
Int J Parallel Prog (2018) 46:173–197
https://doi.org/10.1007/s10766-016-0484-8

Scheduling Parallel Computations by Work Stealing:
A Survey

Jixiang Yang1 · Qingbi He2

Received: 2 September 2016 / Accepted: 29 December 2016 / Published online: 6 January 2017
© Springer Science+Business Media New York 2017

Abstract Work stealing has been proven to be an efficient technique for scheduling
parallel computations, andhas beengainingpopularity as themultiprocessor/multicore-
processor load balancing technology of choice in both industry and academia. A
review on the work stealing scheduling is provided from the perspective of scheduling
algorithms, optimization of algorithm implementation and processor architecture ori-
ented optimization. The future research trends and recommendations driven by theory,
emerging applications and motifs, architecture and heterogeneous platforms are also
provided.

Keywords Work stealing · Load balancing · Task parallelism · Task scheduling ·
Optimization · Multicore/manycore

1 Introduction

For many decades, Moore’s law has bestowed a wealth of transistors that hard-
ware designers and compiler writers have converted to usable performance, without
changing the sequential programming interface. The main techniques for these per-
formance benefits—increased clock frequency and smarter but increasingly complex
architectures—are now hitting the so-called power wall. The computer industry has
accepted that future performance increases must largely come from increasing the
number of processors (or cores) on a die, rather than making a single core go faster.

B Jixiang Yang
jixiang_yang@126.com

1 School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, China

2 School of Information Science and Engineering, Chongqing Jiaotong University,
Chongqing 400074, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-016-0484-8&domain=pdf

174 Int J Parallel Prog (2018) 46:173–197

This historic shift to multicore processors changes the programming interface by
exposing parallelism to the programmer, after decades of sequential computing.

The emergence of multicore chips makes computer programming model facing
huge pressure due to the shift from traditional serial programmingmode to newparallel
programming mode. Before multicore chips appear, with the continuous improvement
of the performance of single core processor, serial application execution speed will be
accelerated. However, at present, the pursuit of high performance single core proces-
sor era has ended and the free lunch is over. The performance of serial applications
can only be improved with parallelism, and programmers are on the way to parallel
programming.

There are two driving forces for traditional parallel programmingmodels. One is the
endless pursuit of performance and problem scale of scientific computing applications
(mostly physical simulation), and generally there exists a superior, static computation
partitioning method for this type of applications which have obvious data locality
and are easy to achieve load balancing. The corresponding languages and interfaces
include the MPI on distributed storage system and the OpenMP (before version 2.5)
on shared memory system. These language models are mapping methods that allow
users to describe computing on a virtual processor set, which can be extended to cluster
and traditional shared memory multiprocessor (SMP) machines. But OpenMP (before
version 2.5) can’t adapt to more extensive irregular applications, MPI allows users to
manually handle synchronization and communication between parallel processes. The
second driving force is to improve the performance of key non-scientific computing
applications via concurrency and the common programming interface is Pthread. Here,
users can directly manipulate the creation, synchronization and communication of
threads and thus the programming level is lower than others.

It can be seen that traditional parallel programming model target the expert level
and senior programmers, or can only adapt to the application of rules. In multicore
era, it is paramount to provide parallel programming tools that are easy to program
with high development productivity for a wide range of application domains. In recent
years, many new parallel programming models have emerged, among which the task-
parallel programming model has become the preferred parallel programming model
for multicore platform. Note that a task is an abstract terms, which may be an entire
program or each successive invocation of a program, more precise alternative term
indicates process or thread. The process can be defined as program that is being
executed within a computer system, which generally is allowed to be further divided
into threads. The threads allowed operate depending on the processes running them.
Once the processes are terminated, the threads are also terminated. Runtime system
is responsible for task scheduling, each core corresponds to a physical thread, and
each physical thread will perform a lot of logical tasks. In order to improve multicore
utilization, runtime system uses work stealing scheduling algorithm to achieve load
balancing.

One of the core technologies for task-parallel computing iswork stealing scheduling
[1,2]. Runtime system uses work stealing scheduling algorithm to map and schedule
logical task to thread to execute, and thus can achieve load balancing. In general,
the implementation of work stealing scheduling algorithm is that each processor core
corresponds to a thread, and each thread maintains a double-ended queue (deque) for

123

Int J Parallel Prog (2018) 46:173–197 175

storing task status information. This status information includes the local variables,
PC values, and the number of sub-tasks of this task and so on, and is used to restore
suspended tasks or to perform stolen tasks. Each thread pushes the ready tasks onto
the bottom of its deque or popups the tasks that have been executed; when the deque
is empty, this thread steals tasks from the top of the deque on other threads. It firstly
restores the status of the stolen tasks, and then jumps to the instruction after spawn or
sync and starts execution according to the status. Stealing threads by means of deque
will not interrupt the execution of work thread and thus can obtain tasks, meanwhile
can achieve load balancing.

Work stealing is an algorithm based on directed acyclic graph (DAGs) scheduling,
each node in theDAG represents a task and each edge inDAG represents a dependency
relation. If all ancestor-nodes’ tasks of a task have been completed, then this task is
ready. Work stealing scheduling is responsible for allocating the ready task to the
processor core to prepare for execution. The execution time of random work stealing
scheduling algorithm based on DAG on P processors is TP = T1/P + O(T∞), where
T1 is the minimum serial execution time of the multithreaded computation and T∞
is the minimum execution time with an infinite number of processors. Moreover, the
space required by the execution is at most S1P , where S1 is the minimum serial space
requirement [3].

Work stealing scheduling makes it uncertain whether the parent and child task will
be executed in parallel. For example, when a thread creates, or spawns a child task
B during the course of executing parent task A, the thread pushes A onto the bottom
of its deque and then starts to execute the child task B. If the parent task A is stolen
by other threads, then the child task B and the parent task A are executed in parallel
in this case. If the parent task A isn’t stolen by other threads, then the parent task A
is popped from the bottom of task deque and the child task B and parent task A are
executed serially in this case.

In summary, work stealing has the following advantages. (1) It dynamically sched-
ules tasks according to busy situation of threads and thus achieves load balancing. (2)
At the synchronization point, if a task A has to wait for a child task that is not com-
pleted, then the thread stalls the task A and executes other tasks. The thread having
completed last child task will enable the stalled task A. This kind of data-flow-driven
method can efficiently utilize computing resources. (3) Effective combination of recur-
sive parallel with cache oblivious algorithmsmakes locality-sensitive applications can
efficiently utilize cache. For example, the BLAS library uses recursive cache obliv-
ious algorithms. Task parallel programming model provides implicit task mapping
mechanism. Runtime system uses work stealing scheduling algorithm to map logical
task to physical thread to execute, and this can improve efficiency of execution. A
great deal of work related to work stealing can be divided into three stages: theoret-
ical research, optimization of algorithm implementation and processor architecture
oriented optimization.

The rest of this paper is organized as follows. The theoretical results of work
stealing scheduling are reviewed in Sect. 2, the optimization-related research on the
implementation of work stealing scheduling algorithm is reviewed in Sect. 3, and the
architecture-oriented optimization research is also reviewed in Sect. 4. Conclusions
and recommendations are provided in Sect. 5.

123

176 Int J Parallel Prog (2018) 46:173–197

2 Work Stealing Scheduling Algorithms (WS)

The idea of work stealing can be traced back to the work of Burton and Sleep [4] on
parallel execution of functional programs, as well as the implementation of Multilisp
(a multiprocessor extension of the Lisp programming language) by Halstead [5,6].
When deciding whether to spawn a new task for a function or to execute it inline, it
puts potential new task onto the bottom of a task queue and allows other processors to
steal from the queue. If the task is not stolen, then it is executed on original machine. In
the 1990s and twenty-first century, the work stealing scheduling multithreaded com-
putations for shared memory multiprocessor architecture have achieved breakthrough
in all aspects.

2.1 Randomized Work Stealing Algorithm (RWS)

Blumofe and Leiserson [3] presented the first provably good randomized work steal-
ing (RWS) scheduler for multithreaded computations with dependencies; they prove
existentially optimal worst-case bounds on expected execution time, space required,
and total communication cost, and show that work stealing has much lower com-
munication cost than work sharing. The work stealing algorithm has one deque per
processor, and processor is treated as stack but other processors can steal from other
end. They assumed that processor will work on its own tasks if possible, but steals
from a randomly chosen processor if the deque is empty. They modeled contention
by assuming that steal requests are serially queued by a worst-case analysis. They
have shown that the expected time of executing a fully-strict computation, which is
one where the data dependencies of a worker go to its parent only, with P processors,
using their work stealing based scheduler, is given by t = t1

P+O(t∞)
. Here t1 denotes

the minimum execution time of the computation with a single processor, t∞ denotes
the minimum execution time with infinite number of processors. The expected total
communication cost of the algorithm is P × t∞(1 + Nd) × Smax, where Nd is the
maximum number of times a thread synchronizes with its parent, and Smax is the size
of largest activation record of any thread. The storage space required by the algorithm
is given by s1P , where s1 is the minimum space required with a single processor.
The work stealing algorithm is efficient in terms of time, space and communication.
This algorithm is used in Cilk [1]. While these theoretical bounds hold for fully-strict
computations, work stealing has also been shown to be efficient for those programs
which are not fully-strict [7].

2.2 Variants of RWS

Many variants of randomized work stealing (RWS) are presented in various direc-
tions, such as those analyzed by Squillante and Nelson [8], Mitzenmacher [9] and
Rudolph et al. [10]. Work stealing has also been investigated in a variety of other con-
texts, including migration cost [8,11,12], affinity scheduling [13–17], heterogeneous
systems [18–20] and other theoretical results [21–29]. See Table1.

123

Int J Parallel Prog (2018) 46:173–197 177

Table 1 Examples of the variants of RWS

Context Section References

Two basic models 2.2.1 Squillante et al. [8], Mitzenmacher [9], Rudolph et al. [10]

Migration cost 2.2.2 Squillante et al. [8], Eager et al. [11], Mirchandaney et al. [12]

Affinity scheduling 2.2.3 Squillante and Lazowska [13], Squillante et al. [14], Acar et al.
[15], Narang and Shyamasundar [16], Suksompong et al. [17]

Heterogeneous systems 2.2.4 Mirchandaney et al. [18], Bender and Rabin [19], Gast and
Bruno [20]

More theoretical results 2.2.5 Blelloch et al. [21], Fatourou and Spirakis [22], Berenbrink et
al. [23], Arora et al. [24], Tchiboukdjian et al. [25,26],
Agrawal et al. [27], Cole et al. [28], Agrawal et al. [29]

2.2.1 Two Basic Models

Squillante et al. [8] presented a threshold-based queueing model of shared-memory
multiprocessor scheduling. They assume identical processors, distributions of arrival
rates λ, and distributions of processing time μ. Also, time to probe and migrate and
waiting task is exponentially distributed, and processing time that is also exponen-
tial distribution but with parameter α < μ at new processor is high because of
affinity. Queueing model results in discrete state space and continuous-time Markov
process. The large and complex state space is decomposed by assuming processor
states stochastically independent and identical. It is approximate for finite number
of processors, so compared with simulation. The general form allows modeling of
degradation in system performance due to task migration. Even when migration costs
are large, and contention compounds these costs by degrading system performance,
task migration may still be beneficial. Threshold policies prevent processor thrash-
ing: instability when tasks passed back and forth and most of system time spent on
migration.

Mitzenmacher [9] used differential equations to study work stealing. His method
is an approximation for a finite number of processors, though it is exact as the number
of processors goes to infinity. The basic model assumes: identical processors, task
arrivals Poisson with parameter λ, service time exponential with parameter μ, work
stealing algorithm, stealing instantaneous. The extensions considers threshold stealing,
preemptive stealing, repeated steal attempts, varying service and arrival distributions,
transfer time for tasks, multiple choices, stealing multiple tasks such as in Rudolph et
al. [10], varying processor speeds, varying arrival rates.

2.2.2 Migration Cost

Task migrations naturally will incur additional costs or overheads. Squilante et al. [8]
argued that the costs of moving a task are very different in shared-memory systems:
in a distributed system, costs are incurred by the processor from which the task is
migrated, possibly with an additional network delay. For shared-memory systems, an
idle processor can search the queues of other processors and remove a task without

123

178 Int J Parallel Prog (2018) 46:173–197

disturbing the busy processors. The time required for probing and removal of processes
is small. The major cost of task migration is a larger service demand at the processor
that migrate the task, reflecting the time needed to establish the cache’s working set at
this processor. Thus the direct costs of migration are shifted from the busy processor
to the idle processor, and work-stealing has much greater potential benefits. Secondly,
indirect cost of task migration in a shared memory multiprocessor is increased con-
tention for the communication medium and the shared memory itself. In distributed
systems, on the other hand, contention for the communication network is unlikely.
Finally, shared-memory multiprocessors have no difficulty in migrating a task which
has already started execution. This is very different than the results of Eager et al. [11]
for the distributed case.

Work stealing contrasts with work sharing, another popular scheduling approach
for dynamic multithreading, where each thread is attempted to underutilized processor
when it is spawned. Compared to this approach, underutilized processors attempt to
take threads fromother processors, andmigration of threads occurs less frequentlywith
work stealing thanwork sharing, especially when load is high and no onewants to steal
[3]. Eager et al. [11] argued that work-sharing outperforms work-stealing at light to
moderate system loads, while work-stealing outperforms work-sharing at high loads,
if the costs of task transfer under the two strategies are comparable. However, they
argued that costs are likely to be greater under work-stealing, making work-sharing
preferable. This is because work-stealing policies must transfer tasks which have
already started to execute, while work-sharing policies can transfer prior to beginning
execution. Mirchandaney et al. [12] have similar results, assuming that the cost of task
transfer results from network delays. Analysis techniques for both: decomposition of
Markov chain, matrix-geometric approach, validation by simulations. They all neglect
overhead due to probing.

2.2.3 Affinity Scheduling Algorithms

Affinity scheduling is the allocation, or scheduling, of computing tasks on the com-
puting nodes where they will be executed more efficiently. Such affinity of a task for a
node can be based on any aspects of the computing node or computing task that make
execution more efficient, and it is most often related to different speeds or overheads
associatedwith the resources of the computing node that are required by the computing
task.

In a shared-memory multiprocessor system, it may be more efficient to schedule a
task on one processor than another. One reason for this is that the processors, or their
associated resources, may be heterogeneous. Squillante and Lazowska [13], Squillante
et al. [14], and Acar et al. [15] considered this case in more detail. Another reason
is processor-cache affinity: when a task returns for execution and is scheduled on a
processor, it experiences an initial burst of cache misses. However, if a significant
portion of the task’s working set is already in the cache, this penalty is reduced. Thus
they have a tradeoff between load balancing and using locality.

Squillante and Lazowska [13] proposed and compared various scheduling algo-
rithmswhich trade off loadbalancing andprocessor-cache affinity. Theyused adetailed
cachemodel to examine cache reload time, aswell as examining the effects of increased

123

Int J Parallel Prog (2018) 46:173–197 179

bus traffic. Analysis techniques include a combination of mean value analysis, bound-
ing approximations, and simulation. A shared pool of tasks is assumed: idle processors
search this pool and choose a task associated with that processor if possible. This
outperforms a simple FIFO queue (good load balancing, bad locality) or a “fixed pro-
cessor” model where each processor has its own queue and tasks are not shared (good
locality, bad load balancing). No work stealing since pool of tasks is shared.

Squillante et al. [14] assumed a generic form of affinity in which the service rates
μi j are higher for jobs in a processors own queue (i = j). However, some queues
have higher priorities c j than others, so processor i will choose the job with highest
ui j c j . Also, we can assume that some processors are not allowed to process some
queues by setting ui j = 0. They showed that a threshold-based priority algorithm
works well: a threshold Tj is set for each queue j , and queues with a number of
tasks exceeding this threshold are given priority. They presented an algorithm which
determines where the thresholds should be set. Analysis techniques involve queueing
theory to give approximate results for the two-queue two-server case, and simulations
for all cases.

Acar et al. [15] presented a work-stealing algorithm that uses locality information,
and thus outperforms the standard work-stealing algorithm on benchmarks. Each pro-
cess maintains a queue of pointers to threads that have affinity for it, and attempts to
steal these first. They also bounded the number of cache misses for the work stealing
algorithm, using a “potential function” argument.

Naranga et al. [16] addressed affinity driven distributed scheduling for hybrid paral-
lel computations which contain tasks that have pre-specified affinity to a place and also
tasks that can be mapped to any place in the system. Specifically, they addressed two
scheduling problems of the type Pm |Mj , prec|Cmax. They presented online distributed
scheduling algorithms for hybrid parallel computations assuming both unconstrained
and bounded space per place. They also presented the time and message complexity
for distributed scheduling of hybrid computations. This is the first time that distributed
scheduling algorithms for hybrid parallel computations have been presented and ana-
lyzed for time and message bounds under both unconstrained space and bounded
space.

Suksompong et al. [17] investigated a variant of the work-stealing algorithm that
they call the localizedwork-stealing algorithm. They showed that the expected running
time of the algorithm is T1/P + O(T∞P), and that under the even distribution of free
agents assumption, the expected running time of the algorithm is T1/P + O(T∞lgP).
In addition, they obtained another running-time bound based on ratios between the
sizes of serial tasks in the computation. If M denotes the maximum ratio between
the largest and the smallest serial tasks of a processor after removing a total of O(P)

serial tasks across all processors from consideration, then the expected running time
of the algorithm is T1/P + O(T∞M).

2.2.4 Heterogeneous Systems

There has been a recent increase of interest in heterogeneous computing systems, due
partly to the fact that a single parallel architecture may not be adequate for exploiting
all of a programs available parallelism. Mirchandaney et al. [18] presented an adap-

123

180 Int J Parallel Prog (2018) 46:173–197

tive algorithm in heterogeneous systems. Type 1 systems have processors identical
with respect to processing capabilities and speeds, but different arrival rates λ. Type
2 systems may also have different processing rates μ. As in their earlier paper, they
assumed that job transfers encounter significant delays due to network processing at
source and destination, and transmission time. Again, load-sharing and load-stealing
algorithms are considered. Analysis techniques include Markove chain and decom-
position into simpler chains then exact solution using matrix-geometric techniques.
Models are validated with simulations. The most interesting idea is biased probing.
Biased probing can result in significant performance gains for work-stealing though
not for work-sharing. Bender and Rabin [19] focused on the case where processors
have different speeds, each processor maintains an estimate of its own speed, and
communication between processors has a cost. They proposed a version of the work
stealing algorithm where a faster processor can interrupt a slower processor and steal
its current task, and they bounded the execution time of this algorithm.

Gast and Bruno [20] presented a Markovian model for performance evaluation of
work stealing in large-scale heterogeneous systems. Using mean field theory, they
showed that when the size of the system grows, it converges to a system of deter-
ministic ordinary differential equations that allows one to compute the expectation of
performance functions (such as average response times) as well as the distributions
of these functions. They first studied the case where all resources are homogeneous,
showing in particular that work stealing is very efficient, even when the latency of
steals is large. They also considered the case where distance plays a role: the system is
made of several clusters, and stealing within one cluster is faster than stealing between
clusters. They compared different work stealing policies, based on stealing probabili-
ties and showed that the main factor for deciding where to steal from is the load rather
than the stealing latency.

2.2.5 More Theoretical Results

More theoretical results are presented from different perspectives, such as space
bounds [21], strict multi-threaded computations [22], and stability [23]. Work steal-
ing has also been investigated in a variety of other contexts, including applications to
thread scheduling [24], list scheduling [25,26], Fork–Join parallel programming [27],
false sharing [28] and parallel batched data structures [29]. See Table2.

Blelloch et al. [21] improved the space bounds of Blumofe et al. [3] for a global
shared-memory multiprocessor system. Fatourou et al. [22] extended the Blumofe et
al. [3] model to strict multi-threaded computations (thread dependent on ancestor, not
just parent). Berenbrink et al. [23] showed that the work stealing algorithm is stable
even under a very unbalanced distribution of loads.

Arora et al. [24] assumed that the scheduler maps threads onto processes while an
adversarial kernel maps processes to processors, and bounded the expected execution
time. Tchiboukdjian et al. [25] presented a complete analysis of the cost of distribution
in list scheduling. They proposed a new framework, based on potential functions,
for analyzing the complexity of distributed list scheduling algorithms. In all variants
of the problem, they succeeded to characterize precisely the overhead due to the
decentralization of the list. In particular, in the case of independent tasks, the overhead

123

Int J Parallel Prog (2018) 46:173–197 181

Table 2 Examples of other theoretical results

Context References

Space bounds Blelloch et al. [21]

Strict multi-threaded computations Fatourou and Spirakis [22]

Stability Berenbrink et al. [23]

Applications to thread scheduling Arora et al. [24]

List scheduling Tchiboukdjian et al. [25,26]

Fork–Join parallel programming Agrawal et al. [27]

False sharing Cole and Ramachandran [28]

Parallel batched data structures Agrawal et al. [29]

due to the distribution is small and only depends on the number of tasks and not on
their weights. In addition, this analysis improves the bounds for the classical work
stealing algorithm of Arora et al. [24] from 32 to 5.5D. The work helps to clarify the
links between classical list scheduling and work stealing. Furthermore, the framework
to analyze DLS algorithms described in this paper is more general than the method
of Arora et al. [24]. Furthermore, Tchiboukdjian et al. [26] derived a bound on the
deviation from themean and applied this technique to show that the expectedmakespan
for scheduling W unit independent tasks on m processors is equal to W/m with an
additional term in 3.65 log2W . Indeed, the work does not assume a specific rule to
manage the local lists. Moreover, the work doesn’t refer to the structure of the DAG
but on the work contained in each list, and thus this analysis can be extended to the
case of general precedence graphs.

Agrawal et al. [27] provided theoretical completion-time and space-usage bounds
for a design of HELPER based on work stealing. Their theoretical work extends the
results given in [3,24] for work stealing schedulers, showing that for a computation
E, HELPER completes E on P processors in expected time O(T1/P + T∞ + PV),
where T1 is the work of E, T∞ is E’s “aggregate span” which is bounded by the sum of
spans (critical-path lengths) of all regions, and V is the number of parallel regions in
E. Their completion-time bounds are asymptotically optimal for certain computations
with parallel regions and helper locks. In addition, the bounds imply that HELPER
produces linear speedup provided that all parallel regions in the computation are
sufficiently parallel. Roughly, if for every region A, the nonnested work of region
A is asymptotically larger than P times the span of A, then HELPER executes the
computation with speedup approaching P. They also showed that HELPER completes
E using only O(PS1) stack space, where S1 is the sum over all regions A of the stack
space used by A in a serial execution of the same computation E.

Cole et al. [28] analyzed the overhead due to false sharing when parallel tasks are
scheduled using randomized work stealing (RWS) [3]. They obtained high-probability
bounds on the cache miss overhead, including the overhead due to false sharing, for
several parallel cache-efficient algorithms when scheduled using RWS. These include
algorithms for fundamental problems, such as matrix computations, FFT, sorting,
basic dynamic programming, list ranking and graph connected components. Their

123

182 Int J Parallel Prog (2018) 46:173–197

Table 3 Examples of optimization of algorithm implementation

Context Section References

Task granularity 3.1 Sanchez et al. [30], Kulkarni et al. [31], Hill and Marty [32], Chen
et al. [33], Faxén [34]

3.1.1 Mohr et al. [35], Loidl et al. [36], Duran et al. [37], Cong et al. [38],
Duran et al. [39], Acar et al. [40]

3.1.2 Wang et al. [41], Tzannes et al. [42], Cao et al. [43], Hoffmann and
Rauber [44]

3.1.3 Lee et al. [45], Zhao et al. [46]

Local sensitivity 3.2.1 Robison et al. [47]

3.2.2 Chen et al. [48,49,52], Olivier et al. [50,51]

Improvement of task
queue

3.3 Tzannes et al. [53], Chase et al. [54], Lê et al. [55], Traoré et al.
[56], Dinan et al. [57], Michael et al. [58], Kumar et al. [59],
Quintin et al. [60], Wang et al. [61], Tsai et al. [62], Dijk et al.
[63], Hendler et al. [64]

Other methods 3.4 Guo et al. [65,66], Paudel et al. [67], Cao et al. [68], Adnan et al.
[69], Acar et al. [70], Herlihy et al. [71]

main technical contribution is the derivation of nontrivial high probability bounds on
the number of steals incurred by these algorithms in the presence of false sharing,
when using RWS.

Agrawal et al. [29] extended a randomized work-stealing scheduler and guaran-
tees provably good performance to parallel algorithms that use parallel batched data
structures. In particular, suppose a parallel algorithm has T1 work, T∞ span, and n
data-structure operations. Let W (n) be the total work of data structure operations
and let s(n) be the span of a size-P batch, then BATCHER executes the program in
O(T1+W (n)+ns(n) = P+s(n)T∞) expected time on P processors. For higher-cost
data structures like search trees and large enough n, this bound becomes (T1 +nlgn =
P+T∞lgn), provablymatching thework of a sequential search tree butwith nearly lin-
ear speedup, even though the data structure is accessed concurrently. The BATCHER
runtime bound also readily extends to data structures with amortized bounds.

3 Optimization of Algorithm Implementation

The optimization research in terms of algorithm implementation has been done since
2006, focusing on implementation optimization of work stealing scheduling algorithm
onmulticore platform. It mainly includes research on task scheduling considering task
granularity and local sensitivity, improvement of task queue, and other methods. See
Table3.

3.1 Scheduling Algorithms Considering Task Granularity

Fine-grain parallelism has several advantages [30]. First, it can expose more par-
allelism in many applications, and for some applications parallelism is more

123

Int J Parallel Prog (2018) 46:173–197 183

easily expressed under this model [31]. This is particularly important for Chip-
MultiProcessors (CMPs) with hundreds of cores, for which parallelism becomes a
precious resource [32]. Second, it makes the underlying runtime system much more
freedom in distributing and reassigning work among cores in order to avoid load
imbalance in irregular computations, and to exploit constructive cache interference
among certain tasks [33], or to adapt to environment changes such as cores becoming
unavailable due to faults, thermal emergencies, or multiprogramming. Task-parallel
programming model is fine-grain parallel, allowing programmers to express all the
available parallelism. Runtime system is responsible formapping and scheduling these
tasks to physical threads to execute. This programming method will produce a large
number of fine-grain logical tasks to ensure load balacing, and uses logical tasks to
replace physical threads, which is independent of the number of processors, and thus
can improve the level of parallel programming.

Implementing work stealing scheduling algorithm in software on runtime system
comes at a price: a large number of generated fine-grain tasks will incur high system
overhead. On the contrary, a small amount of coarse-grain tasks will result in load
imbalance, thus reducing performance. It can be seen that the system overhead is
proportional to the number of tasks, and the load balancing is inversely proportional
to the number of tasks. The appropriate task granularity needs to be balanced between
two factors of system overhead and load balancing. How to determine the appropriate
task granularity is an important problem for work stealing scheduling.

A task corresponds to a function. For example, when executing spawn foo() state-
ment, thread pushes the status information of task foo onto the bottom of its task queue.
At the same time, it allocates a stack frame for foo function in stack space. If it is just a
function call, then there will be no overhead generated by tasks. So the serial function
can reduce the system overhead, parallel tasks can balance the load, and the reciprocity
method for serial functions and parallel tasks is the main means of controlling task
granularity. At present, the implementation method of work stealing can only convert
to serial function from parallel task, but not to parallel task from serial function. The
followingmethodsmainly aim to control task granularity from the perspective of serial
and parallel reciprocity. It can only be converted to serial functions from parallel tasks
for cut-off policy, just needs to be careful to choose conversion point. Adaptive task
granularity can complete switching between parallel task and serial function. As there
is no consideration of locality, the performance may not be distinctly improved for
locality-sensitive application. The runtime stack and task queue combined into one
can reduce maintenance overheads of task queue, but needs to modify the operating
system.

In order for improving the performance of fine grain task parallelism, it is often
either cumbersome or impossible to increase the grain size of such programs [34].
Increasing core counts exacerbates the problem; a program that appears coarse-grained
on eight cores may well look a lot more fine-grained on sixty-four .

3.1.1 Cut-Off Policy

Mohr et al. [35], Loidl and Hammond [36], and Duran et al. [37] used cut-off policy to
control recursive depth of function call to reduce number of tasks, and thus can reduce

123

184 Int J Parallel Prog (2018) 46:173–197

overhead incurred by tasks. Meanwhile, task granularity can also be controlled. Cut-
off policy usually specifies a recursive depth of the derived tree (or function call tree)
and no task is generated when the depth is greater than the specified number. This
strategy works well for a balanced derivation tree. But for unbalanced derived trees,
the cut-off strategy will cause system to be “hunger”. That is, some threads are forced
to be idle because of no task to work, which can lead to unbalanced load, thus reducing
execution efficiency.

The five implementation methods of cut-off strategy are shown as following: (1)
Programmers provide a cut-off recursive depth, or run-time system sets a default depth.
This method is simple, but can’t adapt to environmental changes. (2) Batching [38].
Runtime system sets the cut-off depth on the basis of the size of current task queue,
thus controling task granularity. But this method requires programmers to set the serial
program threshold, and the performance tuning need to be manually conducted. (3)
Profiling [33]. Profile information ofwork set is collected and the collected information
is then used to perform cut-off. This method is more effective for some applications
having work sets. However, this method can do nothing for those applications having
no definite work set such as backtracking search, branch and bound search and game
tree. (4) Adaptive cut-off technique supported by runtime system [39]. The runtime
system collects the number of tasks generated at each level. If the number of tasks
is greater than two times the number of threads then cut off, and new tasks are no
longer generated. But for irregular applications, this adaptive cut-off technology can’t
predict which branch has more tasks. So it will cause load imbalance, and thus can
affect the performance. (5) User guided adaptive cut-off technique [40] expects to be
able to predict the size of each branch, and then cuts off till this branch is not too big.
The concrete implementation method is that programmers provide a cost calculation
statement for each function, and then the runtime system predicts the size of each
branch and decides whether to perform cut-off.

3.1.2 Adaptive Task Granularity

The key idea of adaptive task granularity is that no task is generated when all threads
are busy and these busy threads start to generate tasks when idle threads need tasks.
Traditional implementation method of work stealing scheduling algorithmmakes par-
allel task can call serial function, but serial function can’t generate parallel task so
that no task can be generated after entering the serial function. In order to achieve
adaptive task granularity, the difficulty lies in how to generate parallel tasks in serial
function.

Wang et al. [41] can obtain adaptive task granularity of nested parallelization. Their
method introduces a special task for generating parallel tasks again in a serial function.
The execution status information of serial function is stored for the special task that
can’t be stolen and must be continued to execute after having completed all sub-tasks.
This adaptive task generating strategy can switch between parallel task and serial
function according to actual implementation.

As the specific parallel implementation of cilk_for cycle adopts divide and conquer
method to segment iterative space and loop parallelization is converted to nested paral-
lelization, so task granularity problem can also be solved with this method. Tzannes et

123

Int J Parallel Prog (2018) 46:173–197 185

al. [42] can obtain adaptive task granularity of parallel loop. It needs to check whether
the task queue is empty before executing an iterative. If it is empty then divides the
remaining and unexecuted iterative space into two, and pushes tasks to be executed
onto the bottom of task deque to execute. Otherwise, the tasks aren’t pushed onto
the bottom of task deque and continue to execute. This method segments the leaf
nodes of derivation tree and thus can solve the problem of task granularity for parallel
loop.

Considering that the best strategy controlling task granularity usually depends on
the application characteristics, Cao et al. [43] proposed an adaptive task granularity
(AdaptiveTG) strategy. First, they applied breadth-first policy until all the available
threads are busy, and then if some thread becomes idle, the work stealing technique,
which provokes the victim to create a task with sufficient size at the oldest spawnable
point, is introduced. The strategy doesn’t only maximize the task granularity but also
efficiently solves the unbalanced computation loads.

Task pools have been shown to provide efficient load balancing for irregular appli-
cations on heterogeneous platforms. Often, distributed data structures are used to store
the tasks and the actual load balancing is achieved by task stealing where an idle pro-
cessor accesses tasks from another processor. Hoffmann and Rauber [44] extended
the concept of task pools to adaptive task pools which are able to adapt the number of
tasks moved between the processor to the specific execution scenario, thus reducing
the overhead for task stealing significantly.

3.1.3 Other Methods

The following research aims to solve the runtime system cost problem from the per-
spective of the operating system, hardware structure and compiler optimization.

Sanchez et al. [30] observed that the software implementation of schedulingmethod
is very flexible, but the cost is high. The hardware implementation of scheduling
method has the advantages of low cost but lacks flexibility. They combined hard-
ware method with software method: software maintains task queue, and hardware
performs work stealing. This method can reduce the overheads incurred by gener-
ating tasks and managing task queue, thus improving performance. Lee et al. [45]
provided thread-private memory mapping (thread-local memory mapping, TLMM)
supported by modifying operating system. The task queue is combined with func-
tion call stack by using TLMM mechanism, thus implementing the conversion from
serial functions to parallel tasks and accordingly improving performance. TLMM
may specify a virtual address space area of a process as being thread-private. That
is, for the virtual address space, each thread has the same virtual addresses, but has
different physical memory pages. For the stack space of each thread implemented
with TLMM, the task and stack frame of its ancestors are stolen, thus combining
the task queue with function call stack and reducing the overhead generated by
task. For a double loop, the parallel_for is swapped from inner layer to outer layer
by using compiler-optimizated method, the number of tasks can be reduced [46],
thus reducing the cost generated by creating and ending this task, and improving
performance.

123

186 Int J Parallel Prog (2018) 46:173–197

3.2 Locality-Sensitive Scheduling Algorithm

Work-stealing uses work-first policy. Its depth-first execution strategy can improve
the utilization rate of cache. It randomly selects a thread for stealing work without
considering the characteristics of processor architecture, having an impact on the
locality-sensitive applications. Locality-sensitive scheduling algorithm is mainly con-
cerned with how to select a thread to be stolen.

3.2.1 Cache-Affinity Scheduling

Acar et al. [15] proposed a cache-affinity scheduling method to improve the utilization
rate of cache. The specificmethod is that each thread has a task queue andmailbox that
is used for storing the tasks being affinity with this thread. When thread 1 generates a
task being affinity with thread 2, the pointer pointing to the task is put into the mailbox
of thread 2 by thread 1. When thread 2 completes these tasks in its task queue, it first
checks its mailbox and executes tasks in the mailbox, and then steals tasks.

Considering most of threads are idle and keep stealing tasks when starting to exe-
cute a cycle, Robison et al. [47] improved the cache-affinity scheduling method, and
provided that the tasks in mailbox of an idle thread are not to be stolen, and thus can
solve the problem that can’t guarantee the cache-affinity scheduling at its initial stage.

3.2.2 Locality-Sensitive Scheduling in Multi-socket Multicore Architecture

Current servers basically adopt multi-socket multi-core architecture. The processor
includes a plurality ofmulticore chips: the intra-chipmulticores shareL3 cache, and the
inter-chip multicores share memory and provide cache consistency. The work stealing
scheduling strategy randomly selects a thread to steal tasks, without distinguishing
intra-CMP and inter-CMP threads. For locality-sensitive applications, the random
work stealing scheduling strategy can reduce the utilization rate of cache, thus reducing
its performance.

Chen et al. [48,49] presented a Cache Aware Bi-tier (CAB) scheduling strategy.
According to hardware structure, the intra-CMP threads are grouped into a group. Each
thread has an intra-group task queue, and each group has an inter-group task queue.
The runtime system divides tasks into intra-group tasks and inter-group tasks along
call tree, and then puts them into responding task queues. After having completed its
own tasks in the intra-group task queue, the thread randomly chooses another thread
in the same group to steal; when all intra-group task queues in a group are empty, they
start to steal tasks in inter-group task queue of this group; when all intra-group and
inter-group task queues in a group are empty, they then steal tasks from inter-group
task queues of other groups.

Olivier et al. [50] proposed a hierarchical scheduling strategy, it is not that each
thread has a task queue, but it is that intra-Chip threads share a task queue, thus only
can perform work stealing scheduling between chips. In this method, the shared task
queue may become a bottleneck. Olivier et al. [51] leveraged different scheduling
methods at different levels of the hierarchy. By allowing one thread to steal work on
behalf of all of the threads within a single chip that share a cache, the scheduler limits

123

Int J Parallel Prog (2018) 46:173–197 187

the number of costly remote steals. For cores on the same chip, a shared LIFO queue
allows exploitation of cache locality between sibling tasks as well as between a parent
task and its newly created child tasks.

Chen and Guo [52] proposed a locality-aware work-stealing (LAWS) scheduler.
In LAWS, a load-balanced task allocator is used to evenly split and store the dataset
of a program to all the memory nodes and allocate a task to the socket where the
local memory node stores its data for reducing remote memory accesses. Then, an
adaptive DAG packer adopts an auto-tuning approach to optimally pack an execu-
tion DAG into cache-friendly subtrees. After cache-friendly subtrees are created,
every socket executes cache-friendly subtrees sequentially for optimizing shared cache
usage. Meanwhile, a triple-level work-stealing scheduler is applied to schedule the
subtrees and the tasks in each subtree. Through theoretical analysis, they showed that
LAWShas comparable time and space bounds comparedwith traditionalwork-stealing
schedulers.

3.3 Improvement of Task Queue

Since work thread and stealing thread directly operate the task queue of work thread,
when a stealing thread attempts to steal a task which is to be popped up bywork thread,
it will incur data races. The work stealing mechanism can solve the race by using THE
protocol [2]. The THE protocol requires atomic operations with high cost. Tzannes et
al. [53] replaced the traditional THE protocol with duplicate queue method to avoid
data race. The duplicate queue requires no atomic operations, thus can improve its
performance.

When runtime system starts, it creates a fixed size of task queue for each thread,
and this may cause task queue overflow. Chase and Lev [54] proposed dynamic cyclic
task queue and solved the problem of task queue overflow. Lê et al. [55] provided
the first correctness proof of an optimized implementation of Chase and Lev’s deque
on top of the POWER and ARM architectures: these provide very relaxed memory
models, which they exploited to improve performance but considerably complicate
the reasoning.

Traoré et al. [56] showed that, in the case of independent tasks, a whole subpart
of an array of tasks can be represented in a compact way by the range of the corre-
sponding indices, each cell containing the effective description of a task. Task queue
organization impacts all the other aspects of task scheduling, and there are some inter-
esting designs of task queue proposed in recent years. For example, some approaches
split a task queue into two parts and only allow tasks in one part to be stolen [57];
some techniques expand the size of a task queue with automatic garbage collection
[58]; hardware task queue is used to improve the performance in [59]; hierarchical
task queues are studied on different parallel systems [60], which enable locality-aware
victim selection. Considering the two levels of hierarchy on multi-core cluster, cluster
nodes and multiple cores within a node, their task queues are hierarchically organized
and victim is selected inside a node before crossing the node boundary during work-
stealing [61]. Tsai and Huang [62] proposed a generalized parallelization framework
for dynamic workload scheduling using adaptive work-stealing of thread pool and

123

188 Int J Parallel Prog (2018) 46:173–197

dynamic circular lock-free double-ended queue. Dijk and Pol [63] proposed a new
non-blocking work-stealing deque based on the split task queue. Their design uses a
dynamic split point between the shared and the private portions of the deque, and only
requires memory fences when shrinking the shared portion.

Considering that the ABP algorithm’s synchronization protocol [24] is strongly
based on the use of fixed size arrays, which are prone to overflows, especially in mul-
tiprogrammed environments which they are designed for, Hendler et al. [64] presented
the first dynamic memory work-stealing algorithm, which is based on a novel way of
building non-blocking dynamic memory ABP deques by detecting synchronization
conflicts based on “pointercrossing” rather than “gaps between indexes” as in the
original ABP algorithm.

3.4 Other Methods

Guo et al. [65] proposed Scalable Locality-Aware Work stealing (SLAW). It is a scal-
able task scheduler that applied the adaptive locality-aware work-stealing technique
and supported both work-first and helpfirst policies [66] at runtime on a per-task
basis. Paudel et al. [67] explored the selection of tasks that are favourable for migra-
tion across nodes in a distributed memory cluster, a lesser-explored dimension to
distributed work-stealing. The selection of tasks is guided by the application-level
task locality rather than hardware memory topology as is the norm in the literature.
Cao et al. [68] studied feedback-driven adaptive scheduling based on work stealing,
which provides an efficient solution for concurrently executing a set of applications
on multi-core systems. To dynamically estimate the number of cores desired by each
application, they proposed a stable feedback algorithm, called ADeque, using the
length of active deques, which more precisely captures the parallelism variation of
the applications. Adnan and Sato [69] described extended work-stealing strategies for
StackThreads/MP, in which thieves steal from the bottom of a victim’s logical stack
not just the bottommost task but multiple chained tasks. Acar et al. [70] proposed two
work-stealing algorithms with private deques and proved that the algorithms guaran-
tee similar theoretical bounds as work stealing with concurrent deques. Herlihy and
Liu [71] focused primarily on structured single-touch computations, in which futures
are used in a restricted way. They claimed that for such computations, a parallel
execution by a work-stealing scheduler that runs future threads first can incur at most
O(CPT 2∞) cachemissesmore than the corresponding sequential execution, a substan-
tially better cache locality than the �(CPT∞ + CtT∞) worst-case additional cache
misses possiblewith unstructured use of futures.However, they cannot prove this claim
formally.

4 Processor Architecture Oriented Optimization

Current research on task scheduling, targeting processor architectures, involves the
key techniques of work-stealing on manycore and cluster systems. See Table4.

123

Int J Parallel Prog (2018) 46:173–197 189

Table 4 Examples of processor architecture oriented optimization

Context Section References

Cluster systems 4.1 Cong et al. [38], Dinan et al. [57], Wang et al. [61], Guo
et al. [66], Fohry et al. [72], Tardieu et al. [73,74],
Agarwal et al. [75], Pezzi et al. [76], Saraswat et al.
[77], Ravichandran et al. [78]

Manycore architecture 4.2 Cao et al. [79], Li et al. [80], Long et al. [81]

4.1 Hierarchical Task Scheduling on Cluster Systems

The X10 is based on the Asynchronous Partitioned Global Address Space (APGAS)
programming model, supporting the same fine-grained concurrency mechanisms
within and across shared-memory nodes [72–74]. It needs to simultaneously consider
both intra- and inter-place task scheduling. There are some differences between intra-
place task scheduling and traditional task scheduling such as Cilk: X10 ismore general
than Cilk in that it permits a parent activity to terminate while its child/descendant
activities are still executing, thereby enabling an outer-level finish to serve as the root
for exception handling and global termination [66,75]; considering the problem with-
out indicating the parallel features of a function, the runtime system needs to maintain
a function call relationship queue and a task queue for each thread. Function call rela-
tionship queue contains serial functions and parallel tasks, and the task queue only
stores parallel tasks. This processing resembles putting each function (not distinguish-
ing serial functions and parallel tasks) into the task queue, with high implementation
cost of system. Cong et al. [38] presented XWS, the X10 Work Stealing framework,
an open-source runtime for the parallel programming language X10 and a library to
be used directly by application writers. Aiming at the stack-overflow problem caused
by the spanning tree of a graph, Guo et al. [66] proposed help-first scheduling policy.
Under this policy, the worker will create and push the task onto the deque and proceed
to execute parent task.

Inter-place load balancing needs to extend the work stealing to distributed memory
system, but prior work on work stealing largely focused on shared memory machines,
its performance on clusters is not well understood. Dinan et al. [57] implemented
work-stealing scheduling algorithm on large-scale clusters, and proposed following
optimization methods for achieving performance improvement: (1) Split task queues.
Each single task queue is split into local access and shared access portions: the local
portion is located between the head and split pointers and is used for local threads to
access tasks; the shared portion is located between the tail and split pointers and is
used for other threads to steal tasks. The local portion of the queue can be accessed by
the local process without locking and the shared portion can be accessed by any pro-
cess and accesses are synchronized via a lock. Thread needs to periodically adjust
the split-pointer’s location between the head and tail of the queue for balancing
the distribution of work between the public and private portions of the queue. (2)
When a processor’s task queue is empty, it generally attempts to steal a task from
the head of victim processor’s work queue on shared memory systems. However, the

123

190 Int J Parallel Prog (2018) 46:173–197

cost of stealing work on distributed memory systems is much higher than that on
shared memory systems, thus stealing multiple tasks at once during a single steal
attempt.

For MPI platforms, Pezzi et al. [76] proposed a hierarchical work stealing (HWS)
algorithm.HWSemploys a hierarchical structure ofmanagers (i.e.master) andworkers
(i.e. slaves), which are arranged in a binary tree structure. The inner-nodes of the
tree operate as managers and the leaf nodes operate as the worker nodes. Since in
MPI platforms, processes can only communicate if they share an inter communicator,
enabling one-to-one communication between large number of workers requires high
implementation cost. HWS aims to reduce this cost by usingmanagers which facilitate
the task of communication between workers by mediating. However, their technique
has the limitation of requiring several extra master (manager) nodes. Further, since
each work stealing request must go through the manager nodes, compared to one-to-
one communication, each work stealing request is slowed-down.

Saraswat et al. [77] pointed out that there are two main difficulties in extending
Cilk-style work-stealing [3] to distributed memory: (1) In shared memory approach,
thieves constantly attempt to asynchronously steal work from randomly chosen vic-
tims until they find work. In distributed memory, thieves cannot autonomously steal
work from a victim without disrupting its execution. (2) It is non-trivial to detect
active distributed termination. They proposed the idea of lifeline graphs. Each place
adds an id of stolen thread. But if that place has no work then the id of the thief
is recorded at that place as an “incoming” lifeline, so the id of stolen thread and
the place form a directed graph. Such a graph is called lifeline graph and the id of
stolen thread is called incoming edge of the place. Once a place finds some work,
it then allocates them to incoming edge thread and clears the incoming edge. When
a thread is unable to find work after w unsuccessful steals, it becomes a quiescent
node and no longer steals tasks. A quiesced node is reactivated when work arrives
from a lifeline. Termination occurs precisely when computation at all nodes has
quiesced.

Considering that current work stealing approaches are not suitable for multi-core
clusters due to the dichotomy of the underlying architecture. Ravichandran et al. [78]
proposed a hierarchicalwork-stealing,which combines the best aspects of both the cur-
rent approaches for shared memory architecture and distributed memory architecture
into a new algorithm. The presented algorithm allows for more efficient execution
of large-scale HPC applications, such as UTS, on clusters which have large multi-
cores. Considering that high inter-node communication costs hinder work-stealing
from being directly performed on multi-core clusters, Wang et al. [61] introduced
an adaptive and hierarchical task scheduling scheme (AHS) for multi-core clusters.
AHS can address this issue with initial partitioning for reducing the inter-node task
migrations, with hierarchical scheduling scheme for performing work-stealing inside
a node before going across the node boundary and adopting work-sharing to overlap
computation and communication at the inter-node level, and with hierarchical and
centralized control for inter-node task migration to improve the efficiency of victim
selection and termination detection.

123

Int J Parallel Prog (2018) 46:173–197 191

4.2 Task Scheduling on Manycore Architecture

Aiming to address the increasing difficulty of efficiently using large number of cores in
manycore processors, Cao et al. [79] proposed a core-partitioned adaptive scheduling
algorithm, named CASM (core-partitioned adaptive scheduling for manycore sys-
tems). CASM dynamically aggregates cores into different partitions by splitting or
merging task-clusters, which ensures the efficiency of isolated accessing in these
core partitions. To improve the scheduling efficiency of CASM, equi-partitioning
scheduling algorithm is adopted to reallocate the cores among task-clusters, and
the feedback-driven adaptive scheduling algorithm is implemented within the task-
clusters.

The runtime system implemented in software on manycore systems runs with poor
performance. Therefore, Li et al. [80] and Long et al. [81] have done some work
on task scheduling implemented in hardware. In order to achieve a good balance
between programmability and scalable hardware implementation, Long et al. [81]
studied scalable hardware mechanisms to support programming model and proposed
an architectural support forDAGconsistency. Experimental results on a set of scientific
benchmark programs show good performance speedup for a small number of cores.
Experimental results also reveal two fundamental reasons which limit the performance
scalability of computations onmanycore architectures: the unbalancedon chip network
bandwidth usage and limited memory band-width. Li et al. [80] presented a hardware
support for conditional division-based approaches to parallel programming.

5 Conclusions and Recommendations

Work stealing is a scheduling strategy for multithreaded computer programs and has
been gaining popularity as the multiprocessor load-balancing technology of choice in
both Industry and Academia. As can be seen, there are several intensive researches in
the field of work stealing scheduling other than just theoretical result and hence a huge
body of literature. Instead of focusing on an extensive literature review in all aspects
of work stealing scheduling, we have taken a holistic view to summarize theoretical
results, optimization of algorithm implementation, and processor architecture oriented
optimization. Though considerable efforts have been devoted to investigating work
stealing scheduling, it is far from sufficient.

1. Current theoretical work-stealing scheduling analysis is mainly based on queuing
theory. Unfortunately, so far there is no corresponding available computing and
profiling tool and it is usually assumed that task load distribution is approximately
satisfied the Markov chain (exponential distribution). However, many task distri-
butions are not the case in many real world situations, and existing theoretical
work stealing models may not so perfect that means it can be further improved and
even reconstructed. When the synchronization overhead introduced by improving
parallelism is more than the gain and the problems to be solved have coarse-grain
parallelism or a high degree of dependence between tasks, it may not be worth the
effort to use more multi-cores to solve these problems.

123

192 Int J Parallel Prog (2018) 46:173–197

2. Traditional work stealing strategy mainly verifies its performance by simula-
tion data or individual applications and concludes corresponding results. Parallel
computing becomes popular in multi-core era, and it is not persuasive to verify
scheduling performance just by selecting experimental data for individual applica-
tions, but needs to have a lot of applications to test its performance. To take a fresh
approach to work stealing scheduling problem, instead of traditional benchmarks,
the research agenda may be driven by compelling applications and motifs that
are specified at a high level of abstraction to allow reasoning about their behavior
across a broad range of applications.

3. Runtime systems use work stealing scheduling to balance load. At present, the
work stealing scheduling is based on shared memory multicore chips and the used
approach ismobile computingwithoutmoving data. In recent years, both hardware
and software have changed. On the hardware side, multi-core processor based on
NUMA (non-uniformmemory access) architecture is themainstream in the future.
For example, for the Nehalem’s architecture of Intel and and Niagara architecture
ofOracle, the processors include a plurality ofmulti-core chips that eachmulti-core
chip has its own memory controller, so the memory access is no longer a unified
access mode, but includes local memory and remote memory. The local memory
can directly access through the IMC (integrated memory controller) and is fast,
and the remotememory can access through theQPI (quickpath interconnect) and is
slow. In addition, the development trend in the future is the heterogeneous platform
that composed of general multi-core processor and acceleration components such
as GPU etc. How to scheduling this kind of platform is a hard work.

The research on work stealing scheduling will be driven by new problems in theory,
emerging applications and architectures, so at least the following existing problems
and promising efforts need particular attention.

1. Theory-driven research. In order to reveal and profile the statistical laws of parallel
and distributed computing, new theoretical models for work stealing scheduling
will be developed and the scheduling algorithm needs to be redesigned to improve
the performance of parallel and distributed computing. The work stealing schedul-
ing strategy should retarget achieving required performance by using the least
resources, instead of generating hundreds of threads to have all the processor
cores running busily. In this regard, further research is still needed.

2. Application- and motif-driven research. With the rise of cloud computing and
social networks, a series of emerging applications such as social networks, network
security, datamining and bioinformatics are emerging.Most of the core algorithms
involved in these emerging computing fields belong to the category of non-
numerical computation, and contain irregular parallelism and pose data-intensive
characteristics. These applications can generally be modelled as a complex net-
works that can be analyzed by using graph related algorithms. Therefore, how to
support these irregular applications is another research direction for work stealing
scheduling. For these emerging irregular applications, work stealing schedul-
ing strategy needs to provide efficient concurrent queues and concurrent priority
queues to improve the applicability and performance. For example, when perform-
ing parallel graph calculation, active nodes are handled in parallel and common

123

Int J Parallel Prog (2018) 46:173–197 193

queue and priority queue are used to manage the active nodes for graph calcu-
lation. Therefore, if we can provide efficient concurrent queues and concurrent
priority queue, then we can improve the scheduling efficiency and performance of
this kind of application. Instead of traditional benchmarks, we can use 13 “motifs”
[82] to design and evaluate work stealing scheduling strategy. Each motif captures
a pattern of computation and communication common to a class of important
applications and motifs are specified at a high level of abstraction to allow reason-
ing about their behavior across a broad range of applications. The work-stealing
scheduling strategies based on these motifs affecting future parallel computing
deserve further study.

3. Architecture-driven research. For multi-socket multi-core processors with NUMA
architecture, work stealing scheduling strategy needs to consider the appropri-
ate data distribution. Task parallelism model considers the speed that each core
accesses the shared memory is consistent, having no problem with data distribu-
tion. But the memory access speed is not consistent due to the NUMA structure,
and if the data and computation are on the same multi-core chip then the comput-
ing speed will be greatly improved. Therefore, work stealing scheduling strategy
needs to consider the appropriate data distribution. For the heterogeneous plat-
forms, the idea of task parallel mechanism is to divide the application into a large
number of fine grained tasks for parallel execution, and thus it can generate large
amounts of a small amount of data communication between the general processor
and GPU on heterogeneous platforms. However, the data transmission between
the general processor and GPU is very slow, and each time the transmission time
of small data and big data is the same. Therefore, work stealing scheduling strat-
egy should consider aggregating a large amount of fine grained tasks into a large
task and then passing it to the GPU for execution. This can reduce the number of
communications, thereby improving the scheduling performance.

Acknowledgements Thisworkwas supportedbyChongqingNatural ScienceFoundation (No.KJ1400316),
partially supported by National Natural Science Foundation of China (No. 11401061).

References

1. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou, Y.L.: Cilk: an
efficient multithreaded runtime system. J. Parallel Distrib. Comput. 37(1), 55–69 (1996)

2. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 multithreaded language.
In: Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language Design and
Implementation (PLDI’98), pp. 212–223. ACM, New York, NY, USA, June 16–19 (1998)

3. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing. J. ACM
46(5), 720–748 (1999)

4. Burton, F.W., Sleep, M.R.: Executing functional programs on a virtual tree of processors. In: Pro-
ceedings of the 1981 Conference on Functional Programming Languages and Computer Architecture
(FPCA’81), pp. 187–194. ACM, New York, NY, USA, October 18–22 (1981)

5. Halstead, R.H.: Implementation of multilisp: Lisp on a multiprocessor. In: Proceedings of the 1984
ACM Symposium on LISP and Functional Programming (LFP’84), pp. 9–17. ACM, New York, NY,
USA, August 6–8 (1984)

6. Mohr, E.,Kranz,D.A.,Halstead, J.R.H.: Lazy task creation: a technique for increasing the granularity of
parallel programs. In: Proceedings of the 1990ACMConference on LISP and Functional Programming
(LFP’90), pp. 185–197. ACM, New York, NY, USA, June 27–29 (1990)

123

194 Int J Parallel Prog (2018) 46:173–197

7. Vrba, Ž., Espeland, H., Halvorsen, P., Griwodz, C.: Limits of work-stealing scheduling. In: Proceedings
of the 14th Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP’09), pp. 280–299.
Springer, Berlin, Germany, May 29 (2009)

8. Squillante, M.S., Nelson, R.D.: Analysis of task migration in shared-memory multiprocessor schedul-
ing. In: Proceedings of the 1991 ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS’91), New York, NY, USA, May 21–24 (1991)

9. Mitzenmacher,M.: Analyses of load stealingmodels based on differential equations. In: Proceedings of
the 10th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’98), pp. 212–221.
ACM, New York, NY, USA, June 28–July 2 (1998)

10. Rudolph, L., Slivkin-Allalouf, M., Upfal, E.: A simple load balancing scheme for task allocation in
parallel machines. In: Proceedings of the 3rd Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA’91), pp. 237–245. New York, NY, USA, July 21–24 (1991)

11. Eager, D.L., Lazowska, E.D., Zahorjan, J.: A comparison of receiver-initiated and sender-initiated
adaptive load sharing. Perform. Eval. 6(1), 53–68 (1986)

12. Mirchandaney, R., Towsley, D., Stankovic, J.A.: Analysis of the effects of delays on load sharing. IEEE
Trans. Comput. 38(11), 1513–1525 (1989)

13. Squillante, M.S., Lazowska, E.D.: Using processor-cache affinity information in shared-memory mul-
tiprocessor scheduling. IEEE Trans. Parallel Distrib. Syst. 4(2), 131–143 (1993)

14. Squillante, M.S., Xia, C.H., Yao, D.D., Zhang, L.: Threshold-based priority policies for parallel-server
systemswith affinity scheduling. In: Proceedings of the 2001American Control Conference (ACC’01),
pp. 2992–2999. IEEE, New York, NY, USA, June 25–27 (2001)

15. Acar, U.A., Blelloch, G.E., Blumofe, R.D.: The data locality of work stealing. Theory Comput. Syst.
35(3), 321–347 (2002)

16. Narang, A., Shyamasundar, R.K.: Performance driven distributed scheduling of parallel hybrid com-
putations. Theor. Comput. Sci. 412(32), 4212–4225 (2011)

17. Suksompong, W., Leiserson, C.E., Schardl, T.B.: On the efficiency of localized work stealing. Inf.
Process. Lett. 116(2), 100–106 (2016)

18. Mirchandaney, R., Towsley, D., Stankovic, J.A.: Adaptive load sharing in heterogeneous distributed
systems. J. Parallel Distrib. Comput. 9(4), 331–346 (1990)

19. Bender, M.A., Rabin, M.O.: Online scheduling of parallel programs on heterogeneous systems with
applications to Cilk. Theory Comput. Syst. 35(3), 289 (2002)

20. Gast, N., Bruno, G.: A mean field model of work stealing in large-scale systems. In: Proceedings of the
ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS’10), pp. 13–24. ACM, New York, NY, USA, June 14–18 (2010)

21. Blelloch, G.E., Gibbons, P.B.,Matias, Y.: Provably efficient scheduling for languages with fine-grained
parallelism. J. ACM 46(2), 281–321 (1999)

22. Fatourou, P., Spirakis, P.: Efficient scheduling of strict multithreaded computations. Theory Comput.
Syst. 33(3), 173–232 (2000)

23. Berenbrink, P., Friedetzky, T., Goldberg, L.A.: The natural work-stealing algorithm is stable. SIAM J.
Comput. 32(5), 1260–1279 (2003)

24. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multiprogrammed multiprocessors.
Theory Comput. Syst. 34(2), 115–144 (2001)

25. Tchiboukdjian, M., Gast, N., Trystram, D.: Decentralized list scheduling. Ann. Oper. Res. 207(1),
237–259 (2013)

26. Tchiboukdjian, M., Gast, N., Trystram, D., Roch, J., Bernard, J.: A tighter analysis of work stealing.
In: Proceedings of the 21st International Symposium on Algorithms and Computation (ISAAC’10),
pp. 291–302. Springer, Berlin, Germany, December 15–17 (2010)

27. Agrawal, K., Leiserson, C.E., Sukha, J.: Helper locks for fork-join parallel programming. In: Pro-
ceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP’10), pp. 245–256. ACM, New York, NY, USA, January 9–14 (2010)

28. Cole, R., Ramachandran, V.: Analysis of randomized work stealing with false sharing. In: Proceedings
of the IEEE 27th International Symposium on Parallel and Distributed Processing (IPDPS’13), pp.
985–998. IEEE, Los Alamitos, CA, USA, May 20–24 (2013)

29. Agrawal, K., Fineman, J.T., Sheridan, B., Sukha, J., Utterback, R.: Provably good scheduling for
parallel programs that use data structures through implicit batching. In: Proceedings of the 26th ACM
Symposium on Parallelism in Algorithms and Architecture (SPAA’14), pp. 84–95. ACM, New York,
NY, USA, June 23–25 (2014)

123

Int J Parallel Prog (2018) 46:173–197 195

30. Sanchez, D., Yoo, R.M., Kozyrakis, C.: Flexible architectural support for fine-grain scheduling. In:
Proceedings of the 15th Edition of ASPLOS on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’10), pp. 311–322. ACM, NewYork, NY, USA,March 13–17 (2010)

31. Kulkarni, M., Carribault, P., Pingali, K., Ramanarayanan, G.,Walter, B., Bala, K., Chew, L.P.: Schedul-
ing strategies for optimistic parallel execution of irregular programs. In: Proceedings of the 20thAnnual
SymposiumonParallelism inAlgorithms andArchitectures (SPAA’08), pp. 217–228.ACM,NewYork,
NY, USA, June 14–16 (2008)

32. Hill, M.D., Marty, M.R.: Amdahl’s law in the multicore era. Computer 41(7), 33–38 (2008)
33. Chen, S., Gibbons, P.B., Kozuch, M., Liaskovitis, V., Ailamaki, A., Blelloch, G.E., Falsafi, B., Fix,

L., Hardavellas, N., Mowry, T.C., Wilkerson, C.: Scheduling threads for constructive cache sharing on
CMPs. In: Proceedings of the 19th Annual ACMSymposium on Parallel Algorithms and Architectures
(SPAA’07), pp. 105–115. ACM, New York, NY, USA, June 9–11 (2007)

34. Faxén, K.F.: Efficient work stealing for fine grained parallelism. In: Proceedings of the 39th Interna-
tional Conference on Parallel Processing (ICPP’10), pp. 313–322. IEEE, Los Alamitos, CA, USA,
September 13–16 (2010)

35. Mohr, E., Kranz, D.A., Halstead Jr., R.H.: Lazy task creation: a technique for increasing the granularity
of parallel programs. IEEE Trans. Parallel Distrib. Syst. 2(3), 264–280 (1991)

36. Loidl, H.W., Hammond, K.: On the granularity of divide-and-conquer parallelism. In: Proceedings
of the 1995 Glasgow Workshop on Functional Programming (FP’95), pp. 8–10. Springer, Berlin,
Germany, July 10–12 (1995)

37. Duran,A., Corbalán, J., Ayguadé, E.: Evaluation ofOpenMP task scheduling strategies. In: Proceedings
of the 4th International Workshop on OpenMP in New Era of Parallelism (IWOMP’08), pp. 100–110.
Springer, Berlin, Germany, May 12–14 (2008)

38. Cong, G., Kodali, S., Krishnamoorthy, S., Lea, D., Saraswat, V., Wen, T.: Solving large, irregular
graph problems using adaptive work-stealing. In: Proceedings of the 37th International Conference on
Parallel Processing (ICPP’08), pp. 536–545. IEEE, Washington, DC, USA, September 9–12 (2008)

39. Duran, A., Corbalán, J., Ayguadé, E.: An adaptive cut-off for task parallelism. In: Proceedings of the
2008 ACM/IEEE Conference on Supercomputing (SC’08), pp. 339–349. IEEE, Piscataway, NJ, USA,
November 15–21 (2008)

40. Acar, U.A., Charguéraud, A., Rainey, M.: Oracle scheduling: controlling granularity in implicitly
parallel languages. In: Proceedings of the 2011 ACM International Conference on Object Oriented
Programming Systems Languages and Ap-plications (OOPSLA’11), pp. 499–518. ACM, New York,
NY, USA, October 22–27 (2011)

41. Wang, L., Cui, H., Duan, Y., Lu, F., Feng, X., Yew, P.: An adaptive task creation strategy for work-
stealing scheduling. In: Proceedings of the 8th Annual IEEE/ACM International Symposium on Code
Generation and Optimization (CGO’10). ACM, New York, NY, USA, April 24–28 (2010)

42. Tzannes, A., Caragea, G.C., Barua, R., Vishkin, U.: Lazy binary-splitting: a run-time adaptive work-
stealing scheduler. In: Proceedings of the 15th ACMSIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP’10), pp. 179–190. ACM, New York, NY, USA, January 9–14 (2010)

43. Cao, Q., Hu, C.J., Li, S.G., He, H.H.: Adaptive task granularity strategy for OpenMP3.0 task model
on cell architecture. In: Proceedings of International Conferences on High Performance Networking,
Computing, Communication Systems, and Mathematical Foundations (ICHCC 2011), pp. 393–400.
Springer, Berlin, Germany, May 5–6 (2011)

44. Hoffmann, R., Rauber, T.: Fine-grained task scheduling using adaptive data structures. In: Proceedings
of the 14th International European Conference on Parallel Processing (Euro-Par’08), pp. 253–262.
Springer, Berlin, Germany, August 26–29 (2008)

45. Lee, I.A., Boyd-Wickizer, S., Huang, Z., Leiserson, C.E.: Using memory mapping to support cactus
stacks in work-stealing runtime systems. In: Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques (PACT’10), pp. 411–420. ACM, New York, NY,
USA, September 11–15 (2010)

46. Zhao, J.S., Shirako, J., Nandivada, V.K., Sarkar, V.: Reducing task creation and termination overhead in
explicitly parallel programs. In: Proceedings of the 19th International Conference on Parallel Architec-
tures and Compilation Techniques (PACT’10), pp. 169–180. ACM, New York, NY, USA, September
11–15 (2010)

47. Robison, A., Voss, M., Kukanov, A.: Optimization via reflection on work stealing in TBB. In: Pro-
ceedings of the 22nd IEEE International Parallel and Distributed Processing Symposium (IPDPS’08),
pp. 1–8. IEEE, New York, NY, USA, April 14–18 (2008)

123

196 Int J Parallel Prog (2018) 46:173–197

48. Chen, Q., Huang, Z., Guo, M., Zhou, J.: CAB: cache aware bi-tier task-stealing in multi-socket
multi-core architecture. In: Proceedings of the 2011 International Conference on Parallel Process-
ing (ICPP’11), pp. 722–732. IEEE, New York, NY, USA, September 13–16 (2011)

49. Chen, Q., Guo, M.Y., Huang, Z.Y.: Adaptive cache aware bitier work-stealing in multisocket multicore
architectures. IEEE Trans. Parallel Distrib. Syst. 24(12), 2334–2343 (2013)

50. Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Prins, J.F.: Scheduling task parallelism on multi-socket
multicore systems. In: Proceedings of the 1st International Workshop on Runtime and Operating
Systems for Supercomputers (ROSS’11), pp. 49–56. ACM, New York, NY, USA, May 31 (2011)

51. Olivier, S.L., Porterfield, A.K.,Wheeler, K.B., Spiegel, M., Prins, J.F.: OpenMP task scheduling strate-
gies for multicore NUMA systems. Int. J. High Perform. Comput. Appl. 26(2), 110–124 (2012)

52. Chen, Q., Guo, M.: Locality-aware work stealing based on online profiling and auto-tuning for multi-
socket multicore architectures. ACM Trans. Arch. Code Optim. 12(222), 1–24 (2015)

53. Tzannes, A., Caragea, G.C., Barua, R., Vishkin, U.: Lazy binary-splitting: a run-time adaptive work-
stealing scheduler. In: Proceedings of the 15th ACMSIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP’10), pp. 179–189. ACM, New York, NY, USA, January 9–14 (2010)

54. Chase, D., Lev, Y.: Dynamic circular work-stealing deque. In: Proceedings of the 17th Annual ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA’05), pp. 21–28. ACM, New York,
NY, USA, July 18–20 (2005)

55. Lê, N.M., Pop, A., Cohen, A., Nardelli, F.Z.: Correct and efficient work-stealing for weak memory
models. In: Proceedings of the 18th ACMSIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP’13), pp. 69–79. ACM, New York, NY, USA, February 23–27 (2013)

56. Traoré, D., Roch, J., Maillard, N., Gautier, T., Bernard, J.: Deque-free work-optimal parallel STL
algorithms. In: Proceedings of the 14th International European Conference on Parallel Processing
(Euro-Par’08), pp. 887–897. Springer, Berlin, Germany, August 26–29 (2008)

57. Dinan, J., Larkins, D.B., Sadayappan, P., Krishnamoorthy, S., Nieplocha, J.: Scalable work stealing. In:
Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis
(SC’09), pp. 1–11. ACM, New York, NY, USA, November 14–20 (2009)

58. Michael, M.M., Vechev, M.T., Saraswat, V.A.: Idempotent work stealing. In: Proceedings of the 14th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’09), pp.
45–53. ACM, New York, NY, USA, February 14–18 (2009)

59. Kumar, S., Hughes, C.J., Nguyen, A.: Carbon: architectural support for fine-grained parallelism on
Chip multiprocessors. In: Proceedings of the 34th Annual International Symposium on Computer
Architecture, Conference (ISCA’07), pp. 162–173. ACM, New York, NY, USA, June 9–13 (2007)

60. Quintin, J., Wagner, F.: Hierarchical work-stealing. In: Proceedings of the 16th International European
Conference on Parallel Processing (Euro-Par’10). Springer, Berlin, Germany, August 31–September
3 (2010)

61. Wang, Y., Zhang, Y., Su, Y., Wang, X., Chen, X., Ji, W., Shi, F.: An adaptive and hierarchical task
scheduling scheme for multi-core clusters. Parallel Comput. 40(10), 611–627 (2014)

62. Tsai, Y.C., Huang, Y.C.: A generalized framework for parallelizing traffic sign inventory of video log
images using multicore processors. Comput. Aided Civ. Infrastruct. Eng. 27(7SI), 476–493 (2012)

63. van Dijk, T., van de Pol, J.C.: Lace: non-blocking split deque for work-stealing. In: Proceedings of the
20th International European Conference on Parallel Processing (Euro-Par’14), pp. 206–217. Springer,
Berlin, Germany, August 25–26 (2014)

64. Hendler, D., Lev, Y., Shavit, N.: Dynamic memory ABP work-stealing. In: Proceedings of the 18th
International Conference on Distributed Computing (DISC 2004), pp. 188–200. Springer, Berlin,
Germany, October 4–8 (2004)

65. Guo, Y., Zhao, J.Z., Cave, V., Sarkar, V.: SLAW: A scalable locality-aware adaptive work-stealing
scheduler for multi-core systems. In: Proceedings of the 15th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP’10), pp. 341–342. ACM, New York, NY, USA,
January 09–14 (2010)

66. Guo, Y., Barik, R., Raman, R., Sarkar, V.: Work-first and help-first scheduling policies for async-finish
task parallelism. In: Proceedings of the 23rd IEEE International Parallel and Distributed Processing
Symposium (IPDPS’09), pp. 1–12. IEEE, New York, NY, USA, May 23–29 (2009)

67. Paudel, J., Tardieu, O., Amaral, J.N.: On the merits of distributed work-stealing on selective locality-
aware tasks. In: Proceedings of the 2013 42nd International Conference on Parallel Processing
(ICPP’13), pp. 100–109. IEEE, New York, NY, USA, October 1–4 (2013)

123

Int J Parallel Prog (2018) 46:173–197 197

68. Cao, Y., Sun, H.Y., Qian, D.P., Wu, W.G.: Stable adaptive work-stealing for concurrent multicore
runtime systems. In: Proceedings of the 2011 IEEE International Conference on High Performance
Computing and Communications (HPCC’11). IEEE, New York, NY, USA, September 2–4 (2011)

69. Adnan, Sato, M.: Efficient work-stealing strategies for fine-grain task parallelism. In: Proceedings of
the 2011 IEEE International Parallel and Distributed Processing Symposium (IPDPS’11). IEEE, Los
Alamitos, CA, USA, May 16–22 (2011)

70. Acar, U.A., Chargueraud, A., Rainey, M.: Scheduling parallel programs by work stealing with private
deques. In: Proceedings of the 18th ACMSIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP’13), pp. 219–228. ACM, New York, NY, USA, February 23–27 (2013)

71. Herlihy, M., Liu, Z.: Well-structured futures and cache locality. In: Proceedings of the 19th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’14), pp. 155–166.
ACM, New York, NY, USA, February 15–19 (2014)

72. Fohry, C., Bungart, M., Posner, J.: Fault tolerance schemes for global load balancing in X10. Scalable
Comput. Pract. Exp. 16(2SI), 169–185 (2015)

73. Tardieu, O., Wang, H., Lin, H.: A work-stealing scheduler for X10’s task parallelism with suspen-
sion. In: Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP’12), pp. 267–276. ACM, New York, NY, USA, February 25–29 (2012)

74. Tardieu, O., Herta, B., Cunningham, D., Grove, D., Kambadur, P., Saraswat, V., Shinnar, A., Takeuchi,
M., Vaziri, M., Zhang, W.: X10 and APGAS at Petascale. ACM Trans. Parallel Comput. 2(4), 1–32
(2015)

75. Agarwal, S., Barik, R., Bonachea, D., Sarkar, V., Shymasundar, R.K., Yelick, K.: Deadlock-free
scheduling of X10 computations with bounded resources. In: Proceedings of the 19th Annual Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA’07), pp. 229–240. ACM, New York, NY,
USA, June 9–11 (2007)

76. Pezzi, G.P., Cera, M.C., Mathias, E., Maillard, N., Navaux, P.O.A.: Online scheduling of MPI-2
programs with hierarchical work stealing. In: Proceedings of the 19th International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD’07), pp. 247–254. IEEE, Los
Alamitos, CA, USA, October 24–27 (2007)

77. Saraswat, V.A., Kambadur, P., Kodali, S., Grove, D., Krishnamoorthy, S.: Lifeline-based global load
balancing. In: Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP’11). ACM, New York, NY, USA, February 12–16 (2011)

78. Ravichandran, K., Sangho, L., Pande, S.: Work stealing for multi-core HPC clusters. In: Proceedings
of the 17th International European Conference on Parallel Processing (Euro-Par’11), pp. 205–217.
Springer, Berlin, Germany, August 29–September 2 (2011)

79. Cao, Y.J., Qian, D.P., Wu, W.G., Dong, X.S.: Adaptive scheduling algorithm based on dynamic core-
resource partitions formanycore processor systems. RuanjianXuebao J. Softw. 23(02), 240–252 (2012)

80. Li, Z., Certner, O., Duato, J., Temam, O.: Scalable hardware support for conditional parallelization. In:
Proceedings of the 19th InternationalConferenceonParallelArchitectures andCompilationTechniques
(PACT’10), pp. 157–168. ACM, New York, NY, USA, September 11–15 (2010)

81. Long, G.P., Zhang, J.C., Fan, D.R.: Architectural support and evaluation of Cilk language onmany-core
architectures. Chin. J. Comput. 31(11), 1975–1985 (2008)

82. Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J.D., Lee, E.A., Morgan,
N., Necula, G., Patterson, D.A., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.A.: The parallel com-
puting laboratory at U.C. Berkeley: a research agenda based on the Berkeley view, Technical Report
No. UCB/EECS-2008-23, Electrical Engineering and Computer Sciences, University of California at
Berkeley, Berkeley (2008)

123

	Scheduling Parallel Computations by Work Stealing: A Survey
	Abstract
	1 Introduction
	2 Work Stealing Scheduling Algorithms (WS)
	2.1 Randomized Work Stealing Algorithm (RWS)
	2.2 Variants of RWS
	2.2.1 Two Basic Models
	2.2.2 Migration Cost
	2.2.3 Affinity Scheduling Algorithms
	2.2.4 Heterogeneous Systems
	2.2.5 More Theoretical Results

	3 Optimization of Algorithm Implementation
	3.1 Scheduling Algorithms Considering Task Granularity
	3.1.1 Cut-Off Policy
	3.1.2 Adaptive Task Granularity
	3.1.3 Other Methods

	3.2 Locality-Sensitive Scheduling Algorithm
	3.2.1 Cache-Affinity Scheduling
	3.2.2 Locality-Sensitive Scheduling in Multi-socket Multicore Architecture

	3.3 Improvement of Task Queue
	3.4 Other Methods

	4 Processor Architecture Oriented Optimization
	4.1 Hierarchical Task Scheduling on Cluster Systems
	4.2 Task Scheduling on Manycore Architecture

	5 Conclusions and Recommendations
	Acknowledgements
	References

