
Int J Parallel Prog (2017) 45:1285–1297
DOI 10.1007/s10766-016-0470-1

LCS: An Efficient Data Eviction Strategy for Spark

Yuanzhen Geng1 · Xuanhua Shi1 · Cheng Pei1 ·
Hai Jin1 · Wenbin Jiang1

Received: 18 October 2016 / Accepted: 26 October 2016 / Published online: 2 November 2016
© Springer Science+Business Media New York 2016

Abstract As an in-memory distributed computing system, Spark is often used to
speed up iterative applications. It caches intermediate data generated by previous
iterations into memory, so there is no need to repeat the generation when reusing these
data later. This sharing mechanism of caching data in memory makes Spark much
faster than other systems. When memory used for caching data reaches the capacity
limits, data eviction will be performed to supply space for new data, and the evicted
data need to be recovered when they are used again. However, classical strategies do
not aware of recovery cost, which could cause system performance degradation. This
paper shows that the recovery costs have significant difference in Spark, thus a cost
aware eviction strategy can obviously reduces the total recovery cost. To this end,
a strategy named LCS is proposed, which gets dependencies information between
cache data via analyzing application, and calculates the recovery cost during running.
By predicting how many times cache data will be reused and using it to weight the
recovery cost, LCS always evicts the data which lead to minimum recovery cost in

B Xuanhua Shi
xhshi@hust.edu.cn

Yuanzhen Geng
yzgeng@hust.edu.cn

Cheng Pei
peicheng@hust.edu.cn

Hai Jin
hjin@hust.edu.cn

Wenbin Jiang
wenbinjiang@hust.edu.cn

1 Services Computing Technology and System Lab & Cluster and Grid Computing Lab & Big Data
Technology and System Lab, School of Computer Science and Technology, Huazhong University
of Science and Technology, Wuhan 430074, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-016-0470-1&domain=pdf
http://orcid.org/0000-0001-8451-8656


1286 Int J Parallel Prog (2017) 45:1285–1297

future. Experimental results show that this approach can achieve better performance
when memory space is not sufficient, and reduce 30–50% of the total execution time .

Keywords Spark · Eviction strategy · Cache management

1 Introduction

Many big data analysis techniques used by high-tech enterprises have iterative charac-
teristics, includingusinggraph computation to doPageRankor social network analysis,
using machine learning to do clustering or regression analysis. Such applications have
a common characteristic that data needs to be processed iteratively until meet the
convergence or end condition, meanwhile large amount of data needs to be reused
between iterations [7].

Data reusing mechanism in traditional MapReduce systems [1,8] is based on disk
and introduces large amount of disk I/O that affects performance badly. As an in-
memory system, Spark [20] accelerates execution speed by fully utilizing memory.
It provides an data abstraction called Resilient Distributed Dataset (RDD) [19], by
cachingRDDs intomemory and sharing thembetween iterations, Spark achievesmuch
better performance than MapReduce.

Spark is runs on Java Virtual Machine (JVM), and may suffer from severe memory
bloat problem [6]. When dealing with iterative applications, multiple kinds of RDD
need to be cached, and their memory occupation is much larger than the input data
size [11]. For the sake of not affecting normal running, eviction strategy is needed
when memory space is not sufficient.

Recovery evicted partitions of cache RDDs will experience different series of oper-
ations, and variations exist in recovery costs. It is desirable to retain cache partitions
with higher rather than lower recovery costs during eviction. But among current evic-
tion strategies, First In First Out (FIFO) focuses on the create time, Least Recently
Used (LRU) focuses on access history for better hit ratio, none of them takes cost into
consideration, so a cost-aware eviction strategy is needed. As a possible solution, the
GreedyDual [18] or GD-Wheel [13] algorithm can make eviction decision for items
with non-uniform cost. Both of them have taken access history and costs of cache
items into consideration. But, as the execution logic of upcoming phase is known in
Spark, access history has no help to eviction strategy. In other words, we need an
eviction strategy integrating recovery cost of cache partition and execution logic of
application in Spark.

In this paper, we analyze disadvantages of existing eviction strategy and state the
necessity of taking recovery cost into consideration at first. Then we propose an evic-
tion strategy named Least Cost Strategy (LCS).1 LCS involves three steps. First, it
gets the dependencies of RDD by analyzing application, and predicts howmany times
cache partitions will be reused. Second, it collects information during partition cre-

1 We have made LCS open source at Github, and also added the patch at Apache Software Foundation.
The web links are https://github.com/SCTS/Spark-LCS and https://issues.apache.org/jira/browse/SPARK-
14289, respectively.

123

https://github.com/SCTS/Spark-LCS
https://issues.apache.org/jira/browse/SPARK-14289
https://issues.apache.org/jira/browse/SPARK-14289


Int J Parallel Prog (2017) 45:1285–1297 1287

Fig. 1 DAG representation of an application. Stages are divided by Shuffle operation

ation, and predicts the recovery cost. Third, it maintains the eviction order using the
above two information, and evicts the partition that incurs the least cost when memory
is not sufficient. This paper describes the design and implementation of LCS in detail,
and experiments have been carried out in typical iterative applications. Extensive
experiments have been taken under LCS, LRU, FIFO. Results show that our strategy
achieves a better performance when eviction happens, and the total execution time of
application can be reduced by 30–50%.

The rest of this paper is organized as follows. In Sect. 2, we provide a overview of
Spark and discuss the motivation. The overall implementations and details of LCS are
presented in Sect. 3. Extensive experimental results are reported in Sect. 4. Related
work is discussed in Sect. 5. Section 6 conclude this paper.

2 Background and Motivation

2.1 Background

As a representative in-memory distributed computing system, Spark introduces RDD
as data abstraction which has multiple partitions and can be cached in memory.

RDD is immutable and can only be transformed fromotherRDDor diskfile by using
coarse-grainedoperations implemented insideSpark. These operations are divided into
transformations and actions. Transformations are lazy operations which create a series
of newRDDswhile actionswill launch a computation job to return a result orwrite data
to external storage. Each job is split into several stages based on Shuffle dependencies
among RDDs, which denotes that each partition of the child RDD depends on all
partitions of the parent RDD(s).

Execution logic of stages in upcoming job are represented by Directed Acyclic
Graph (DAG), as shown in Fig. 1. DAG is considered to determine the work flow of
RDD and the persistence of RDD in memory. Spark splits the stages and determines
the execution orders of stages all by DAG structures, it is not necessary to get the work
flow by logs or program analysis [17].

Memory space of executor node can be roughly divided into two fractions: one is
used for caching RDD, the other is used for computing. By default 60% of the memory

123



1288 Int J Parallel Prog (2017) 45:1285–1297

Table 1 Details about common transformations

Transformation Execution time (s) Input size (GB) Result size (GB) R/W disk Shuffle size

textFile 65 24.3 140.8 � × ×
map 7 140.8 65.6 × × ×
reduceByKey 8 65.6 3.3 � � 405 MB

groupByKey 25 65.6 10.8 � � 11.3 GB

sortByKey 162 65.6 120.3 � � 7.7 GB

filter 2 65.6 34 × × ×
distinct 341 65.6 65.6 � � 12.1 GB

space is for cache RDD storage. Spark allows user to determine whether and when to
cache RDD in memory by using persist API, partitions of cache RDD can be accessed
and operated at memory speed. Spark only allows users to use unpersist API to remove
all the partitions of a cache RDD, the unpersist operation happens after a job finished.

When remaining space for cache storage is not sufficient during job running, some
partitions of cache RDD will be evicted from memory. Those partitions must be
recovered before reusing them again, and the recovery process has two situations as
follows. Unless user allows using deserialization for some RDDs, only recomputation
can be used for recovery.

2.2 Existing Problems and Motivation

While running iterative applications in Spark, generally more than one RDDs need
to be cached for reusing. When carrying out PageRank (3 iterations) and Connect-
edComponents provided by GraphX on twitter-rv [5] dataset, the peak size of RDDs
need to be cached is 155.8 and 357.1GB, respectively, which is much larger than input
(24.3GB) resulted by the bloat of Java reference [15]. As a result, Spark could only
deal with relative small input dataset if users want all cache RDDs in memory without
eviction, this will restrict the usage of Spark, so the need for eviction strategy is urgent.

We first perform serveral common transformations on the twitter-rv dataset (experi-
mental environment is shown in Sect. 4) to show the cost of transformations in Table 1.
But, as the default eviction strategy, LRU does not consider recovery cost. When the
evicted partitions of RDDs are used later, it will incur recovery cost. For example,
when memory for cache storage is not sufficient during the creation of RDD E in
Fig. 1, the eviction of RDD A may result in this problem. As a conclusion, for bet-
ter performance, the eviction strategy should assure that recovering evicted partition
brings the minimize cost in the future.

LRUmay also lead to the problemof straggler. For fully utilizing cluster’s resources,
the number of tasks in a stage is usually several times of CPU core number. Taking
Fig. 1 as an example again, and use RDD_n to represent the partition set accessed by
nth wave of tasks. After the first stage finishing, if some cache partitions (A_1, B_1
or other similar group) need to be evicted in stage 2, it may lead to serious straggler
in stage 3, as situation shows in Fig. 2a. But if we take recovery cost into account for

123



Int J Parallel Prog (2017) 45:1285–1297 1289

(a) (b)

Fig. 2 a LRU may lead to serious straggler, b no serious straggler

Fig. 3 Overall architecture of
our approach. Modules with
dash outlines are components
introduced in our approach

eviction, because most of the evicted partitions belong to RDD B, no serious straggler
happens as Fig. 2b illustrates.

3 Design and Implementation

3.1 Overall Architecture

LCS aims to control the eviction of cache partitions by analyzing the execution flow
of application. The overall architecture is shown in Fig. 3, three necessary steps are
carried out: (i) Analyzer in driver node analyzes the application by the DAG structures
provided by DAGScheduler; (ii) Collector in each executor node records information
about each cache partition during its creation; (iii) Eviction Decision provides an
efficient eviction strategy to evict the optimal cache partition set when remaining
memory space for cache storage is not sufficient, and decide whether remove it from
MemoryStore directly or serialize it to DiskStore.

3.2 Analyzer

Analyzerwill useDAGprovided byDAGScheduler. Figure 4a shows an exampleDAG,
it can be found that the starting points have two situations: DFS, files on it can be read
from local or remote disk directly; Shuffled RDD, which can be generated by fetching

123



1290 Int J Parallel Prog (2017) 45:1285–1297

(a) (b)

Fig. 4 a DAG of job 4 in GraphX PageRank, b classify RDDs of PageRank and calculate information of
each target RDD in Analyzer. Cache ancestor RDDs will be recorded in AncestorsList ; if DFS or Shuffled
RDD exists, f lag will be set to true

remote shuffle data. DAG indicates the longest running path of task: when all the
cache RDDs are missing, task needs to run from the starting points. But when cache
RDD exists, task only needs to run part of the path from cache RDD by referring
dependencies between RDDs. The aim of Analyzer is classifying cache RDDs and
analyzing the dependency information between them before each stage runs. Analyzer
only runs in driver node and will transfer result to executors when driver schedules
tasks to them.

LCS has somemodification to unpersist, whichAPI only happens after job finished.
However, as DAGScheduler already knows all the stages information in a job, the
unpersist can be promoted to the last stage that uses those RDDs. By pre-registering
RDD that needs to be unpersist, and checking whether it is used in each stage, we
put it to the RemovableRDDs list of the last stage to use it. The purpose of design
RemovableRDDs list is that after using partition of this kind of RDD, the partition can
be evicted directly, and will not waste the memory resources.

Cache RDDs of a stage will be classified to three kinds: the first includes the cur-
rent running cache RDDs (targetCacheRDDs); the second includes those participate
in current stage (relatedCacheRDDs); the third includes other cache RDDs (other-
CacheRDDs). For Fig. 4a, the classification is shown in Fig. 4b as step 1©. After
classification, LCS only needs to calculate the dependencies of targetCacheRDDs of
current stage because other two kinds of RDDs are the target RDDs of the previous
completed stages. The dependencies calculation is a Depth First Search algorithm in
fact, and the search stops at the following three situations:

– Reaching ancestor RDD that has already been cached.
– Reaching shuffled RDD which can be recomputed by pulling shuffle data from
other executor nodes.

– Reaching DFS where data can be read directly.

After the analysis, ancestor cache RDDs will be recorded in AncestorsList , a
f lag is used to indicate whether this cache RDD needs to shuffle or read data from
disk during creation. The analyzed information indicates the creating path of each
cache RDD, which will be used in Collector. The dependency analyzes is shown in
Fig. 4b as step 2©. It is important to note that if RemovableRDDs exist in a stage,

123



Int J Parallel Prog (2017) 45:1285–1297 1291

dependency information of RDDs that dependent on it needs to be updated in the next
stage, as partitions of RemovableRDDs will all be removed after this stage finishes.

3.3 Collector

With the help ofAnalyzer,Collectorwill collect information about each cache partition
during task running. Information that needs to be observed are listed below:

– Create cost: Time spent on computing chche partitions after all ancestor cache
partitions are found in memory, denoted as Ccreate. If data need to be read from
DFS or transferred by shuffle operations, those costs are also added to Ccreate.

– Eviction cost: Time costs when evicting a partition frommemory, calledCeviction .
If partition is serialized to disk, the eviction cost is the time spent on serializing
operation and writing into disk, denoted as Cser . Otherwise, partition will be
removed directly, the eviction cost is accounted as zero here.

– Recovery cost: Time costs when partition data are not found in memory, named
Crecovery . If partition is serialized to disk, the recovery cost is the time spent
in reading from disk and deserialization, denoted as Cdeser . Otherwise, partition
needs to be recomputed by lineage information, represented as Crecompute.

Recovery Cost can only be obtained after finishing recovering lost RDD partition
data. So a new way is required to estimate it. As serialize and deserialize speeds are
relevant to RDD type, we serialize and deserialize several partitions of each RDD at
first and get the time spent per MB data, denoted as SPM and DPM . As RDD’s
recomputation will repeat the computing flow which is the same with its creation, we
take Ccreate as an approximate value of Crecompute. We use the following Eq. 1 to
calculate Ceviction and Crecovery .

Ceviction + Crecovery = min (0 + Crecompute,Cser + Cdeser )

≈ min (Ccreate, (SPM + DPM) ∗ si ze)
(1)

Then the question is transformed to calculate the Ccreate value, and the calculation
is by the following steps:

1. Referring to the corresponding AncestorsList of RDDs, the ancestor partitions
list L can also be known.

2. If ancestor partitions are not in memory, they will be recovered and their Recovery
Cost will be updated. The time spent on recovering the missing ancestor partitions
which are also needed to be cached is not counted to avoid double counting.

3. Record the start time startT ime when all ancestor partitions could be found in
memory.

4. Read DFS or transfer shuffle data if necessary, and record the end time endT ime
and si ze of target partition after putting it into memory.

As partitions data have different size, CPM = (endT ime - startT ime) / si ze is
used to represent the cost perMBfile. So each partition will has a (partitionID, (CPM ,
si ze)) pair.

123



1292 Int J Parallel Prog (2017) 45:1285–1297

Besides recovery cost, the LCS strategy also uses reusabli t y of partition as the
weight. As illustrated before, the execution logic of upcoming stages in a job is already
known, so does the upcoming access or generating logic of cache RDDs. For each
partition, we use reusabili t y to denote how many times it will be reused in the
future. This weight can be used to avoid evicting partitions with relative small CPM
but will be frequently used. By referring to dependencies, we calculate how many
times a cache partition will be used during creating target cache RDD of remaining
stages in a job, and set this number to reus value of the partition. After using a cache
partition, the reus value will reduce by one. After using partition of RemovableRDDs,
the reus will become 0, and needs Eq. 2 to update CPM of partition dependent on it.
A RemovablePartitions list is used to recode partitions with reus value of 0.

CPMrenew = CPMancestor ∗ si zeancestor + CPM ∗ si ze

si ze
. (2)

3.4 Eviction Decision

Through using information provided byCollector, each cache partition has aWCPM
value calculated by Eq. 3. When memory is not sufficient, Eviction Decision will
evict partitions in RemovablePartitions at first, then choose the partition with the least
WCPM value. For a certain partition that needs to be evicted, if CPM ∗ reus is
smaller than SPM + DPM ∗ reus when calculatingWCPM , Eviction Decisionwill
remove it directly from memory, otherwise will serialize it to disk as recovery by
deserialization cost fewer time than recomputation.

WCPM = min (CPM ∗ reus, SPM + DPM ∗ reus) (3)

By this strategy, LCS always evicts cache partitions that bring in the fewest recovery
cost in future, and guarantees that total recovery cost is fewer in entire lifetime of
application than other traditional strategies.

4 Evaluation

4.1 Evaluation Environment and Method

The experiment platform includes a cluster with eight nodes, one as the master and
the remaining act as the executors. Each node is equipped with two 8-core 2.6GHz
Intel Xeon E5-2670 CPUs, 64GB memory and a 10,000-RPM-SAS disk, and we
adopt HDFS for storage, each block has three replications. Data blocks are balanced
before applications running. The JVM adopted is HotSpot 64-Bit Server VM, and the
version is 1.7.0_67. Swappiness is configured to 0 to prevent the OS from swapping
memory page to swap space (located on disk)y. Version of Spark used is 1.5.2 excepts
subsection 4.5,which uses the newest 2.0-snapshot version to test the newly introduced
memory mode.

123



Int J Parallel Prog (2017) 45:1285–1297 1293

Table 2 Overall performance result

Application LRU (s) LRU-SER (s) FIFO (s) FIFO-SER (s) LCS (s) LCS-SER (s)

PR 1285 854 1411 886 698 632

CC 1346 1158 1444 1091 855 829

KMeans 2681 2352 2204 2297 1500 1405

As LRU is the default strategy and FIFO is the most common strategy, we compare
LCS with these two classical strategies. To prevent the serialization affecting per-
formance and leading to unfair comparison, LRU, FIFO, LCS denote strategies that
only use recomputation for recovery, and those with “-SER” suffix denote use both
recomputation and deserialization for recovery.

The datasets are generated by HiBench [2]. In the rest of this section, PR and
CC represents of PageRank and ConnectedComponents implemented by GraphX to
process a 32.76GB dataset in 3 iterations, respectively. KMeans represents of KMeans
implemented by MLlib to process a 125.44GB dataset in 5 iterations.

4.2 Overall Performance Result

By default, Spark allows to use 60% of executor memory space for cache storage. By
setting memory that each executor occupies at 50GB, Table 2 shows the performance
of PR, CC, KMeans under six strategies. It shows that for PR and CC, performance of
LCS is much better than LRU or FIFO (reducing 30–50% of the total running time).
This is because in the default configuration, eviction happens frequently in both of these
three applications, LRU and FIFO lead to lots of time cost in recomputation. There
is no distinct difference between performances of LRU and FIFO, which indicates
that the accession order used by LRU or creation order used by FIFO have no effect
in Spark. LRU-SER and FIFO-SER show relatively better performance than LRU
and FIFO, because they use deserialization to avoid recomputing partitions with high
CPM , but LCS-SER can still reduce 20–40% time compared to them.

4.3 Influence of RDD Storage Size

Experienced users will configure the proportion of memory for RDD storage by appli-
cation characteristics. For the I/O intensive application, its performance will not be
promoted by increasing execution memory (which denotes the computing ability) if
it is already sufficient. But performance can still be promoted by increasing memory
for storage, because the increased space can be used for decreasing eviction.

When configuringmemory of each executor to 50GB, PR gets the best performance
when execution memory is 10GB (because PR is I/O intensive). So this subsection
sets the execution memory as a constant value (10GB) and changes the space for RDD
storage to test its influence. Due tomultiple RDDs need to be cached, eviction happens
frequently in each experiment below, and the result is shown in Fig. 5a. It shows that

123



1294 Int J Parallel Prog (2017) 45:1285–1297

(a) (b) (c)

Fig. 5 a Performance of PR, b network transfer size, c serialized data size

LRU only reduces 19% time when memory increases from 25 to 40GB, FIFO reduces
28% time from 25 to 35GB. This is because LRU or FIFO has no consideration of
retaining partitions with the high recomputation cost when storage memory increases,
therefore there is no effect on decreasing total running time. Experiments about LCS
show that the completion time is reduced by 47% when memory for storage increases
from 25 to 40GB. LCS only needs 45–68% time of LRU. The reason is that more
partitions with higher recomputation cost are stored in the additional memory space.
As LCS-SER can automatically decide whether to serialize data, it shows 22–26%
gain in performance than LRU-SER. Execution time between LCS and LCS-SER is
close when memory space for RDD storage is configured as 35 and 40GB, because
with these configurations, a few partitions need to be serialized in LCS-SER.

4.4 Network Transfer, Serialized Data and Straggler Results

Figure 5b shows that LCS also has ability to reduce the data size of network transmis-
sion as much as 70% compared with LRU. The reason is that LCS always chooses the
partition with the least CPM value, which usually does not need shuffle operations to
fetch remote data or just fetch a small amount during recomputation. LRU-SER, FIFO-
SER, LCS-SER transfer fewer amount of data than both LRU and LCS, because they
can use deserialization instead of recomputation to recovery the evicted partitions.
As distributed computing systems are often constrained by network [12], reducing
network traffic will have a great influence on performance improvement. LRU-SER,
FIFO-SER, LCS-SER need to serialize some evicted data to disk, Fig. 5c compares the
serialized data size of these three strategies. The result shows that LCS-SER serializes
fewer data than others. One reason is that LRU-SER and FIFO-SER only allow users
to serialize all evicted partitions of a RDD or not, but LCS-SER will not serialize
some partitions if they have relatively small recomputation cost. The other reason is
that LRU-SER and FIFO-SER will still serialize partitions of the removable RDD
though they wont’s be used in later stages. While LCS-SER will not serialize this kind
of partitions as their reus value is 0 (as illustrate in Sect. 3).

LCS won’t lead to serious straggler situation compare to LRU. Table 3 shows
execution time distribution of tasks in stage 22 of PR, it is clear that times of most

123



Int J Parallel Prog (2017) 45:1285–1297 1295

Table 3 Time distribution results of tasks in stage 22

Strategy Min (s) 25% (s) Median (s) 75% (s) Max (s)

LCS 11 13 18 22 32

LRU 13 30 34 39 60

tasks are obviously too long under LRU. In the ideal situation, tasks only need to
generate the target RDDs from its direct ancestor cached RDDs. But PR under LRU
shows that most of the long running tasks need to generate target RDD from accessing
DFS file, in other words their creation path is much longer. Lots of execution time are
wasted in waiting for straggler finish in LRU compared to LCS.

4.5 Unified Memory Management

Spark has proposed Unified Memory Management (UMM) [3] in the latest version.
UMMmanages the memory much more intelligently, and users do not need to manu-
ally manage memory space. During different running phases, space of storage can be
borrowed for faster execution. This means the execution ability during RDD recom-
putation may be different with its creation. UMM aims to provide better performance
without user optimization. PR running with LRU under UMM (LRU-UMM) and orig-
inal mode (LRU) take 1018 and 1285s, respectively. While running with LCS under
UMM (LCS-UMM) and LCS take 449 and 689s, respectively. LRU-UMMcan reduce
20% time than LRU, which denotes the performance gain of UMM. But LCS-UMM
still reduces 36% time than LCS, and 56% time than LRU-UMMwhich indicates LCS
can still work in UMM.

5 Related Work

Many eviction strategies have been proposed in in-memory systems. Memcached
uses the classic LRU as the default strategy. While MemC3 [9], adopts the CLOCK
algorithm to approximate LRU. When elements with relatively small size are stored,
it is reasonable to adopt those classic algorithms because rebuilding those elements
through reading disk costs little. As an eviction algorithm for key-value store, CAMP
[10] has taken the cost into account. But there are significant differences about the
size or cost between in-memory data of big data system and key-value pairs. As
an in-memory distributed file system, Tachyon [14] aims to improve data sharing
between different systems. Though Tachyon has provided Edge Algorithm to bound
the recomputation cost when checkpointing data amongmultiple jobs, it is not suitable
for a single job because it has no help to bound the recomputation cost to less than
job’s completion time. PACMan [4] provides sufficient properties about input data and
caches them in memory for performance. Two eviction strategies are proposed inside
for completion time and cluster efficiency respectively. However, they do not consider
the properties of intermediate data and can not be applied to iterative application.

123



1296 Int J Parallel Prog (2017) 45:1285–1297

FACADE [16] goes deep into compiler to manage memory for big data systems. But
optimizable space is still left for eviction strategy to manage memory in high-level.

6 Conclusion

In this paper,we propose an eviction strategy for Spark namedLCS.During application
running, LCS analyzes execution logic and collects information about cache data. LCS
guarantees that the evicted data always have the minimum total recovery costs in the
future. Therefore the memory pressure will be mitigated and the amount of swap-out
data reduces a lot. Experiments show that LCS is efficient to deal with the situation
when memory space is insufficient, and the execution time can be reduced by up to
50% compared to the classic eviction strategies.

Acknowledgements This paper is partly supported by the NSFC under Grant Nos. 61433019
and 61370104, International Science and Technology Cooperation Program of China under Grant
No. 2015DFE12860, National 863 Hi-Tech Research and Development Program under Grant No.
2014AA01A301.

References

1. Hadoop, A. http://hadoop.apache.org
2. HiBench. https://github.com/intel-hadoop/HiBench
3. Unified Memory Management. https://issues.apache.org/jira/browse/SPARK-10000
4. Ananthanarayanan, G., Ghodsi, A., Wang, A., Borthakur, D., Kandula, S., Shenker, S., Stoica, I.:

Pacman: coordinatedmemory caching for parallel jobs. In: Proceedings of the 9thUSENIXConference
on Networked Systems Design and Implementation (NSDI), pp. 267–280 (2012)

5. Boldi, P., Vigna, S.: The webgraph framework I: Compression techniques. In: Proceedings of the 13th
International Conference on World Wide Web (WWW), pp. 595–602 (2004)

6. Bu, Y., Borkar, V., Xu, G., Carey, M.J.: A bloat-aware design for big data applications. In: Proceedings
of the 2013 International Symposium on Memory Management (ISMM), pp. 119–130 (2013)

7. Bu, Y., Howe, B., Balazinska, M., Ernst, M.D.: Haloop: efficient iterative data processing on large
clusters. Proc. VLDB Endow. 3(1–2), 285–296 (2010)

8. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. In: Proceedings of
the 6th Conference on Symposium on Opearting Systems Design and Implementation (OSDI), pp.
137–150 (2004)

9. Fan, B., Andersen, D.G., Kaminsky, M.: Memc3: compact and concurrent memcache with dumber
caching and smarter hashing. In: Proceedings of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), pp. 371–384 (2013)

10. Ghandeharizadeh, S., Irani, S., Lam, J., Yap, J.: Camp: a cost adaptive multiqueue eviction policy for
key-value stores. In: Proceedings of the 15th International Middleware Conference (Middleware), pp.
289–300 (2014)

11. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw,D., Franklin,M.J., Stoica, I.: Graphx: graph processing
in a distributed dataflow framework. In: Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation (OSDI), pp. 599–613 (2014)

12. Jalaparti, V., Bodik, P., Menache, I., Rao, S., Makarychev, K., Caesar, M.: Network-aware scheduling
for data-parallel jobs: plan when you can. In: Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication (SIGCOMM), pp. 407–420 (2015)

13. Li, C., Cox, A.L.: Gd-wheel: a cost-aware replacement policy for key-value stores. In: Proceedings of
the Tenth European Conference on Computer Systems (EuroSys), pp. 1–15 (2015)

14. Li, H., Ghodsi, A., Zaharia, M., Shenker, S., Stoica, I.: Tachyon: reliable, memory speed storage for
cluster computing frameworks. In: Proceedings of the ACMSymposium onCloud Computing (SoCC),
pp. 1–15 (2014)

123

http://hadoop.apache.org
https://github.com/intel-hadoop/HiBench
https://issues.apache.org/jira/browse/SPARK-10000


Int J Parallel Prog (2017) 45:1285–1297 1297

15. Mitchell, N., Sevitsky, G.: Buildingmemory-efficient java applications: practices and challenges. PLDI
Tutorial (2009)

16. Nguyen, K., Wang, K., Bu, Y., Fang, L., Hu, J., Xu, G.: Facade: a compiler and runtime for (almost)
object-bounded big data applications. In: Proceedings of the 20th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS), pp. 675–690 (2015)

17. Lu, L., Shi, X., Zhou, Y., Zhang, X., Jin, H., Pei, C., He, L., Geng, Y.: Lifetime-based memory man-
agement for distributed data processing systems. In: Proceedings of the VLDB Endowment (PVLDB),
pp. 936–947 (2016)

18. Young, N.E.: The k-server dual and loose competitiveness for paging. Algorithmica 11(6), 525–541
(1994)

19. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J., Shenker, S.,
Stoica, I.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing.
In: Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation
(NSDI), pp. 15–28 (2012)

20. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with
working sets. In: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing
(HotCloud), p. 10 (2010)

123


	LCS: An Efficient Data Eviction Strategy for Spark
	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Existing Problems and Motivation

	3 Design and Implementation
	3.1 Overall Architecture
	3.2 Analyzer
	3.3 Collector
	3.4 Eviction Decision

	4 Evaluation
	4.1 Evaluation Environment and Method
	4.2 Overall Performance Result
	4.3 Influence of RDD Storage Size
	4.4 Network Transfer, Serialized Data and Straggler Results
	4.5 Unified Memory Management

	5 Related Work
	6 Conclusion
	Acknowledgements
	References




