
Int J Parallel Prog (2017) 45:1259–1272
DOI 10.1007/s10766-016-0468-8

FOG: A Fast Out-of-Core Graph Processing
Framework

Zhiyuan Shao1 · Jian He1 ·
Huiming Lv1 · Hai Jin1

Received: 29 September 2016 / Accepted: 26 October 2016 / Published online: 1 November 2016
© Springer Science+Business Media New York 2016

Abstract In this paper we present FOG, an open source graph processing frame-
work designed for out-of-core (external memory) graph processing (https://github.
com/mrshawcode/fog). FOG provides a set of programming interfaces that break
down update functions of vertices to their incident edges so as to process the functions
with edge-centric manner. By these, FOG gives intuitive and productive programming
interfaces, and achieves high main memory utilization rate and processing efficiency
at the same time. Moreover, FOG proposes an in-place update shuffling mechanism
to improve the performance by dramatically reducing disk I/Os during computing.
By extensive evaluations on typical graph algorithms and large real-world graphs, we
show that FOG outperforms existing out-of-core graph processing systems, includ-
ing GraphChi, X-Stream and TurboGraph. By comparing the performances of FOG
and those of state-of-art distributed graph processing frameworks, we show that only
by using just a commodity PC, FOG achieves comparable or even better performance
than the best distributed graph processing framework that uses an Amazon EC2 cluster
with 128 nodes.

Keywords Big data · Graph processing · Parallel computing · Performance
optimization

B Zhiyuan Shao
zyshao@hust.edu.cn

Hai Jin
hjin@hust.edu.cn

1 Services Computing Technology and System Lab, Cluster and Grid Computing Lab,
School of Computer Science and Technology, Huazhong University of Science and Technology,
Wuhan 430074, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-016-0468-8&domain=pdf
https://github.com/mrshawcode/fog
https://github.com/mrshawcode/fog

1260 Int J Parallel Prog (2017) 45:1259–1272

1 Introduction

The increasing sizes of real-world graphs and the wide adoption of graph computing
(e.g., in social networks, bio-informatics, web graph analysis and many others) have
been motivating the building of graph processing systems in the past several years.
In order to process large graph data-sets, except for purchasing an expansive huge
memory machine, there are two other options: one is to use a cluster and employ
distributed graph processing system, such as Giraph [1], GraphLab [14], PowerGraph
[7] and many others. The other is to use a single commodity machine and employ out-
of-core graph processing system, such as GraphChi [11], X-Stream [16], TurboGraph
[9], GridGraph [19] and many others. The first (cluster) option brings in the burden
of configuring and maintaining a cluster. The second (out-of-core) option is much
cost-effective and easily attracts more attentions.

As the performance is generally decided by the slowest part (straggler), optimiz-
ing the accesses to the disk, which is obviously the straggler in out-of-core graph
processing systems, is crucial in improving the performance. Existing out-of-core
graph processing systems are used to access the whole on-disk graph data sequentially,
in order to reach amaximumdisk bandwidth. However, as the execution ofmany graph
algorithms only need to access a subset of data, existing systems inevitably result in
substantial waste on both disk bandwidth and memory space. The way of using the
limited main memory space is another crucial factor to the performance of out-of-core
graph processing systems. Some systems (e.g., GraphChi) build the sub-graphs in
memory to facilitate processing. Besides high graph ingression overheads, the fixed
structure of sub-graphs makes it impossible to just access the on-demand vertices or
edges. Some other systems (e.g., X-Stream) avoid the graph-ingression by employ-
ing the edge-centric processing model. However, the edge-centric processing model
introduces a new processing stage named as shuffling, which relocates the updates to
their destination processors. As the updates need to be flushed to disk and read again
for shuffling, it results in high overheads.

FOGaddresses these limitations by (1) implementing on-demanddata acquisition to
reduce waste on memory space and disk bandwidth; (2) employing an in-place update
shufflingmechanism to avoid the overhead for shuffling and improve parallelism. This
paper introduces FOG and makes following contributions:

• Presents FOG, an open source out-of-core graph processing framework, which
provides programming interfaces for the users to program their graph algorithms
and process them on big graph data-sets efficiently.

• Proposes a novel in-place update shuffling mechanism that greatly reduces disk
I/Os during processing and thus improves performance.

• Extensively evaluates the performance of FOG and compares it with state-of-art
out-of-core graph processing systems and distributed graph processing systems.

The rest of the paper is organized as follows: Sect. 2 gives an overview of FOG.
Section 3 elaborates update handling. Section 4 addresses load balancing. Section 5
evaluates the performance. Section6gives a brief surveyon the relatedworks. Section7
concludes the paper.

123

Int J Parallel Prog (2017) 45:1259–1272 1261

2 System Overview

2.1 Programing Interfaces

FOG provides a set of programming interfaces as shown in Fig. 1. Two core functions,
i.e., scatter_one_edge and gather_one_update, can be defined by a graph algorithm to
scatter values along an incident edge of a vertex or gather an update towards a vertex
respectively. init is invoked during the initialization phase to give initial value to a
vertex. finalize is invoked at the convergence of the algorithm. before_iteration and
after_iteration are invoked before or after each iteration respectively. FOG implements
two types of engines: global engine and targeted engine. During processing, the global
engine traverses the entire graph at each iteration, while the targeted engine traverses
only the scheduled vertices of the graph in each iteration. When using targeted engine,
the program needs to explicitly initialize scheduling in init function, and adds new
tasks in gather_one_update function.

2.2 On-Disk Data Organization

FOG uses the CSR (Compressed Sparse Row) format to organize the on-disk data.
Figure 2 illustrates the on-disk data of FOGwith an example graph. The adjacency lists
(without the source vertex) are stored continuously in an array file (out_edge_array).
An index file (out_edge_idx) is generated to record the start offset of vertex’s adja-
cency list. FOG can optionally extend the out_edge_array file with a weight value
field, and optionally generate the index and array files by in-edges (i.e., Compressed
Sparse Column format).

FOG leverages virtual memory management mechanism of OS to map these on-
disk files to virtual addresses. During processing, reads to these virtual addresses is
automatically translated to disk reads to achieve on-demand data acquisition, while

Fig. 1 Programming interfaces

123

1262 Int J Parallel Prog (2017) 45:1259–1272

Fig. 2 Organization of on-disk data

Fig. 3 Organization of in-memory data

writes to vert_attr_array file are governed by mechanisms that will be discussed in
Sect. 3.

2.3 In-Memory Data Organization

FOG statically allocates a block of memory to organize in-memory data structures.
Figure 3 illustrates such organization on a four-processor platform. The allocated
memory is divided into two parts: the vertex attribute buffer and the per_CPU part.
The vertex attribute buffer is dedicated to store the vertex attributes. The per_CPU part
is evenly divided among all participating processors, and each of processor’s space is
divided into two parts: the management area and the local update buffer. The local
update buffer stores the updates generated during processing. The management area is
further divided into three parts: the headers part stores themanagement data structures,

123

Int J Parallel Prog (2017) 45:1259–1272 1263

Algorithm 1 Computes Sattr_bu f , Nsegment and Csegment

1: Sattr_bu f ←γ×M � tentative size
2: if Sattr_bu f ≥ Sattr_arr then � file is small
3: Sattr_bu f ← Sattr_arr � shrink the buffer
4: Nsegment ← 1
5: Csegment ← V
6: else � file is large, divide the file into segments
7: Nsegment ← �Sattr_arr /(Sattr_bu f /2)�
8: Csegment ← �(Sattr_bu f /2)/Sattr �
9: end if

the local update map is used to track the usage of local update buffer, and the bitmap
for scheduling area is used to store the bitmap of the scheduler employed by targeted
engine, and does not exist in global engine.

Instead of applying the updates to the memory mapped vert_attr_array file, FOG
uses the vertex attribute buffer to absorb these small and random writes. However, the
size of the vert_attr_array file (denoted as Sattr_arr) may be too big to be fully loaded
into the vertex attribute buffer. In such case, the vertex attribute buffer is divided into
two and used as dual buffer, while the vert_attr_array file is divided into multiple
segments to be loaded one at a time. Denote the size of the allocated memory as M , the
number of vertices of the graph as V , and the size of a vertex attribute as Sattr , the size
of vertex attribute buffer (as Sattr_bu f). The number of segments (Nsegment) and the
segment capacity (Csegment , in unit of vertex attributes) are computed by Algorithm 1,
where γ (γ = 0.4) is an empirically chosen constant parameter.

Denote the size of management area as Smgr_area . The size of the local update
buffer (denoted as Slocal_update_bu f , in unit of bytes) of each processor is computed
by Eq. 1, where NCPU denotes the number of participating CPUs.

Slocal_update_bu f = M − Sattr_bu f
NCPU

− Smgr_area (1)

2.4 Flowchart

FOG organizes the computation of a graph algorithm into multiple scatter-gather
iterations as illustrated in Fig. 4. In the beginning of an iteration, each participating
processor will be given a set of tasks (in vertex IDs), and the iteration ends when all
processors finish their assigned tasks. During scatter phase, a processor places the
updates in its local update buffer. However, as the space of local update buffer is
limited as computed by Eq. 1, when handling huge amount of tasks in one iteration,
there may not be enough space to store all the updates. In such case, the processor
terminates the scatter phase, and enters gather phase to consume the updates so as to
clear the local update buffer. After that, the processor will come back to scatter phase
again to continue handling the unaccomplished tasks. To facilitate discussion, we call
one of such scatter-and-gather loops within an iteration as a sub-iteration, and the
mechanism as in-place update shuffling.

123

1264 Int J Parallel Prog (2017) 45:1259–1272

Fig. 4 Flowchart of FOG

When there are multiple processors participating processing, FOG synchronizes
the processing on them and enforces barriers at each phase-changing. In order to
maximize the parallelism and achieve balanced processing, FOG distributes the tasks
by modulo-based fashion and re-balances the tasks among the processors when some
processors are hungry. Such mechanism will be discussed in Sect. 4.

3 Update Handling

When an update U , whose destination vertex is dst_vert , is generated during scatter
phase on CPUi , the processor (say CPUj) that will consume this update is decided
by dst_vert . FOG placesU at an indexable memory location in CPUi ’s local update
buffer to helpCPUj to find it during gather phase. In order to keep track of thememory
location where updates are placed, the local update buffer of a processor is divided
into multiple equal-sized stripes according to the number of segments of the graph.

123

Int J Parallel Prog (2017) 45:1259–1272 1265

Algorithm 2 Place update U
1: r ← dst_vert/Csegment � row number in LUMi
2: c ← dst_vert%NCPU � column number in LUMi
3: offset ← LUMi [r][c] × NCPU + c
4: B ← CPU ′

i s local update buffer start address
5: stripe_addr ← B + Cstripe × r × Supdate
6: if offset < Cstripe then
7: LUMi [r][c] ← LUMi [r][c] + 1
8: p ← stripe_addr+ (offset ×NCPU + c) ×Supdate
9: Place U at position p
10: else
11: quit scatter phase
12: end if

Algorithm 3 Consume updates at stripe r on CPUj

1: for x ∈ [0, NCPU) do � browse all processors
2: t ← LUMx [r][j]
3: B ← CPU ′

x s local update buffer start address
4: stripe_addr ← B + Cstripe × r × Supdate
5: for t > 0 do � t updates to be consumed
6: t ← t − 1
7: p ← stripe_addr + (t × NCPU + j) × Supdate
8: Consume update at position p
9: end for
10: LUMx [r][j] ← 0
11: end for

The capacity (denoted as Cstripe, in unit of updates) of one stripe buffer is computed
by Eq. 2, where Supdate is the size of the update structure.

Cstripe = �Slocal_update_bu f /(Nsegment × Supdate)� (2)

Each processor also maintains a local update map (denoted as LUM), which is a
matrix with its element values recording the number of updates, its rows indicating the
corresponding stripes and its columns indicating the processors. Algorithm 2 places
U into CPUi ’s local update buffer. Note that in Algorithm 2, CPUi will quit the
scatter phase when there is no space to place U . However, at that moment, its local
update buffer may not be actually full, since there may be remaining space in other
stripes (i.e., inter-stripe imbalance), or inside stripe r for other processors except for
CPUdst_vert%NCPU (i.e., intra-stripe imbalance). We will address the inter-stripe
imbalance and discuss the intra-stripe imbalance in Sect. 4.

During developing,wefind that the intra-stripe imbalance is commonwhenprocess-
ing real-world graphs due to their skewed nature. Hence, it will be wasteful to load
all the segments into memory to consume all the updates in the local update buffers
at each sub-iteration. In order to reduce overhead and guarantee the correctness of
computing results, FOG decides whether to load a segment to consume the updates in
gather phase by following principles:

(1) If a segment’s corresponding stripe is considered to be full by at least one proces-
sor, the segment will be loaded;

123

1266 Int J Parallel Prog (2017) 45:1259–1272

(2) If the average utilization rate of the segment’s corresponding stripes among all
processors is beyond a predefined threshold (80%), the segment will be loaded;

(3) If the sub-iteration is at the end of an iteration (i.e., all processors had finished
their tasks of the iteration), all segments will be loaded one after another.

In order to further reduce the overheads resulted by frequent segment loading and
writing, FOG employs the least recently used (LRU) algorithm to manage the replace-
ment of the segments inside the (dual) vertex attribute buffer. Moreover, when the
system detects only a few updates (e.g., 2% of total update buffer space usage rate) to
be gathered at the end of an iteration, the updates will be applied directly to themapped
vert_attr_array file. When the system decides to consume updates towards vertex
attributes in segment r , Algorithm 3 is employed to guide a participating processor
(say CPUj) to find and consume all the updates in stripe buffer r . Note that Algo-
rithm 3 is for all participating processors, which means each participating processor
will access the local update buffers of all participating processors (including itself)
during gather phase to retrieve and consume the updates.

4 Load Balancing

Since the phase-changings are synchronized among all participating processors, FOG
designs two mechanisms: modulo-based task assignment and re-balancing. Suppose
there is a set of tasks S = {0, 1, ..., V − 1} to be processed at the beginning of an
iteration. There are two possible manners to assign them to the processors: range
manner and modulo-based manner. By range manner (GridGraph adopts this), CPUi

will handle task subset Si = {v|v ∈ [(V/NCPU)× i, (V/NCPU)×(i+1)−1]}, while
by modulo-based manner, it will handle subset Si = {v|v ∈ S, and v%NCPU = i}.
We evaluate these two manners by conducting one-iteration SpMV algorithm [4] on
Twitter graph [10], and show the stripe buffer usage rates and the relative standard
deviations (indicating intra-stripe imbalance) on the number of updates that are to be
consumed on different processors in Fig. 5. It can be observed from Fig. 5 that the

(a) (b)

Fig. 5 The local update buffer utilization rate and metrics of update distribution during the sub-iterations
of SpMV on Twitter graph (“R” above the columns stands for re-balancing). a Modulo-based, b range

123

Int J Parallel Prog (2017) 45:1259–1272 1267

Table 1 Real-world graphs
used in the experiments

Graph LiveJournal Twitter UK YahooWeb

Vertices 4.8M 41.6M 105M 1.4B

Edges 69M 1.5B 3.7B 6.6B

modulo-based manner results in less sub-iterations and few re-balancing operations.
The reason is that the modulo-based manner task distribution resembles partitioning
a graph by hash algorithm, which generally leads to well-balanced partitions [15],
and it converts to the high update buffer usage rates and balanced load distribution
during gather phase. As we observe similar buffer usage patterns when conducting
other algorithms on real-world graphs, FOG chooses to employ the modulo-based
manner task assignment.

For scatter phases, FOG designs a simple re-balancing mechanism to cope with
the “in-case” situation that some processors accomplished their assigned tasks faster
than the others: if it happens, FOG will browse the processors (one at a time) with
remaining tasks and distribute its remaining tasks (with range manner at this time)
among all processors.

5 Performance Evaluation

5.1 Experiment Setups

The test-bed for experiments is a commodity PCwith one Intel Core i7-2600 processor,
which has 4 cores running at 3.4GHz, 4 × 256KB L2 cache and 8MB L3 cache. The
hyper-threading feature of the CPU is disabled. The PC is configured with 12GB of
DDR3 RAM (scales to 28GB in Sect. 5.3), one 7200RPM Seagate 1TBHDD and one
500GB Samsung 840 EVO-Series SSD with SATA3 interface. We use 64-bit Ubuntu
server 12.04 to conduct all experiments in Linux, and 64-bit Windows7 with SP1 to
conduct experiments in Windows.

Four real-world graphs [i.e., LiveJournal [2], Twitter [10], uk-2007-05 (UK for
short) [5] and YahooWeb [17]] as listed in Table 1 and five representative graph
algorithms: PageRank [12], Sparse Matrix-Vector Multiplication (SpMV) [4], Weakly
Connected Components (WCC), Breadth-First Search (BFS) [3], and Single Source
Shortest Path (SSSP) are conducted to measure the performances of GraphChi C++
version 0.2, X-Stream version 0.9, and our latest release (i.e., version 0.2) of FOG.
As TurboGraph is not an open source software, we only use its PageRank and BFS
performances during comparisons.

5.2 Comparisons with Other Out-of-Core Systems

5.2.1 Performance Comparisons

Figure 6 compares the execution times of the chosen algorithms conducted in
GraphChi, X-Stream, TurboGraph, and FOG on graphs stored on both SSD and HDD.

123

1268 Int J Parallel Prog (2017) 45:1259–1272

(a) (b) (c)

(c) (d)

(f) (g)

(e)

Fig. 6 Average execution times of the graph algorithms in the chosen systems (“X” stands for an execution
time bigger than 24h). a LiveJournal on HDD, b LiveJournal on SSD, c Twitter on HDD, d Twitter on
SSD, e UK on HDD, f UK on SSD, g YahooWeb on HDD, h YahooWeb on SSD

It can be observed from Fig. 6 that for small graphs (i.e., LiveJournal), where
all systems work by in-memory mode, FOG’s performances are only surpassed
by X-Stream in BFS and SSSP on HDD. The reason is that FOG and X-Stream
have the same I/O requirements (E + V for reading and V for writing) for
the in-memory mode executions. However, FOG implements BFS and SSSP with
targeted engine, which randomly reads the data and thus results in suboptimal
performance on HDD. The situation changes when running these two algorithms
on SSD, since it has much higher IOPS (I/Os per second) than HDD. In other
cases, FOG outperforms all other systems. This is because FOG also sequentially
reads the data from disk, and does not have the time-consuming graph-ingress
phase (GraphChi) or dedicated shuffling phase (X-Stream). When graphs become
larger, FOG greatly outperforms the other three systems. For example, consider-
ing BFS on UK graph stored on SSD, its performance in FOG is about 68x faster
than in GraphChi, 57x faster than in X-Stream and 7.3x faster than in Turbo-
Graph.

123

Int J Parallel Prog (2017) 45:1259–1272 1269

Table 2 Total disk I/O amount (GB)

PageRank BFS
Total read Total write Total read Total write

FOG 125.6 0.4 17.7 0.4

GraphChi 330 157 975 26

X-Stream 613 308 3285 27

TurboGraph 296.5 3.8 132 0.1

5.2.2 Total Amount of Disk I/Os

In order to understand the reasons behind the performance improvements, we collect
the amount of disk I/Os during the execution of PageRank and BFS, which represent
typical global query and targeted query algorithms respectively, on UK graph. Table 2
lists the total amount of disk I/Os in these systems.

From Table 2, it can be observed that for PageRank, the total amount of disk I/Os
(both read and write) in FOG is less than that in GraphChi and X-Stream. The reason
is that FOG only needs to read the edges once during each iteration, while besides
the edges, GraphChi needs to read the compress edge weight values, and X-Stream
needs to read the updates flushed to disk in the previous iteration. Regarding write,
since FOG can store the whole vertex array of UK graph in memory, it results in very
small quantity of writes, while GraphChi needs to write the compressed edge weight,
X-Stream needs to write the updates.

For BFS, it can be observed that the amount of disk I/Os for read in FOG are
much smaller than those of other three systems. The reason is that FOG implements
on-demand data acquisition by memory mapping, which is very economic in disk
reading. At the same time, the execution of BFS only needs partial data of the graph
during each iteration. GraphChi and X-Stream still need to read the whole graph as
well as extra data (edge weights or updates) from disk at each iteration. The large
amount of disk I/Os for reads in TurboGraph (for both PageRank and BFS) suggests
that there is high waste on the loaded data in this system.

5.3 Performance Comparisons with Distributed Systems

We now compare the performances of FOG and state-of-art distributed systems. At
FOG side, we take the best performances that are achieved on our test-bed (4 CPUs,
28GB memory and SSD). At distributed systems side, we take the best performances
recorded in [8],where the performance data is collected in anAmazonEC2 clusterwith
up to 128 m1.xlarge instances (each has four virtual processors and 15GB memory).
In order to align with the performance data in [8], we take three algorithms: PageRank
(30 iterations), SSSP (unit weight), and WCC. Table 3 compares the performances of
the chosen algorithms on Twitter and UK graphs.

From Table 3, it can be observed that the performances of PageRank in FOG is
a little worse than those of distributed systems. The reason is that PageRank needs

123

1270 Int J Parallel Prog (2017) 45:1259–1272

Table 3 Performance comparison with state-of-art distributed systems (minutes)

Algorithm FOG Best distributed system

On Twitter Graph

PageRank (30 iter.) 8.28 5.84 (GraphLab on 128 instances)

SSSP (unit weight) 0.93 1.49 (GraphLab on 128 instances)

WCC 1.18 2.69 (Giraph on 64 instances)

On UK Graph

PageRank (30 iter.) 11.67 3.70 (GraphLab on 128 instances)

SSSP (unit weight) 3.02 4.79 (GraphLab on 64 instances)

WCC 5.95 8.72 (GraphLab on 128 instances)

to scan all the graph data at each iteration. In distributed systems, there are multiple
disk and memory bus devices, whose aggregated bandwidth can easily surpass the
bandwidth of single disk and single memory bus used in FOG.

However, for targeted query algorithms (i.e., SSSP and WCC), the performances
in FOG are even better than those of the best distributed systems. The reason is that
the frequent communications are the limiting factor to the performance in distributed
systems. Meanwhile, for targeted query algorithms, the quantity of data to be accessed
at each iteration are generally much smaller than that of global query algorithms. The
communications thus occupy the majority of overheads in a distributed system, and
limit its scalability. In FOG, however, it ismuch cheaper for processors to communicate
via the shared memory. Moreover, FOG achieves economic use of disk bandwidth and
efficient use of main memory space.

6 Related Works

GraphChi [11] proposes a novel Parallel SlidingWindow (PSW)method that partitions
the graph data into multiple subgraphs. During processing, the subgraphs are loaded
intomemory and processed in a round-robin fashion at each iteration. After computing
on one subgraph, the edge data are written to disk to pass intermediate results to the
computation of next subgraph, which results in huge overhead. VENUS [6] improves
GraphChi by constraining the writes to vertices so as to avoid the overhead of writing
edge data, but only slightly improves the performance. X-Stream [16] partitions graph
data into super-partitions and cache-partitions, and employs edge-centric implemen-
tation to conduct the computation. Its update shuffling stage, however, results in huge
overhead due to the disk reading and writing. Moreover, since a super-partition is
treated as an entity to enforce sequential disk access, huge wastes on memory space
are resulted when the computation needs only small portion of the vertices.

TurboGraph [9] organizes the graph data into pages indexed by an in-memory table,
and proposes a pin-and-slide method to implement on-demand data acquisition. How-
ever, this system still results in high waste on main memory space and suboptimal
performance as shown in Sect. 5. GridGraph [19] organizes the graph data into 1D-

123

Int J Parallel Prog (2017) 45:1259–1272 1271

partitioned vertex chunks and 2D-partitioned edge blocks, and conducts computation
by a novel dual sliding window mechanism. GridGraph proposes an in-place mech-
anism for update handling, which however, is based on the range partitioning of the
vertex ID space, and have to leverage the atomic operations to solve data races.

FlashGraph [18] implements a semi-external memory graph processing system.
However, as all the vertices have to be loaded in memory during processing, the
system cannot process graphs with huge amount of vertices. Although studies in [13]
use memory mapping technique to fast index data during processing as our system,
none of them solves the randomwrite problem, which results in drastic thrashingwhen
processing large graph with limited main memory space.

7 Conclusion

In this paperwe present FOG, an open source out-of-core graph processing framework.
Its programming interfaces break down the update functions over vertices to their
incident edges, so as to efficiently use the limited memory space and make on-demand
data acquisition possible. Its in-place update shuffling mechanism divides the lengthy
iteration of graph processing into multiple sub-iterations, so as to consume the updates
without extra disk access. All these combined contribute to reduce the disk I/Os, and
thus greatly boost the performance.

Acknowledgements This work is supported by Natural Science Foundation of China under Grant
No. 61433019.

References

1. Apache: Apache Giraph. http://giraph.apache.org/ (2012)
2. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large social networks:

membership, growth, and evolution. In: Proceedings of KDD, pp. 44–54 (2006)
3. Beamer, S., Asanović, K., Patterson, D.: Direction-optimizing breadth-first search. In: Proceedings of

SC, pp. 12:1–12:10 (2012)
4. Bender, M.A., Brodal, G.S., Fagerberg, R., Jacob, R., Vicari, E.: Optimal sparse matrix dense vector

multiplication in the I/O-model. In: Proceedings of SPAA, pp. 61–70 (2007)
5. Boldi, P., Rosa,M., Santini,M., Vigna, S.: Layered label propagation: amultiresolution coordinate-free

ordering for compressing social networks. In: Proceedings of WWW, pp. 587–596 (2011)
6. Cheng, J., Liu, Q., Li, Z., Fan, W., Lui, J., He, C.: VENUS: vertex-centric streamlined graph compu-

tation on a single PC. In: ICDE, pp. 1131–1142 (2015)
7. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph: distributed graph-parallel

computation on natural graphs. In: Proceedings of OSDI, pp. 17–30 (2012)
8. Han, M., Daudjee, K., Ammar, K., Özsu, M.T., Wang, X., Jin, T.: An experimental comparison of

pregel-like graph processing systems. Proc VLDB Endow 7(12), 1047–1058 (2014)
9. Han, W.S., Lee, S., Park, K., Lee, J.H., Kim, M.S., Kim, J., Yu, H.: TurboGraph: a fast parallel graph

engine handling billion-scale graphs in a single PC. In: Proceedings of KDD, pp. 77–85 (2013)
10. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In:

Proceedings of WWW, pp. 591–600 (2010)
11. Kyrola, A., Blelloch, G., Guestrin, C.: GraphChi: large-scale graph computation on just a PC. In:

Proceedings of OSDI, pp. 31–46 (2012)
12. Lawrence, P., Sergey, B., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order

to the web. Technical report, Stanford University (1998)

123

http://giraph.apache.org/

1272 Int J Parallel Prog (2017) 45:1259–1272

13. Lin, Z., Chau, D.H., U K: Leveraging memory mapping for fast and scalable graph computation on a
PC. In: Proceedings of Big Data, pp. 95–98 (2013)

14. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.: Distributed GraphLab:
a framework for machine learning and data mining in the cloud. Proc VLDB Endow 5(8), 716–727
(2012)

15. Prabhakaran, V., Wu, M., Weng, X., McSherry, F., Zhou, L., Haridasan, M.: Managing large graphs
on multi-cores with graph awareness. In: Proceedings of USENIX ATC, pp. 4–4 (2012)

16. Roy A, Mihailovic I, Zwaenepoel W: X-Stream: edge-centric graph processing using streaming parti-
tions. In: Proceedings of SOSP, pp. 472–488 (2013)

17. Yahoo: Yahoo WebScope. Yahoo! altavista web page hyperlink connectivity graph. http://webscope.
sandbox.yahoo.com/ (2002)

18. Zheng, D., Mhembere, D., Burns, R., Vogelstein, J., Priebe, C.E., Szalay, A.S.: FlashGraph: processing
billion-node graphs on an array of commodity SSDs. In: Proceedings of FAST, pp. 45–58 (2015)

19. Zhu, X., Han,W., Chen,W.: GridGraph: large-scale graph processing on a single machine using 2-level
hierarchical partitioning. In: Proceedings of USENIX ATC, pp. 375–386 (2015)

123

http://webscope.sandbox.yahoo.com/
http://webscope.sandbox.yahoo.com/

	FOG: A Fast Out-of-Core Graph Processing Framework
	Abstract
	1 Introduction
	2 System Overview
	2.1 Programing Interfaces
	2.2 On-Disk Data Organization
	2.3 In-Memory Data Organization
	2.4 Flowchart

	3 Update Handling
	4 Load Balancing
	5 Performance Evaluation
	5.1 Experiment Setups
	5.2 Comparisons with Other Out-of-Core Systems
	5.2.1 Performance Comparisons
	5.2.2 Total Amount of Disk I/Os

	5.3 Performance Comparisons with Distributed Systems

	6 Related Works
	7 Conclusion
	Acknowledgements
	References

