SM is critical to the overall system performance, we have utilized
three different implementations of the SM.

Acknowledgement Queue (AQ) holds requests to decrement the RC of one or more
invocations of consumer threads. The requests are enqueued when a producer thread
finishes its execution. A request includes the consumer identifier, the Context value, an
additional Context value when updating multiple invocations, and the updated value
by which the consumers’ RC is decremented (set to 1 by default).

3.1.2 Per-SPE TSU Structures

Command Queue (CQ) holds the DDM commands sent by the executing threads.
These commands inform the TSU that a thread has finished its execution and indi-
cate the consumer thread(s) invocation(s) to decrement their RC. The entries hold
information similar to the ones in the AQ entries.

Waiting Queue (WQ) holds the information of threads for which the RC reached zero
and are waiting for prefetching to start. This includes the ThreadID and Context value.

Priority Waiting Queue (PWQ) this queue is identical to the WQ, however, its entries
have a higher-priority. It holds the information of threads that were dequeued from the
WQ but their prefetching was not started due to unavailable space in the LS.

Pending Buffer (PB) holds information of threads whose prefetching is started (by
issuing DMA transfers) and are waiting for its completion. Each entry records the
information of the thread along with a unique 5-bit tag used for checking the completion
of the DMA transfers. In the distributed configuration of S-CacheFlow this buffer is
moved to the LS.

Firing Queue (FQ) holds the information of threads whose data has been prefetched
into the LS and are ready to be executed. This includes the ThreadID, the IFP and the
Context. In the distributed configuration of S-CacheFlow this queue is moved to the
LS.

The LS memory of the SPEs holds (i) the code of the DDM threads linked with the
runtime library and (ii) the S-CacheFlow structures including the part of the LS which
holds the data of the DDM threads, which we refer to as the DDM Cache.

3.2 DDM Thread Execution

The DDM thread execution takes place on the SPEs and consists of two types of
operations: computation and synchronization. The synchronization operations are per-
formed by the runtime using simple DDM commands, which are sent via a DMA call
to the corresponding TSU Command Queue (CQ) in main memory. When a thread
finishes its execution, the runtime fetches the information of the next thread to execute
from the corresponding FQ, via a DMA call as well.
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3.3 TSU Operations

The TSU running on the PPE core processes the commands in the CQ of every SPE.
The commands either update the TSU structures or inform the TSU that the current
executing thread on that SPE has finished. In the latter case, the information of the
completed thread is inserted into the AQ and is used to update the RC of the consumers
of the thread that has completed its execution. If any of the updated consumer threads’
RC reaches zero, this thread is scheduled for execution on the SPE core, selected by
the scheduling policy. This is done by inserting the ready thread information into the
WQ of that SPE. The thread is then processed by the S-CacheFlow module which
transfers the data needed by this thread to the LS of the SPE. A thread is deemed ready
to execute and its information is moved into the FQ after its data is loaded in the LS.

3.3.1 Scheduling Policy

The DDM-VM, implements a number of scheduling policies that control the mapping
of ready threads to the SPE cores. The default policy distributes the threads invoca-
tions among the SPEs in a way that maximizes load-balancing. The other implemented
policies include the static, round-robin, and modular policies. The static policy dis-
tributes the invocations of a specific thread to a specific SPE. The round-robin policy
distributes the invocations of threads across the SPEs in a round-robin fashion. The
modular policy uses the Context of the thread invocation modulo the number of SPE
cores to select the target SPE.

The scheduling policies are assigned per-thread allowing for maximum flexibility.
The DDM-VM, also supports a custom policy which gives the programmer or the
compilation tools the flexibility to implement a scheduling policy based on data locality
or the dependency graph of the program or any other criteria.

4 Software CacheFlow (S-CacheFlow)

CacheFlow [19] is a cache management policy utilized with DDM to improve the
performance by ensuring that the data a thread requires is in the cache before the thread
is fired for execution. The original implementation of CacheFlow targeted machines
with hardware caches where prefetching was employed to improve the performance
of DDM execution by reducing cache misses.

However, in this work CacheFlow is applied in a new context, that is, to manage
the memory hierarchy in multi-core architectures with software-managed memories,
like the Cell processor. This is challenging because the LS is a constrained memory
resource which requires efficient utilization. To handle this challenge DDM-VM,
introduces the Software CacheFlow (S-CacheFlow): a fully automated prefetching
software cache with variable cache block sizes extended with locality optimizations.

4.1 S-CacheFlow Structures

To implement S-CacheFlow on the Cell, a portion of the LS memory of each SPE,
usually (96-128)KB, is pre-allocated for the DDM Cache and divided into cache

@ Springer



206 Int J Parallel Prog (2018) 46:198-224

blocks. The size of the blocks can vary to match each application characteristics but
must be in multiples of 128 B.

The TSU has a Cache Directory (CD) structure for each SPE to keep track of the
cache blocks state. Each input/output data of a thread is allocated at least one cache
block and data instances larger than one cache block are allocated in consecutive
blocks. The Remote Cache Lookup Directory (RCLD) allocated per-SPE, keeps track
of the LS addresses where the data was allocated.

4.2 S-CacheFlow Operation

At runtime, S-CacheFlow dequeues the information of ready threads from the WQ and
tries to allocate the data in the DDM Cache at the SPE where the thread is scheduled
to run. If the allocation is successful, S-CacheFlow issues DMA calls to transfer the
data from main memory to the LS by placing requests in the Proxy Command Queue
of the MFC of the target SPE. Threads whose DMA calls are completed are moved
into the FQ indicating that they are ready for execution.

To preserve coherency, S-CacheFlow writes back modified cache blocks to main
memory when a thread terminates. Figure 2 illustrates the algorithm for S-CacheFlow
on the Cell.

4.3 CacheFlow Lookup

Resolving the LS address of the data for each thread (required because data belonging
to different threads can be present in the LS due to prefetching) is performed using the
RCLD. The entries of the RCLD are filled by the S-CacheFlow module in the TSU
and copied to the LS of the SPE via a DMA call. The runtime on the SPEs consults the
RCLD, before starting the execution of every thread, to assign the pointers that will
be used to access the data. The runtime consults the RCLD again, before the thread
finishes execution to write-back modified data to main memory.

4.4 Adaptive Multi-buffering/Prefetching

The ability to issue non-blocking DMA calls on the Cell and check their completion
asynchronously allows S-CacheFlow to issue multiple DMAs for the data of one or
more threads in the WQ without waiting for the transfers to complete. This allows the
prefetching of the data of the threads, whenever possible, and hides the latency of the
data transfers with the computation. Therefore, it effectively achieves an automatic
and transparent multi-buffering that adapts to the number of ready threads and the LS
space limitation.

4.5 Exploiting Data Locality

S-CacheFlow exploits data re-use, whenever more than one thread is scheduled to
execute on the same SPE and accesses the same data, by keeping the blocks of
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that data in the LS. If such data is modified, the dirty bit of its blocks is set and a
reference-count mechanism can be employed to decide when to write the data back
to preserve coherency and avoid expensive invalidation/update operations across the
SPEs. Scheduling threads that re-use data on the same SPE can be identified by the pro-
grammer or inferred from the dependency graph of the program. Performance results
and more implementation details on this optimization can be found in [1].

4.6 Distributed S-CacheFlow

The evaluation of the initial implementation of S-CacheFlow scaled well for up to 4
SPE cores, but for a higher number of cores the PPE became a bottleneck. Our analysis
revealed that a major source of overhead was the issuing of a large number of DMAs
and periodically checking their completion, which overloads the PPE core that runs
the TSU. To solve this problem we have modified the S-CacheFlow implementation
and moved the DM A management to the portion of the runtime that runs on the SPEs.
We refer to this implementation as the Distributed S-CacheFlow.

5 DDM-VM, Programming Tool-chain

The DDM-VM_, utilizes the distributed synchronization mechanisms of Dynamic
Dataflow as described by the U-Interpreter [6]. The program is composed of a number
of re-entrant, inter-dependent DDM threads along with their DDM Synchroniza-
tion/Dependency Graph.

The success of any alternative execution model depends on the ease of programming
and the efficiency of the programming approach. To this end, our group is developing
a number of tools to eventually provide four alternative approaches for programming
the DDM-VM.:

1. Macro-based provides a low-level interface for programming the virtual machine.
This approach has been fully implemented.

2. TFlux preprocessor utilizes the TFlux directives and the preprocessor tool orig-
inally developed in [31]. A subset of the directives is extended to generate the
DDM-VM, macros.

3. GCC-based auto-parallelizing compiler utilizes the GCC compiler to automati-
cally generate code targeting the DDM-VM. This project is a collaboration effort
that is still under development with encouraging preliminary results.

4. CnC-to-DDM compiler utilizes the CnC [8,9] declarative parallel programming
language to generate the DDM-VM, macros with the help of a compilation tool.
An early prototype implementation is available with initial results.

The resulting code of the DDM-VM, program, which is generated by any of the

approaches is compiled using the Cell SDK compilers and linked with the DDM-VM,
runtime. Figure 3 shows an overview of the DDM-VM, tool-chain.
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5.1 DDM-VM, Macros

This method is the most basic one where the programmer uses a set of macros to write
the DDM-VM, program in C. The macros identify the boundaries of the threads,
the data produced/consumed by the threads and the producer-consumer relationships
amongst the threads. The macros are expanded into calls to the runtime to manage the
execution of the program according to the DDM model. Programming DDM-VM,
with the macros is analyzed in detail in [1-3].

5.2 Concurrent Collections Source-to-Source Compiler

Concurrent Collections [8,9] is a declarative parallel programming language, with
similar semantics to DDM, which allows programmers who lack experience in par-
allelism to express their parallel programs as a collection of high-level computations
called steps that communicate via single assignment data structures called items. Steps
and items are uniquely identified by tags.

The major CnC constructs match the DDM constructs: the CnC steps correspond to
the DDM threads, as both represent the unit of execution and apply single-assignment
across steps/threads while allowing side-effects locally within a step/thread. The con-
trol and data dependence relationships amongst the steps, manifested in the items and
tags that are produced and consumed, correspond to the producer-consumer relation-
ships (the meta-data) of the DDM threads.
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(a) //Item definitions

[int* A <PAIR>]; //Item A, points to a block in Memory
[int* B <PAIR>]; //Item B, points to a block in Memory
[int* C <TRIPLE>];//Item C, points to a block in Memory

// Tag definitions
<PAIR ITag>;
<TRIPLE MTag>;

//Prescriptions (control relationships) <TAG>:: (STEP)
<ITag> :: (Iterator);
<MTag> :: (Multiply)

// Step produce/consume relationships
(Iterator)-><MTag>; // Iterator produces MTag

[A], [B]l, [C] -> (Multiply);//Multiply consumes A,B,C
(Multiply)->[C] ,<MTag>; // Multiply produces C

env -> <ITag>,[A],[B],[C];//initialization produces A,B,C
[C]-> env ; //post-execution code consumes C

7

(b) (o)
Blocked MatMult (Blocked MatMult |
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Fig. 4 The Blocked Matrix Multiplication application. a Textual representation of the CnC program. b
Graphical representation of the CnC program. ¢ Equivalent DDM dependency graph

This correspondence facilitates translating CnC programs into DDM-VM, pro-
grams. Thus, allowing programmers to write their applications in CnC and efficiently
handling the details of the parallel execution and memory management on the Cell.
Consequently, it unlocks the potential of the Cell for a broader range of programmers.

To this end, a CnC source-to-source compiler is being developed, which parses the
CnC program and generates the corresponding DDM threads code and augments it
with calls to the DDM-VM, runtime. Figure4a, b illustrate the textual and graphical
representations of a CnC program implementing the Blocked Matrix Multiplication.
The program consists of two steps accessing three items, in addition to two fags.
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Figure4c depicts the dependency graph of an equivalent DDM program where each
step was mapped into a DDM thread. The figure also depicts the dependencies between
the threads. The details of the mapping between CnC and DDM constructs are beyond
the scope of this paper.

6 Evaluation

In this section we present the evaluation of the DDM-VM_. The first part of this section
evaluates the effect of the Resource Management, the Synchronization Memory Orga-
nization and the Locality Exploitation on the performance. The second part presents a
comprehensive performance evaluation which also includes a comparison with other
systems targeting the Cell processor, the CellSs [7] and Sequoia [13]. In the third part
we present the evaluation of the distributed DDM-VM, execution.

The DDM-VM_, runs on a Sony Playstation 3 (PS3) machine with Linux 2.6.23-
rl SMP OS and the IBM Cell SDK version 2.1. The Cell processor powering the
PS3 has 6 SPEs available for the programmer out of the original 8. The cores run at
3200 MHz and have access to 256 MB of RAM. For the evaluation of the distributed
execution we used a cluster of four PS3 machines. The machines were connected using
an off-the-shelf Gigabit Ethernet switch with a latency of approximately 250 us.

The benchmark suite used in the evaluation consists of nine applications featuring
kernels widely used in scientific and image processing applications. The characteristics
of the benchmarks are presented in Table 1. For the benchmarks working on matrices,
the matrices are dense single-precision floating-point, apart from the IDCT benchmark,
which works on short integers.

All of the benchmarks were coded in C using the DDM-VM macros and compiled
by the compilers available from the IBM Cell SDK V2.1. All reported speedup results
are relative to the DDM execution time on a single SPE core.

6.1 TSU Evaluation

In this section we evaluate the effect on performance of the design choices related
to the TSU implementation. These design choices include the resource management,
the synchronization memory structures, and the locality and data re-use exploitation.
We use the MatMult and Cholesky benchmarks as case studies. The first application
is a representative of applications with a simple dependency graph and the second is
a representative of applications with a complex dependency graph. Moreover, both
applications are computationally intensive and performance-sensitive. The results of
this evaluation are used as guidelines in the design choices for the implementation of
the TSU.

6.1.1 Resource Management
To assess the DDM-VM,. resource management control mechanisms we have executed

two sets of experiments for both benchmarks. In the first, we have varied the size of the
Firing Queue (FQ) and in the second, we have utilized Loop Throttling and varied the
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Table 1 The benchmarks suite characteristics

Benchmark Description Thread' Problem Size
Granularity
MatMult Block Matrix Multiplication 64x64 Blocks Small 512 x 512
Cholesky | Block Cholesky Factorization (Vectorized) | 64x64 Blocks | Medium: 1024 x 1024
Cholesky-S | Block Cholesky Factorization (Scalar) 64x64 Blocks | Large: 2048 x 2048
LU Block LU Decomposition 64x64 Blocks Alarge: 3072 x 3072
304 Y-Cells |Small: 304 x 304
FDTD 2D Finite Difference Time Domain 608 Y-Cells |Medium: 608 x 608
1216 Y-Cells |Large: 1216 x 1216
Small: 512
RK4 4"_order Runge-Cutta (ODE Solver) Variable |Medium: 2K
Large: 3K

32x32 Blocks | Small: 512 x 512

Medium: 1024 x 1024
Conv 2D 9 x 9 Convolution Filter 64x64 Blocks | Large: 2048 x 2048
Xlarge: 3072 x 3072
96x96 Blocks | XXLarge: 4096 x 4096

32x16 Blocks | Small: 512 x 512

Medium: 1024 x 1024
IDCT Inverse Discrete Cosine Transform 64x32 Blocks | Large: 2048 x 2048
Xlarge: 3072 x 3072
64x64 Blocks | XXLarge: 4096 x 4096

Small: 168K steps
Medium: 337K steps
Trapez Trapezoidal Rule for Integration Variable Large: 675K steps
Xlarge:  5400K steps
XXLarge: 10800K steps

limit on the number of concurrent invocations of the throttled threads. To neutralize
the effect of the FQ on the second set we have chosen a relatively large size for the
FQ (FQ = 6). Figure 5 depicts the results.

In the first set of experiments, the results show that for both applications, as the size
of the FQ increases the concurrency increases and the performance improves reaching
its best when the size is 3. The reason for this particular size is that the space allocated
for the DDM Cache on the LS of each SPE can fit, at maximum, the data of 3 concurrent
invocations of the most computationally intensive threads of the two applications.
When the size increases beyond 3 the surplus concurrency causes the performance to
degrade. In the second set of experiments utilizing loop throttling, a similar effect to
the one in the first set is observed. The effect of throttling on Cholesky is smaller in
comparison to MatMult as only one out of the five threads in Cholesky was throttled.

TSU resource control mechanisms (e.g. setting the size of the FQ) have a global
effect that applies to all the threads in the program, while loop throttling can be used
to control individual threads for fine tuning the performance.

6.1.2 Synchronization Memory (SM) Organization
To study the effect of the Synchronization Memory implementations on the perfor-

mance, we executed the two applications (Problem Size = 2048 x 2048) under three
different implementations [1,2]:
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Fig. 5 Resource management control—effect of Firing Queue (FQ) size and Loop Throttling on perfor-
mance. a Effect of varying the size of FQ, b effect of varying the loop bound (FQ = 6)

— Direct Each invocation of a DDM thread is allocated a unique SM entry. The
allocation occurs at the time of creating the thread template. Accessing the entry
at runtime is a direct operation that uses part of the Context to index the SM.

— Associative A standard hashtable is used to allocate the SM entries. The allocation
is performed as the execution proceeds. Accessing the entry is an associative
operation.

— Hybrid A pre-allocated buffer is used for holding the SM entries. Allocation and
deallocation within the buffer are performed as execution proceeds. Accessing the
entry is performed using an associative operation that uses part of the Context
to locate a list of entries in the buffer, followed by a direct operation using the
remaining part of the Context to index the exact entry.

The results are illustrated in Fig. 6. As expected, the direct implementation achieves
the best performance for both applications as it incurs the minimum overhead for
updating the SM entries. The associative implementation performs second best on
average. The overhead of the associative updates in this implementation increases
when the number of cores is high, as the TSU is working more in that case.
The hybrid implementation performs very close to the direct and better than the
associative for MatMult, but performs less than the two other implementations for
Cholesky.

In MatMult the execution of the threads proceeds consecutively generating regu-
lar patterns of updates to the SM, which is captured well by the re-use mechanism
of hybrid. The Cholesky application has a much more irregular pattern of execu-
tion which generates non-consecutive updates that cannot be captured well. This
results in more allocations and more associative searches that degrade the per-
formance. One possible improvement to the hybrid implementation is to utilize
information on the expected pattern of the threads’ execution to guide the re-use
of entries.
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Fig. 7 Effect of locality on performance

6.1.3 Locality and Data Re-Use Exploitation

To study the effect of exploiting locality we executed the two applications with and
without locality (Fig.7). The improvement in performance when exploiting locality
was achieved by simply identifying the threads that can benefit from locality by using
special flags (DATA_KEEP and DATA_REUSE) in their macros.

Itis worthwhile to note that the main source of improvement is the reduced demand
of the LS space. Enabling locality for the MatMult, allows the data of three invocations
of the thread performing the multiplication to fit concurrently in the DDM cache,
since one of the input blocks is re-used by all the three invocations. When locality is
not enabled, the data of two invocations only can fit. Fitting the data of more threads
increases the probability to prefetch data and overlap latencies with computation which
improves the performance. The Cholesky application benefits similarly, but to a lesser
degree, as only one of the computational threads of the application can benefit from
re-use.
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To confirm our analysis we have executed both applications with locality enabled
after reducing the size of the DDM Cache from 128 KB to 96 KB. This has a similar
effect on the number of threads that can fit in Data Cache concurrently. The results
show that the performance degrades in a fashion corresponding to the case when no
locality is enabled.

The results also demonstrate the deep implications the size of the LS memory has
on the execution behavior and consequently the importance of taking into account the
size of the working set when choosing the granularity of the threads.

6.2 Performance Evaluation

In this section we present a comprehensive performance evaluation using all the bench-
marks. For all the benchmarks we have used the direct SM technique and enabled
locality. Also, we have used the combination of FQ size and throttling limit value that
produced the best performance.

We compare the two implementations of S-CacheFlow and study the effect of
thread granularity and input size on performance. Furthermore, we compare the per-
formance of DDM-VM,. with two other systems. Finally, we present the evaluation of
the distributed DDM-VM, execution.

6.2.1 Thread Granularity and S-CacheFlow Implementations

To assess the effect of thread granularity and the two S-CacheFlow implementations
on performance we executed the benchmarks under both implementations. Note that
different benchmarks have different thread granularities and for some of the bench-
marks we have executed the same benchmark with varying thread granularities. Table 1
reports this information for every benchmark. The speedup results are depicted in Fig. 8
where the baseline for the speedup is the best execution out of the two implementations
on one SPE.

Thread Granularities The results show that the performance improves as the granu-
larity increases. This is expected, as higher granularities amortize better the scheduling
overheads of the TSU and S-CacheFlow operations, and allow DDM-VM_ to hide the
latency of data transfers through prefetching/multi-buffering.

Applications with small granularity do not scale well when the number of SPEs
increases to four and higher. This is because the TSU is doing more work and the
computation is not sufficient to totally overlap the TSU work. However, when the
thread granularity is increased (for example using a larger block size) the applications
scale almost linearly.

S-CacheFlow Versus Distributed S-CacheFlow Comparing the results of the two S-
CacheFlow implementations, the distributed S-CacheFlow, in general, performs as
well as, or better than the basic S-CacheFlow on all of the benchmarks. The advantage
of the distributed implementation is clear when the number of cores increases to 4
and higher. It is worthy to note that both implementations perform equally well for
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Fig. 8 Effect of thread granularity and S-CacheFlow versus Distributed S-CacheFlow

benchmarks that are not data-intensive (Trapez) or for the ones that have a large enough
granularity (e.g. LU) that allows the TSU to overlap the work of scheduling and data
management at higher number of cores.

Figure9 depicts the average activities of the SPEs for the execution of MatMult
under the two S-CacheFlow implementations. For clarity, we show only the upper 40%
of the graph since all the SPEs had average utilization higher than 60%. The results
show that up to four SPEs, the SPEs spend more than 90% on computational work.
At six SPEs, the utilization drops to 64% for the basic S-CacheFlow because the PPE
becomes a bottleneck due to the demand of the S-CacheFlow. The distributed imple-
mentation does not suffer from this and the time spent executing the computational
load is kept around 90%. As such, the distributed S-CacheFlow has been adopted as
the default CacheFlow implementation for the DDM-VM_,.

6.2.2 CnC Source-to-Source Compiler Preliminary Results
In this section we compare the performance of two versions of the Matrix Multipli-

cation, one coded using the DDM macros versus one generated using the preliminary
version of the CnC compiler. The results are depicted in Fig. 10.
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Fig. 10 Performance comparison between the macro-coded and the CnC compiler-generated versions of
the matrix multiplication program

The evaluation shows that the compiler-generated version is performing almost the
same as the macro-coded one achieving an impressive 86.5 GFLOPS for four SPEs.
When the number of SPEs is six the performance of the compiler-generated version
drops. We attribute this to an inefficient implementation of the hashmap structure we
use to represent CnC data items in the generated program.

6.2.3 Problem Size

Figure 11 depicts the results of executing eight of the benchmarks for the three problem
sizes. The results show that the system generally scales well across the range of
the benchmarks achieving almost linear speedup for the large problem sizes. The
reason for this is that the large problem sizes result in longer execution time, which
amortizes initialization and parallelization overheads. We expect DDM-VM_, to scale
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well in real life (scientific) applications since our benchmarks are representative of
such applications and the typical real-world sizes employed for such applications are
bigger than our Large problem size.

6.2.4 Overall Performance and Comparisons

In this section, we report the GFLOPs performance results of three computationally
intensive applications: MatMult, Cholesky and Conv2D. We also compared our plat-
form with two other platforms that target the Cell processor: the CellSs [7,29] (a StarSs
implementation) and the Sequoia [13].

The results for CellSs were obtained by executing the MatMult and Cholesky
applications found in the CellSs platform (V2.2). The two applications use the same
computational kernels we have used for our applications. For these results we have
used the following combination of parameters which produced the best performance.
For the MatMult application: FQ = 3, Throttling Limit = 8, Locality Enabled, Cache
Size = 128 KB and direct SM implementation. For the Cholesky and Conv2D appli-
cations: FQ = 3, Throttling Limit = 3, Locality Enabled, Cache Size = 128 KB and
direct SM implementation.

Figure 12 depicts the GFLOPs performance results for the MatMult and Cholesky
applications and compares the performance with CellSs. The results show that for the
MatMult application DDM-VM, performs very well achieving an average of 88%
of the theoretical peak performance for the 2048 size and an average of 86 and 76%
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Fig. 13 Comparison of DDM-VM, and Sequoia Performance for the MatMult and Conv2D applications

for the 1024 and 512 sizes respectively. The results for Cholesky are not as good as
MatMult for the smaller sizes due to the complex nature of the application. However,
when the size becomes 2048 the application scales very well achieving a speedup of
5 on 6 SPEs.

The comparison results in Fig. 12 demonstrate that DDM-VM,. outperforms CellSs
for the entire range for both applications. DDM-VM, achieves an average improve-
ment of 80% for the 512 size, 28% for 1024 and 19% for the 2048 size for MatMult.
An improvement of 213% for 512, 99% for 1024 and 23% for 2048 is achieved for
Cholesky. We attribute this to the fact that CellSs builds the dependency graph dynam-
ically at runtime. Contrary, our model creates the dependency graph statically which
introduces less overheads. Moreover, CellSs makes only part of the graph available
to the scheduler and consequently a fraction of the concurrency opportunities in the
applications is visible at any time.

Figure 13 depicts the comparison of the performance of DDM-VM, and Sequoia
for the MatMult and Conv2D applications. The results for Sequoia were obtained
by executing the MatMult and Conv2D applications found in the Sequoia platform
(V0.9.5). To preserve fairness we have used the same computational kernels used in
the Sequoia applications for our applications as well. The results show that DDM-
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VM, achieves an average of 25 and 12% performance improvement for Conv2D and
MatMult respectively.

To conclude, we find that these results are an indication of the efficiency of the
DDM-VM, and its ability to perform favorably with other platforms on the Cell.

6.3 Distributed DDM-VM, Execution

For the evaluation of distributed DDM-VM,. execution we used a cluster of four PS3
nodes. The benchmarks we executed contain applications that don’t communicate
during the execution (Conv2D, IDCT and MatMult), ones that communicate few values
(Trapez) and ones with heavy inter-node communication (LU and Cholesky). For all
the benchmarks working on matrices we have used blocks of 64 x 64 except for the
Conv2D benchmark in which we used 96 x 96 blocks. For the Cholesky benchmark we
used scalar computational kernels instead of the vectorized ones as the latter proved
too fine-grained for the application to scale. We denote the version using the scalar
kernels as Cholesky-S. In our experiments we have utilized 1, 2, 4 and 6 SPEs per node,
which resulted in 4, 8, 16 and 24 total SPEs in the system, respectively. Moreover, we
have used two input sizes per benchmark. Figure 14 illustrates the speedup results.

The results show that for the largest input size the system achieves an average of
80% of the maximum possible speedup for all the benchmarks, which is a very good
result. Analyzing the results further, it is clear that as the input size increases the system
scales better: the average speedup (on all the benchmarks) utilizing all the SPEs is
13.4 out of 24 for the smaller input size and 16.54 out of 24 for the larger input size.
This is expected as larger problem sizes allow for amortizing the overheads of the
parallelization.

The limited main memory available on the PS3 nodes (256MB) precluded us from
using larger input sizes. However, this limitation does not exist on other commercial
products powered by the Cell processor, thus, allowing the DDM-VM_. to scale further
on such systems.
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Note that, compared to single-node execution, larger input sizes (on all the bench-
marks) and larger granularities (on Conv2D and Trapez) are needed for the system to
scale due to the additional latencies introduced by the network data and synchroniza-
tion messages transfer.

Figure 15 reports the GFLOPs performance results for the two computationally
intensive benchmarks MatMult and Conv2D. The results illustrate that when all the
SPEs are utilized on the four nodes, the system delivers an impressive 0.44 TFLOPs
for the MatMult benchmark and 178 GFLOPs for the Conv2D benchmark. As such,
these results demonstrate the efficiency of the distributed execution on the DDM-VM_,.

7 Related Work

Sequoia [13] is a programming language that facilitates the development of memory
hierarchy aware parallel programs. It provides a source-to-source compiler and a run-
time system for Cell. Unlike DDM-VM,, Sequoia requires the use of special language
constructs and types and focuses on portability.

CellSs [7,29] is a parallel programming platform available for the Cell. It schedules
annotated tasks at runtime based on data-dependencies. In contrast with our model,
that creates the dependency graph statically, CellSs builds it at runtime, which can
incur extra overheads.

The IBM Research Compiler targeting the Cell architecture [12] ports the OpenMP
standard to the Cell processor. It manages the execution and synchronization of
the parallelized code and handles data transfers via a compiler-controlled software
cache. Similarly, it requires the programmer to identify sections of code that can be
parallelized using directives. However, we believe that DDM-VM, is more general
and targets problems with a coarser-granularity. Furthermore, our platform relies on
dataflow techniques and dataflow caching policies to schedule threads and manage
their data. Finally, because DDM-VM_, relies on the available Cell platform compil-
ers, it can benefit from the latest optimizations and vectorization techniques provided
by these compilers to optimize the code of the DDM threads running on the SPEs.
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RapidMind [16] is a programming model that provides a set of APIs, macros and
specialized data types to write streaming-like programs, which targets general multi-
cores and advanced GPUs. RapidMind is also extended to target the Cell. Cell-Space
[27]is a framework for developing streaming applications on the Cell using a high-level
coordination language out of components in a component library. It provides a runtime
that handles scheduling, data transfers and load-balancing. We place DDM-VM_, as a
more general approach, as it doesn’t require the use of any streaming abstraction and
can be used for a wider range of applications.

Eichenberger et al. [12] and Gonzalez et al. [15] proposed software-controlled
caches to manage and optimize the tasks of data transfers on the Cell processor. Chen
et al. [10] integrated direct buffering and software cache techniques to manage data
transfers using both techniques in the same program. Unlike all of the aforementioned
software caches, which perform cache directory operations on the SPE, S-CacheFlow
operations are performed on the PPE and overlapped with the execution of code on the
SPEs to hide the overheads of these operations. Moreover, it enables data re-use and
maintains coherency without incurring expensive update/invalidate operations. Most
notably, S-CacheFlow is utilized at the scheduling and data management levels and
contains elements specific to DDM.

8 Conclusions

In this paper we presented DDM-VM_, a virtual machine that implements Data-Driven
Multithreading on the Cell processor. It utilizes dataflow concurrency for scheduling
threads and it manages data transfers automatically. Scheduling, data management and
transfer operations are interleaved with the execution of threads to tolerate latencies.
To develop applications, the programmer uses a set of C macros that expand into calls
to the runtime of the virtual machine. The evaluation demonstrates that DDM-VM,.
scales well and tolerates synchronization overheads achieving very good performance.
DDM-VM, was compared with two platforms that have implementations for the Cell
processor, the CellSs and Sequoia. The comparison shows that DDM-VM, outper-
forms both platforms.

DDM-VM_ utilizes the concept of CacheFlow for developing an automated and effi-
cient memory management for the Cell. A distributed implementation of S-CacheFlow
that supports locality has been developed through extensive analysis and experimenta-
tion. DDM-VM_ is the first DDM implementation that can be directly compared with
other systems on the Cell. When comparing with two other platforms that target the
Cell, DDM-VM_, achieved better performance. This strengthens the case that hybrid
models that combine dataflow concurrency with efficient control-flow execution are
candidates for adoption as the basis of a new execution model for multi-core systems.
The work on DDM has also been extended by porting DDM-VM.. to a cluster of four
Cell processors, with a total of 24 computation cores.
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