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Abstract Parallel programming has become ubiquitous; however, it is still a low-level
and error-prone task, especially when accelerators such as GPUs are used. Thus, algo-
rithmic skeletons have been proposed to providewell-defined programming patterns in
order to assist programmers and shield them from low-level aspects. As the complex-
ity of problems, and consequently the need for computing capacity, grows, we have
directed our research toward simultaneous CPU–GPU execution of data parallel skele-
tons to achieve a performance gain. GPUs are optimized with respect to throughput
and designed for massively parallel computations. Nevertheless, we analyze whether
the additional utilization of the CPU for data parallel skeletons in theMuenster Skele-
ton Library leads to speedups or causes a reduced performance, because of the smaller
computational capacity of CPUs compared to GPUs. We present a C++ implementa-
tion based on a static distribution approach. In order to evaluate the implementation,
four different benchmarks, includingmatrixmultiplication,N-body simulation, Frobe-
nius norm, and ray tracing, have been conducted. The ratio of CPU andGPU execution
has been varied manually to observe the effects of different distributions. The results
show that a speedup can be achieved by distributing the execution among CPUs and
GPUs. However, both the results and the optimal distribution highly depend on the
available hardware and the specific algorithm.
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1 Introduction

Because of the growing complexity of applications and the growing amount of data,
leading to an increased demand for high performance, we can see nowadays that
multi-core andmany-core processors have become ubiquitous. This includes hardware
accelerators such as graphics processing units (GPU),1 which gained popularity in
recent years and promise to deliver high performance in teraflops-scale.

However, programming GPUs is still a challenging task that requires knowledge
about low-level concepts such as memory allocation or data transfer between the
main and device memory. Additionally, the programmer has to be familiar with the
hardware architecture to fully exploit its computing capabilities. These low-level con-
cepts pose a high barrier for developers and make GPU programming a tedious and
error-prone task. The task becomes even more complex when considering clusters and
multi-GPU systems, which require additional programming models such as MPI and
CUDA.

Cole [1,2] proposed algorithmic skeletons as a high-level approach for parallel
programming. Algorithmic skeletons provide well-defined, frequently used parallel
and distributed programming patterns. Thus, they encourage a structured way of par-
allel programming and bring the advantages of portability as well as hiding low-level
details. The increased level of abstraction allows for providing implementations of
skeletons for various architectures.

As programmers demand increasing computation capacities to solve complex
problems, we investigate the possibilities of exploiting all available resources for
the execution of data parallel skeletons (such as map, zip or reduce) of
the Muenster Skeleton Library (Muesli) [3]. Yet, data parallel skeletons have been
either executed on the CPU, GPU, or several GPUs in the case of a multi-GPU
setup. In general, GPUs are considered to have a significantly higher peak per-
formance compared to CPUs, because they are designed for massively parallel
workloads and are optimized for high throughput. Nevertheless, we analyze whether
the additional utilization of the CPU can lead to notable speedups. We present
a static approach with manually set distributions for simultaneously executing
data parallel skeletons on CPUs and GPUs, as well as four benchmark applica-
tions (matrix multiplication, N-body simulation, Frobenius norm and ray tracing)
to determine the changes in performance compared to exclusive GPU execu-
tion.

The remainder of this paper is structured as follows. TheMuenster Skeleton Library
and its underlying concepts are briefly introduced in Sect. 2. Section3 covers dif-
ferent approaches toward simultaneous CPU–GPU execution in the context of data
parallel skeletons. The changes to the implementation of data parallel skeletons for
simultaneous CPU–GPU execution are presented in Sect. 4. Section5 evaluates the
implementation by discussing the performance of the benchmark applications. Sec-
tion6 outlines related work and Sect. 7 concludes the paper and gives a brief outlook
to future work.

1 With regard to the CUDA terminology, we also refer to GPUs as devices.
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2 The Muenster Skeleton Library Muesli

TheC++ libraryMuesli provides algorithmic skeletons and distributed data structures
for shared and distributed memory parallel programming. It is built on top of MPI [4],
OpenMP [5], and CUDA [6,7]. Thus, it provides efficient support for multi- and
many-core computer architectures as well as clusters of both. A first implementation
of data parallel skeletons with GPU support using CUDA was presented in [3].

Conceptually, we distinguish between data and task parallel skeletons. Data par-
allel skeletons such as map, zip, and fold are provided as member functions
of distributed data structures, including a one-dimensional array, a two-dimensional
matrix, and a two-dimensional sparse matrix, of which the last does not support
skeletons with accelerator support for now [8]. Communication skeletons such as
permutePartition assist the programmer in rearranging data that is distributed
among several MPI processes. Task parallel skeletons represent process topologies,
such as Farm [9], Pipeline (Pipe), Divide and Conquer (D&C) [10] and Branch and
Bound (B&B) [11]. They can be arbitrarily nested to create a process topology that
defines the overall structure of a parallel application. The algorithm-specific behavior
of such a process topology is defined by particular user functions that describe the
algorithm-specific details.

In Muesli, a user function is either an ordinary C++function or a functor, i.e.,
a class that overrides the function call operator. Due to memory access restrictions,
GPU-enabled skeletons must be provided with functors as arguments, CPU skeletons
can take both, functions and functors, as arguments. As a key feature of Muesli,
the well-known concept of Currying is used to enable partial applications of user
functions [12]. A user function requiringmore arguments than provided by a particular
skeleton can be partially applied to a given number of arguments, thereby yielding a
“curried” function of smaller arity, which can be passed to the desired skeleton. On the
functor side, additional arguments are provided as data members of the corresponding
functor.

3 Simultaneous CPU–GPU Execution in the Context of Data Parallel
Skeletons

There are different approaches toward simultaneous CPU–GPU execution. In this sec-
tion, we outline different approaches as well as their advantages and disadvantages in
order to elaborate on the decision to implement a static approach. Considering simul-
taneous CPU–GPU execution, there are similarities to load balancing and scheduling
mechanisms in other contexts such as distributed operating systems. There is typically
a distinction between static and dynamic approaches. For example, Zhang et al. [13]
compare dynamic and static load-balancing strategies and Feitelson et al. [14] define
the partition size, i.e., the number of processors a job is executed on, as either fixed,
variable, adaptive or dynamic.

Based on these findings, in the following we distinguish between static, dynamic,
and hybrid approaches. In our context of data parallel skeleton execution, staticmeans
that there is a fixed ratio regarding the distribution of CPU and GPU execution. In
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contrast, dynamic means that the work is dynamically distributed among CPU and
GPU at runtime.Hybrid approaches make use of both, e.g., start with a fixed ratio that
is adjusted dynamically during the execution.

Static approaches work in such a way that a fixed ratio regarding CPU–GPU
execution is specified, which is used to distribute the work. For example, in this
implementation a value, determining the distribution between CPU and GPU, is set
for each data structure. Thus, the distribution remains the same for each skeleton call.

The advantage is that this causes no significant overhead. There is no need for
dedicated work management to balance the utilization of CPU and GPUs. Hence, this
approach has a good potential to lead to aminimum execution time of a given program,
if the optimal distribution is known and the execution environment remains stable.

These conditions are difficult to meet, and therefore, disadvantages come with
this static nature. In order to find an optimal distribution, prior knowledge about the
system and the program is required. For instance, cost models can be used to find a
good distribution [15]. However, in case of an inferior distribution, the CPU or GPU
might idle, while the other component is still working. Consequently, the full potential
cannot be utilized.

Dynamic approaches distribute thework at runtime.Consequently, there is a varying
amount of work done by the CPU and GPUs. This overcomes the aforementioned
shortcomings of the static approach. There is no need to have prior knowledge in order
to find an optimal distribution. This makes it more convenient to use for programmers,
as the work is automatically assigned to the components. Moreover, there should be
less idle time, because as soon as either CPU or a GPU has finished, a new task is
assigned.

However, this approach introduces disadvantages. An additionalmanagement effort
is required to distribute the work. For example, an implementation could use a queue
that stores work packages and the CPU and GPUs fetch a new package as soon as they
have finished their current one. This would require a locking mechanism for the queue
access and incur multiple copying steps from the main memory to the GPU memory,
both consuming additional time. Hence, the performance gain through simultaneous
CPU–GPU execution could be outweighed by the management overhead.

Hybrid approaches combine aspects of both static and dynamic ones. One instance
of a hybrid approach is work stealing. At first, a static distribution is used so that
there is no overhead during the execution. As soon as one component has finished its
tasks, there is a transition into a dynamic approach, e.g., tasks are stolen from another
component’s queue. Hence, there is a better resource utilization, but also overhead for
management tasks such as locking mechanisms.

Consequently, hybrid approaches comprise advantages and disadvantages of static
and dynamic approaches. They should be able to come close to an optimal distribution,
without requiring the user to specify it manually. Additionally, there should be less
overhead during the program execution compared to dynamic approaches, e.g., in the
case of work stealing, the dynamic distribution is utilized later during the execution. In
the best case, the optimal distribution is initially used and thus, the approach behaves
like a static one. However, in order to achieve this behavior and to determine a good
distribution, knowledge about the system as well as the program is required.
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Our goal is to examine the effects of additionally utilizing the CPU for execution of
data parallel skeletons and the effects of different distributions among CPU andGPUs.
Consequently, for the implementation, we have focused on a static approach since it
serves our purpose best, which is to analyze whether a simultaneous CPU–GPU is
in general beneficial in terms of execution time and how notable the speedups are.
We focus on benchmarking different distributions, while trying to keep the effects of
additional factors, such as management overhead introduced by dynamic approaches,
as low as possible. For example, Grewe and O’Boyle [16] show that static approaches
can outperform dynamic approaches on heterogeneous multi-core platforms due to the
lower overhead. Once the potential of simultaneous CPU–GPU execution has been
exhibited, we can combine it with a cost model to predict the static distribution or the
initial distribution in a hybrid approach. We leave this to future work.

4 Implementation Details

In this paper, we focus on the most important changes regarding the implementation
of simultaneous CPU–GPU execution of data parallel skeletons in Muesli. A more
detailed overview about the original C++ implementation of data parallel skeletons
can be found in [3]. The revised version featuringmulti-GPU execution of data parallel
skeletons is presented in [17].

4.1 Calculation Ratio

Muesli offers the distributed array and the distributed matrix as distributed data struc-
tures that provide data parallel skeletons with GPU support. These data structures are
distributed among several processes.

Figure1 shows the different views on a distributed matrix. In the given example,
a 4 × 4 matrix is considered (Fig. 1a), which is distributed among four processes
(Fig. 1b). Each local partition is equally distributed between one CPU and one GPU
for the execution of data parallel skeletons (Fig. 1c). When designing the functions
for data parallel skeletons, the programmer can focus on the virtual global view, i.e.,
pretending that the data is not distributed. All elements of a matrix are automatically
processed in parallel on the available nodes when the skeleton is executed.

(a) (b) (c)

Fig. 1 Distributed matrix. a Global view, b local view and c CPU–GPU distribution
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Fig. 2 Distribution of local partition on hardware resources

The constructor of a distributed array or matrix takes the calculation ratio as an
additional argument, which determines how the execution of data parallel skeletons
is distributed among CPU and GPUs. This satisfies our requirements since we only
distribute data between two resource types: CPU andGPU. The distribution is done per
row: if a partition consists of 1024 rows and the ratio is 45%, �1024 × 0.45� = 460
rows are handled by the CPU and the remaining 1024 − 460 = 564 rows by the
available GPUs.

To further clarify the distribution mechanism, an additional example is provided
in Fig. 2. The (sub)matrix on the left represents a local partition. We assume that
the calculation ratio is 70%. Therefore, the number of lines for which the skeleton
execution is performed by the CPU is �4 × 0.7� = 2. For the remaining two rows,
the skeleton execution is distributed among all available GPUs within the node. In
this scenario, there are two GPUs available. Consequently, each GPU executes the
skeleton for one row of the local partition.

Muesli targets HPC cluster environments and therefore we assume that each node is
equipped with the same hardware. Moreover, as it is typically the case, we assume that
each node is equippedwith one ormore identical GPUs. Consequently, the GPUwork-
load can be equally distributed among all available GPUs, since each GPU provides
the same computation capacity.

4.2 Execution Plans

The implementation is based on execution plans. InMuesli, execution plans have origi-
nally been introduced tomanage the execution of data parallel skeletons onmulti-GPU
systems [3]. They include information about the partition size, indices and pointers to
the location in main and device memory.

We have extended the scope to also manage the distribution between the CPU
and GPUs. As soon as a distributed data structure is instantiated, an execution plan is
created for theCPU and for eachGPU. Thus, in a systemwith oneCPU and fourGPUs,
five execution plans are created. Execution plans serve two different purposes: (1) to
structure the data such that the skeleton can be executed simultaneously on the CPU
and GPUs, and (2) to provide necessary information for the execution of skeletons,
such as partition size or pointers to host and device memory. This information is for
example required to launch CUDA kernels and to transfer data.

Listing 1 shows the initialization of the execution plans, which is taken care of by
Muesli. In lines 4–8, the plans are created and it is checked,whether there are anyGPUs
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1 template <typename T>
2 void Matrix <T>:: init()
3 {
4 plans = new ExecutionPlan <T> [num_gpus + 1];
5

6 if(num_gpus == 0){
7 calculation_ratio = 1;
8 }
9 // calculate number of rows for CPU and GPUs

10 // nLocal denotes the number of rows of local partition
11 auto rows_on_host = static_cast <int >(std:: floor(nLocal

* calculation_ratio ));
12 auto rows_on_devices = nLocal - rows_on_host;
13 // set numbers of rows and columns for CPU plan
14 plans[index_cpu_plan ]. nLocal = rows_remaining_on_host;
15 plans[index_cpu_plan ]. mLocal = mLocal;
16 // set numbers of rows and columns for GPU plans
17 for (int i = 0; i < num_gpus; i++){
18 plans[i]. nLocal = rows_on_devices / num_gpus;
19 plans[i]. mLocal = mLocal;
20 }
21 // distribute remaining rows
22 for (int i = 0; i < rows_on_devices % num_gpus; i++){
23 plans[i]. nLocal ++;
24 }
25 // set further values for execution plans
26 int gpuBase = 0; int rowBase = 0;
27

28 for (int i = 0; i < num_gpus + 1; i++) {
29 plans[i].size = plans[i]. nLocal * plans[i]. mLocal;
30 plans[i]. bytes = plans[i].size * sizeof(T);
31 plans[i]. first = gpuBase + firstIndex;
32 // ... further values
33 }
34 }

Listing 1 Initialization of Execution Plans

available. If there are none, skeletons are entirely executed by the CPU. In lines 11–24,
the number of rows for each execution plan is determined. First, the number of rows
handled by the CPU is calculated and stored in the CPU execution plan. Second, the
remaining number of rows is distributed among the GPUs within the two for-loops.
Lines 26–33 show the calculation of the remaining necessary information, such as the
size, required memory space and indices.

4.3 Data Parallel Skeletons

As we have mentioned in Sect. 4.1, data parallel skeletons are provided as member
functions of distributed data structures. Conceptually, each skeleton consists of two
parts. The first part handles the GPU execution and the second part the CPU execution.
The GPU execution consists of asynchronous kernel launches for each GPU. As the
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kernels are launched asynchronously using streams, it is possible to overlap the CPU
calculations and the execution of the CUDA kernels without explicit threading. The
CPU part is parallelized by using OpenMP [5].

1 void Matrix <T>:: mapInPlace(MapFunctor& f) {
2 upload ();
3

4 // map GPU
5 for (int i = 0; i < Muesli :: num_gpus; i++) {
6 f.init(plans[i].nLocal , plans[i].mLocal ,

plans[i].firstRow , plans[i]. firstCol);
7

8 // ... calculate dimGrid etc.
9 detail ::mapKernel <<<dimGrid , dimBlock , 0,

Muesli :: streams[i]>>>(
10 plans[i].d_Data , plans[i].d_Data , plans[i].size ,

f);
11 }
12

13 // map CPU
14 f.init(plans[index_cpu_plan ].nLocal ,

plans[index_cpu_plan ].mLocal ,
plans[index_cpu_plan ].firstRow ,
plans[index_cpu_plan ]. firstCol);

15

16 #pragma omp parallel for
17 for (int i = 0; i < plans[index_cpu_plan ]. nLocal; i++)

{
18 for (int j = 0; j < plans[index_cpu_plan ]. mLocal;

j++) {
19 setLocal(/* index calculation */,
20 /* index calculation */,
21 f(localPartition [ /* index calculation */

]));
22 }
23 }
24

25 msl:: syncStreams ();
26 }

Listing 2 Implementation of the mapInPlace skeleton

The implementation of the mapInPlace skeleton, which is provided by the
Muesli library, is shown in Listing 2. The upload method implements a lazy
copying mechanism for transferring data from main to device memory and vice versa,
i.e., data is only copied if required. Lines 5–11 show the GPU part. First, the functor
is initialized and second, the kernel is launched. This is done for each GPU. After the
asynchronous kernel launches, the CPU part of the skeleton is executed as shown in
lines 14–23. First, the functor is again initialized with the correct values (line 14) and
second, the local partition is updated with the new values (lines 16–23). The function
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syncStreams synchronizes the kernel launches with the host thread and therefore
ensures that the kernels are finished before returning from the mapInPlace skeleton.

The other skeletons provided by Muesli behave in a similar way. One point to
further comment on are the final steps of the fold skeleton. After each resource has
folded the data assigned to it, each process computes its local result by combining
these results with a local fold step, which is performed on the CPU. Finally, all local
fold results are collected by one process, which computes the final global result. This
last fold step is as well performed on the CPU.

5 Experimental Results

To observe the effects on performance, we have conducted four benchmarks. All
benchmarks have been executed on a cluster with two Intel Xeon E5-2680 v3 CPUs
(total of 24 cores) and two Nvidia K80 boards (total of four GPUs) per node.

As research hypothesis, we have assumed that an increasing usage of the CPU at
first leads to a speedup compared to a GPU-only configuration, because additional
resources can be utilized and data transfer costs can be reduced, i.e., there is less data
to be copied frommain to device memory and vice versa. However, with an increasing
CPU usage there should be a turning point, where the execution time starts to increase,
since the computational capacity of the GPUs cannot be fully exploited anymore.

This is due to the architecture of GPUs. Today’s GPUs consist of many, yet simple,
cores and are optimized for throughput, in contrast to latency-oriented CPUs, which
have fewer cores that are more complex, e.g., they offer sophisticated out-of-order
execution. Consequently, GPUs are utilized best, if a large number of threads can be
launched to efficiently execute a given task. Therefore, an increasing CPU execution
should not leave enoughwork to theGPU so that its potential cannot be fully exploited,
leading to an overall increased execution time.

In the following, we approach each benchmark from two perspectives. First, we
keep the number of GPUs constant (with four GPUs in each node) and vary the number
of nodes. We have used a configuration with 1, 4, and 16 nodes. Second, we keep the
number of nodes constant (configurationwith four nodes) andvary thenumber ofGPUs
in each node (one, two, and four GPUs). The presented execution times measure the
entire application’s execution time. Besides the execution of the skeletons, this also
includes the creation of CUDA streams, instantiation of data structures as well as data
transfers from host to device memory and vice versa.

5.1 Matrix Multiplication

The matrix multiplication benchmark uses the Cannon algorithm [18]. A detailed
description of the implementation can be found in [17]. It uses a dot product calculation
as user function and the mapIndexInPlace skeleton. Two 8192× 8192 matrices
with single precision values were used for the benchmark. The results are presented
in Fig. 3.

Initially, the execution time decreases when the CPU is used to perform a part of the
skeleton execution and increases after a turning point, at which theminimumexecution
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Fig. 3 Results matrix multiplication benchmark. a 1, 4, and 16 nodes with 4 GPUs per node, b 4 nodes
with 1, 2, and 4 GPUs per node

time is reached. In the case of four GPUs per node as well as one and four nodes, the
minimum execution time is reached at 10% CPU execution and with 16 nodes at 6%
(Fig. 3a).

Considering the results for four nodeswith one, two, and fourGPUs each, the results
are similar (Fig. 3b). First, the execution time decreases and after a turning point it
increases again, because the full potential of the GPUs cannot be utilized anymore and
the execution on the CPU consumesmore time. Eventually, the results converge, as the
number of GPUs becomes less significant, when the CPU takes over a larger part of
the execution. With 100% CPU execution, the number of GPUs becomes completely
irrelevant and the execution time is the same for all three configurations with four
nodes and one, two, and four GPUs in each node.
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The highest speedup can be observed when there are few GPUs in the system. i.e.,
for four nodes with one GPU each, the execution time decreases from 3.29 s (only
GPU) to 2.51 s (30% CPU execution), leading to a speedup of 23.7%. For four GPUs
the speedup is only 4.8% (0.07 s), as the four GPUs have a higher computational power
in relation to the CPU and thus, there is not as much potential for the CPU to increase
the overall performance as in a system with a single GPU.

5.2 N-Body Simulation

The N-body simulation simulates a dynamical system of particles and their influence
on each other over a series of time steps. We used a distributed array with single
precision values representing the particles and the map skeleton for the calculation.
The user function iterates over the array to determine the influence of the other particles
on the current one. The benchmark was conducted with 500,000 particles over five
time steps. The results are shown in Fig. 4.

The benchmark results are to some extent similar to the results of the matrix mul-
tiplication benchmark. With increasing CPU usage, the execution time first decreases
and then increases again. However, the improvements occur in steeper steps. Further
analysis revealed that the steps can be ascribed to the varying number of thread blocks
for the kernel launches and their distribution among the GPUs’ multiprocessors. This
is known as the tail effect [19].

In the following, we consider the configuration with four nodes and one GPU
per node. With a calculation ratio of 12%, the execution time is 105.32 s. As stated
above, the implementation uses a distributed array as the underlying data structure.
Since the benchmark has been executed on four nodes, 500,000/4 = 125,000 parti-
cles have been processed on each node. The calculation ratio is 12% and hence, the
GPU has processed 125,000−�0.12× 125,000� = 110,000 particles. When launch-
ing a CUDA kernel, Muesli sets the number of threads per block per default to 512.
The number of thread blocks is calculated as �(arraySi ze + threadsPer Block −
1)/threadsPer Block�. In the given case, this is �(110,000+ 512− 1)/512� = 215
thread blocks. The HPC cluster, we have executed the benchmark on, is equipped
with Nvidia K80 boards. Each GPU has 13 multiprocessors and on each multipro-
cessor there can be four active thread blocks at the same time, due to the maximum
number of 2048 active threads. Thus, seven multiprocessors have processed 17 thread
blocks, while six multiprocessors have processed 16 thread blocks (215/13 = 16.53
and 215mod 13 = 7). Since four thread blocks can be active simultaneously, the pro-
cessors processing 17 thread blocks have to launch five waves, because of the tail of
one block. With a calculation ratio of 15%, the execution time drops to 88.64s. Since
the number of thread blocks decreases to 208, each multiprocessor has to process
16 thread blocks, which is possible within four waves and this leads to the observed
speedup.

Taking the results for one nodewith fourGPUs (Fig. 4a), the execution time remains
almost constant for 0–13% CPU execution (about 105s) and then drops to around 86s
for 15–24% CPU execution, before the execution time starts to increase linearly. In
contrast to the matrix multiplication benchmark, the speedup for the configuration
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Fig. 4 Results N-body simulation benchmark. a 1, 4, and 16 nodes with 4 GPUs per node, b 4 nodes with
1, 2, and 4 GPUs per node

with four nodes and four GPUs per node is higher (46.5%) than for the configuration
with four nodes and two GPUs per node (32.6%).

5.3 Frobenius Norm

We included the calculation of the Frobenius norm as a benchmark that has very
simple user functions and makes use of the fold skeleton. Thus, it is possible
to observe different effects compared to the other benchmarks, which have rather
complex user functions. The Frobenius norm is a matrix norm, which is defined

as ‖A‖F =
√∑m

i=1
∑n

j=1 |ai j |2. The user functions are shown in Listing 3. The
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Square map functor (lines 1–9) takes one argument and returns its square value,
while the Sum fold functor (lines 9–15) takes two arguments and returns their sum.The
actual user functions are implemented in terms of the function call operator (lines 4–6
and lines 12–14).

1 class Square: public MapFunctor <double , double > {
2 public:
3 MSL_USERFUNC // expands to: __host__ __device__
4 double operator ()(double x) const {
5 return x * x;
6 }
7 };
8

9 class Sum: public FoldFunctor <double , double > {
10 public:
11 MSL_USERFUNC // expands to: __host__ __device__
12 double operator ()(double x, double y) const {
13 return x + y;
14 }
15 };

Listing 3 Frobenius Norm User Functions

1 double frobenius_norm(int dimension , bool output , double
calc_ratio) {

2 // create distributed matrix , with random values
(&init is function pointer)

3 Matrix <double > dm(dimension , dimension , 1,
num_total_procs , &init , Distribution ::DIST ,
calc_ratio);

4 // instantiate functors
5 Square sq; Sum sum;
6 // call mapInPlace skeleton with square user function
7 dm.mapInPlace(sq);
8 // call fold skeleton with sum user function
9 double f_norm = dm.fold(sum , 1);

10

11 return std::sqrt(f_norm);
12 }

Listing 4 Frobenius Norm Algorithm

In order to calculate the Frobenius norm, first, all values of a distributed matrix
(line 3) are squared using the mapInPlace skeleton with the Square functor
(line 7) and second, all values are folded using the fold skeleton with the Sum
functor (line 9). As a last step, the square root is calculated to get the final result
(line 11). For this benchmark, a 16,384×16,384matrixwas used. The implementation
of the algorithm, as described above, is shown in Listing 4.

The results indeed differ from the previously presented results to some extent. In
the case of 16 nodes and four GPUs per node (Fig. 5a), no performance improvement
can be achieved by using the CPU. Already 1% of CPU leads to worse results, even
though the increase of the execution time is not significant.
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Fig. 5 Results Frobenius norm benchmark. a 1, 4, and 16 nodes with 4 GPUs per node, b 4 nodes with 1,
2, and 4 GPUs per node

In the case of four nodes with a varying number of GPUs (Fig. 5b), we can observe
a slightly different result. With one and two GPUs, the best results can be achieved by
heavily making use of the CPU. In the case of one GPU, the minimal execution time
is at 98% CPU execution with a speedup of 11% and in the case of two GPUs, it is at
79% CPU execution with a speedup of 3.4%.

As pointed out earlier, the calculation of the Frobenius norm uses very simple user
functions. Consequently, utilizing GPUs to calculate the Frobenius norm means that
expensive data transfers are required to perform tasks, which are not computation-
intensive. By increasing the CPU usage, these data transfers can be avoided and
therefore, speedups can be achieved for configurations with one or two GPUs per
node. In the case of four GPUs per node, the utilization of the CPU leaves more com-
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putational capacity of theGPUs unutilized and therefore, the additional CPUexecution
is less beneficial.

In general, the results are more unstable than in the other benchmarks. This is due
to the low execution times, which are in a range from 0.08 to 1.2 s. Therefore, the
results are subject to more significant variations.

5.4 Ray Tracing

Ray tracing is an algorithm to render images. Coming from an imaginary camera, rays
are extended through an image plane into a scene. A scene consists of various objects
with different surfaces, which reflect the rays in different ways, and light sources. By
tracing the rays’ paths and intersections with the objects in the scene, it is possible to
calculate how the scene looks like from the given perspective. In this benchmark, we
created 1024× 1024 pixel images. Each picture was rendered using ten different light
sources and 100 spheres, which were randomly placed within the scene.

This benchmark confirms the results of the previous ones. In the case of one and four
nodes with four GPUs each (Fig. 6a), best results can be achieved with 7% (4.73 s)
and 2% CPU execution (1.4 s). Similarly to the matrix multiplication and N-body
simulation benchmarks, the execution time decreases at first and increases with a
higher utilization of the CPU. The results for 16 nodes correspond to the findings of
the Frobenius norm benchmark. Here, already 1%CPU execution leads to an increased
execution time.

The results for four nodes with one, two or four GPUs each, also match the other
findings (Fig. 6b). First, there is a decrease in the execution time and an increase later
on. In the case of one GPU, the CPU part must be larger to achieve the minimum
execution time, compared to the configurations with two and four GPUs, because in
this scenario, it is possible to benefit most from the additional computational capacity.
At 20% CPU execution, the results converge, since the CPU becomes the limiting
factor for the execution.

Similar to the N-body simulation benchmark, steps occur in the results. This time,
these steps arise from the number of CPU cores and the number of rows processed by
the CPU. The following example demonstrates the behavior for a configuration with
four nodes. Muesli launches one thread per core and there have been 24 cores per
node on the cluster that was used for the benchmark. Since the benchmark has been
executed with a 1024×1024 matrix, there are 256 rows per node. Consequently, for a
calculation ratio of 9%, 23 rows were processed by the CPU and for a calculation ratio
of 10%, it has been 25 rows. Thus, with 25 rows it is no longer possible to process
all rows within one wave of 24 threads, but an additional wave with only one utilized
core has to be launched. This explains the steps in the execution times.

5.5 Evaluation

All in all, it becomes clear that the simultaneousCPU–GPUexecution can be beneficial
regarding the execution time in certain situations. As we have expected in our research
hypothesis, it is possible to observe patterns in the results of the four benchmarks. We
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Fig. 6 Results ray tracing benchmark. a 1, 4, and 16 nodes with 4 GPUs per node, b 4 nodes with 1, 2,
and 4 GPUs per node

identified two factors that determine the possible performance gain of simultaneous
CPU–GPU execution, compared to a GPU-only configuration:

HardwareConfigurationThe speedup achieved by simultaneousCPU–GPU execution
of skeletonswas highest for configurationswith fewer nodes and fewerGPUs per node.
In all four benchmarks, the optimal percentage of CPU execution decreased, when the
number of GPUs per node increased.

As we have already mentioned above, this can be explained by the difference of the
available CPU’s and GPU’s computational capacities. In a setup with a powerful CPU
and only one GPU, it is beneficial to utilize the capacity of the CPU. However, if there
are more GPUs in the system, this is not desirable anymore, as too much capacity of
the GPUs is lost, when the CPU takes over the execution.
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Table 1 Comparison of execution times (4 nodes and 1 GPU per node)

Benchmark Execution times CPU-/GPU-
only ratio

Optimal
calculation
ratio (%)

Speedup
(%)

CPU-only (s) GPU-only (s) Minimum (s)

Matrix mult. 6.7248 3.2893 2.5188 2.04 30 23.4

N-body 87.7260 107.8758 51.5904 0.81 57 52.2

Frobenius 0.3349 0.3730 0.3304 0.90 98 11.4

Ray tracing 16.4775 5.0220 4.1160 3.28 19 18.0

Implementation of Algorithm and User Functions The benchmark results show that
certain implementations are better suited to be executed on GPUs than others. Table1
summarizes the benchmark results for a configurationwith four nodes and oneGPUper
node. By analyzing the execution times for CPU-only and GPU-only configurations
(column 5, CPU-only/GPU-only ratio), it becomes clear that our implementation of
the matrix multiplication and ray tracing benchmark are more GPU-friendly than the
implementations of the N-body simulation and Frobenius norm calculation.

The concrete implementation has an impact on the optimal CPU execution ratio
and the possible speedup. The optimal distribution for the N-body simulation was
57% CPU execution (speedup of 52.2% compared to the GPU-only configuration),
whereas in the case of the ray tracing benchmark the optimal distribution was 19%
(speedup of 18%). Consequently, the capability to reduce the execution time by using
simultaneous CPU–GPU execution is higher for implementations that are less suited
to be executed on GPUs.

Thefindings of theFrobenius benchmark seem to slightly contradict this conclusion.
Even though, the optimal distribution for the above mentioned configuration is 98%,
which supports our conclusion, only a speedup of 11.4% could be achieved.Moreover,
in the case of a configuration with 16 nodes and four GPUs per node, it is best not
to make use of the CPU for skeleton execution at all. However in the case of the
Frobenius benchmark, the low speedup can be ascribed to the fact that the actual
skeleton execution makes up only for a very small portion of the overall execution
time, compared to other operations such as the creation of CUDA streams as well as
data transfers from device to host memory and vice versa. Additionally, in the case
of four GPUs per node, the effects of the hardware configuration as described above
outweigh the effects of the implementation.

6 Related Work

Research regarding hybrid CPU–GPU execution has been conducted in the field
of algorithmic skeletons as well as in other domains. In the following, we will
outline related work in the mentioned order and relate them to the presented
approach.

SkePU is a skeleton library that focuses onmulticoreCPUs andmulti-GPU systems.
It is available in two distributions: as a stand-alone version and as an integrated ver-
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sion using the StarPU runtime system as backend. The StarPU runtime system offers
dynamic scheduling and memory management support for heterogeneous multicore
systems [20]. By mapping SkePU skeleton calls onto StarPU tasks, it is possible to
achieve hybrid CPU–GPU execution and load balancing [21]. In contrast to SkePU
with StarPU as backend, we implemented the simultaneous CPU–GPU execution as
a part of the Muesli library.

The skeleton framework Marrow provides algorithmic skeletons for multi-GPU
systems. It does not support CPU execution of skeletons, but it provides a runtime
system, which incorporates various modules such as Scheduler, Auto-Tuner, and Task
Launcher. These modules allow for scheduling tasks among multiple GPUs, based
on their relative performance [22]. Thus, in contrast to the presented approach, the
load balancing mechanism does not distribute work between CPU and GPUs, but
among different GPUs with different computational capacities. Marrow also relies
on a static approach to distribute work among GPUs. To determine the distribution,
Marrow uses a benchmark to evaluate the relative performance of the available GPUs
and distributes the work accordingly. This is one instance for a cost model to deter-
mine the distribution, as mentioned above, which could be implemented in future
work.

SkeTo is a framework supporting multi-core clusters and GPUs by utilizing
OpenMP and CUDA. Similar to the previous version of Muesli, it is possible to
compile two separate programs, one for CPUs and one for GPUs, from the same
code base. However, there is no support for simultaneous CPU–GPU execution [23].
The two decision made independently from each other, to provide two executables
for CPUs and GPUs out of the same code base, and SkePU’s design decision to
use StarPU as an runtime backend show that it poses an additional challenge to
incorporate efficient utilization of hybrid architectures within an algorithmic skeleton
library.

Additional skeleton libraries that we would like to mention are FastFlow [24]
and SkelCl [25]. Both frameworks focus on many-core and multi-GPU systems.
FastFlow has been extended to provide a OpenCL-based back-end for hybrid
CPU–GPU architectures [26]. During the program execution, each OpenCL ker-
nel is allocated to the best appropriate device. Per default, this means that GPUs
are selected first and if there is none available, the kernel is allocated to the
CPU.

Besides algorithmic skeletons there are other approaches toward the utilization of
heterogeneous architectures. For instance, Lee, Ro, and Gaudiot [27] present the CHC
framework, which allows for executing CUDA kernels simultaneous on CPU as well
as GPU, and Chen, Huo, and Agrawal [28] show how to accelerate MapReduce appli-
cations on heterogeneous CPU–GPU architectures. The results of both papers show
that the CPU utilization can reduce the execution times of the benchmark applications
in many cases. This motivates the decision to include a load balancing mechanism for
heterogeneous architectures in an algorithmic skeleton library.
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7 Conclusion

We have presented an approach for simultaneous CPU–GPU execution of data parallel
skeletons. By using so-called execution plans it was possible to distribute the execu-
tion of skeletons among the CPU and an arbitrary number of GPUs. Four different
benchmarks were presented in order to determine the effects on the execution time.

The benchmarks revealed that it is possible to achieve a notable speedup in certain
situations. The achieved speedup depends on the used hardware and the complexity
of the user function.

Since the presented approach has proven to lead to speedups for parallel applications
making use of Muesli’s data parallel skeletons, future work will be directed toward
further approaches. This will include dynamic approaches in order to examine the
effects of additional management overhead. Another research direction would be a
further analysis of methods for finding optimal CPU–GPU ratios, such as test runs
and cost models.
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