
Int J Parallel Prog (2017) 45:1108–1127
DOI 10.1007/s10766-016-0459-9

Implementation of Digital Watermarking Algorithms
in Parallel Hardware Accelerators

Andrzej Głowacz1 · Marcin Pietroń2

Received: 29 February 2016 / Accepted: 22 September 2016 / Published online: 21 October 2016
© Springer Science+Business Media New York 2016

Abstract The paper is focused on computing acceleration for hybrid multiprocessor
environment. A considered algorithm of content authentication used for digital images
and video sequences is implemented and tested in diverse scenarios. Particular goal
is capability of the authentication system to process high-resolution digital images or
FullHD video sequences in real time. Aim of this work was to explore and take advan-
tage of mixed CPU and GPU processing approach and to investigate possibilities to
develop optimal authentication algorithm. Chosen algorithm is based on robust hashes
and semi-fragile digital watermarking. Parallelization was achieved using combined
OpenCL and OpenMP. Results for time execution were measured for both images
and videos. Based on collected results acceleration rates were calculated along with
maximum frames per second values for video processing. It can be concluded that par-
allelism contributes significantly in reducing the computation time by making optimal
use of resources. Depending on the test scenario, the rate of acceleration is even thirty
times higher comparing with single-core solutions. Introduced modifications reduce
execution time while maintaining detection effectiveness.

Keywords GPU processing · Image authentication · Semi-fragile watermarking

B Marcin Pietroń
pietron@agh.edu.pl

Andrzej Głowacz
aglowacz@agh.edu.pl

1 Department of Telecommunications, AGH University of Science and Technology, al.
Mickiewicza 30, 30-059 Cracow, Poland

2 AGH University of Science and Technology, ACK UST Cyfronet, Supercomputing Center, ul.
Nawojki 11, 30-950 Cracow, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-016-0459-9&domain=pdf

Int J Parallel Prog (2017) 45:1108–1127 1109

1 Introduction

Content authentication is a method used to protect digital works from unwanted modi-
fications. It can be implemented using digitalwatermarking technology [16,17,20] that
inserts specific data stream intomultimedia data stream in specific domain.Authentica-
tionmethods are diverse, yet they can be subdivided into strict and selective techniques
[1]. Algorithm tolerance against modifications is a key factor in above classifica-
tion. Strict authentication permits no changes in original content (e.g. digital image),
whereas some changes are tolerated in selective authentication. In the latter case, the
changes cannot directly concern the information content of the image. Depending on
defined application and requirements a selected method is used, and there are various
approaches. Literature methods in the area of strict authentication are based on fragile
watermarking [2] or cryptographic algorithms [3], whereas selective methods employ
semi-fragile watermarking [4] or robust hashes [5].

Specifically, authentication of video content is a challenging task, due to amount
of data that needs to be processed both for watermark encoding and detection. Mul-
ticore architectures can be applied to speed up algorithms and optimize the use of
resources. Such systems include multicore processors (CPU), multiple processing
nodes, computing using general-purpose graphics processing units (GPU) or other
dedicated processing components (e.g. FPGA units). There are some content authen-
tication approaches that focus on improving the performance of GPU processing [6].

Due to physical limitations on hardware frequency, significant computing accelera-
tion is usually achieved using multiple computing cores or nodes in high-performance
clusters. There are number of software technologies spread across the world in recent
years that support parallel computing in various platforms. One of the solutions is
OpenCL (Open Computing Language) [7] which allow for performing calculations
with the use of GPU or CPU. What is important not only computations strictly related
to processing graphic are supported. These calculations include, but are not limited to
bioinformatics, chemistry, financial, seismology, physics or special imaging. Accord-
ing to computer architecture taxonomy, OpenCL follows SIMD (Single Instruction
Multiple Data) architecture and it enables optimal use of resources for the cost of com-
plexity of implementation. OpenMP (Open Multi-Processing) [8] is a multi-platform
API based on sharedmemorymultiprocessing and explicit programmingmodel. Team
of parallel threads are usually created by master thread, synchronized and terminated
in fork-join model.

The remainder of the paper is organized as follows. Section 2 refers to robust
hash functions and number of techniques that were implemented in order to improve
the processing performance and research towards finding optimum variant of the
algorithm. In Sect. 3 state-of-the-art technologies that were used for achieving paral-
lelization are presented. Proposed algorithm and its modifications and theirs parallel
implementation in GPU and CPU are described in Sect. 4. Focus is put on achieved
performance results in Sect. 5. Considered scenarios include comparison of algorithm
steps, characteristics in different watermark embedding domains and algorithm speed
up in diverse architectures, among others. Conclusions are provided in the last section.
Detailed results are presented in tables at the end of the paper.

123

1110 Int J Parallel Prog (2017) 45:1108–1127

2 Digital Watermarking

Robust Hash Functions algorithm for digital watermarking has been presented by
Fridrich and Goljan [9,18]. This algorithm has been identified as a good basis for
development of content authentication system. It fits in selective authentication meth-
ods and provides resistance to lossy compression. Thus, it can be applied to protection
of most video content transmitted over internet connections, since compression is
often used due to limited network resources.

The idea behind the algorithm is calculating robust hash, which depends on image
information content. Video sequence is treated as a set of individual frames, that are
processed independently. Pixel colors are converted from RGB to YCbCr color space.
Digitalwatermark is obtained on the base of generated hash and embedded in the image
providing resistance to non-malicious modifications. In case of image tampering, the
watermark becomes unreliable and indicates that the image is not authentic.

It is worth pointing out that robust hashes depend on image characteristics, but not
on exact values of the image pixels. Thus the method is sensitive only to significant
changes in image that affect information content. In case ofmodifications not changing
the image content, the resulting robust hash will be the same as in original image.

Algorithm consist of three major steps. In first one, robust hash is generated. In
order to obtain hash values, projections of pseudorandom sequences on image blocks
are performed and output values are sorted. Binary robust hash is then obtained using
thresholding. In second step, watermark is created based on robust hash, after per-
forming values permutations together with block number and secret key. Finally,
resulting digital watermark is embedded in the image using spread spectrum tech-
niques. Detailed description of the method is presented in [10].

Authentication is verified by comparison of watermark extracted from the image
and results of first and second step performed on tested image. Thus, two watermarks
are contraposed against each other, and result indicates whether the image is valid or
not.

To sum up, described method can be classified as selective authentication and it
reveals features of both semi-fragile watermarking and robust hashes. Digital water-
mark is embedded in the image using classical methods, and watermark is generated
based on robust hash information.

It was important to introducemodifications to the original algorithm for the needs of
our work and to improve overall processing performance—both for image protection
and authentication detection.

Since the original method only supported spatial embedding domain [19], our
implementation included frequency domain support. This way, we could compare
spatial and two-dimensional DCT domain [11]. In addition, in both spatial and fre-
quency domain additive spread spectrum technique for embedding watermark was
added, in order to compare its effectiveness.

In detection process the correlation coefficient of generated and receivedwatermark
was calculated in spatial domain. For new frequency domain it was replaced by asymp-
totically optimal correlator which offers significantly better detection performance in
frequency domain [12].

123

Int J Parallel Prog (2017) 45:1108–1127 1111

In order to further improve the processing performance, a reduction in calculation
time was necessary, that maintains high level of detection efficiency. Implementation
was redesigned so digital watermark based on robust hash is replaced by raw hash
bits [13]. QIM technique [14] was used for that purpose. Corresponding changes were
implemented in detector. For given spatial or frequency domain, embedding mask is
chosen that define the number of pixels to embed each bit of hash. Blocks of 64× 64
pixels were chosen for all scenarios, in result of trade-off between security level and
localization capabilities.

Finally, implementations were prepared for single and multicore CPU platforms,
general purpose graphic cards and heterogeneous cluster system. The implementation
of algorithms is based on OpenCV library [23].

3 Parallel Software Environments

Parallel hardware platforms can be programmed by high-level programming frame-
works. These programming frameworks are based on high-level languages like C
language, with built-in mechanisms to exploit parallelism from specific hardware
platforms. In our implementation, the OpenMP environment and OpenCL framework
were used.

3.1 OpenCL Programming Model

OpenCL [7] is a software architecture that enables the graphics processing unit (GPU),
to be programmed using high-level language. OpenCL can be used in programming
other parallel hardware platforms e.g. multicore processors. The main advantage of
OpenCL is its portability. Programs written in OpenCL can be run on AMD and
NVIDA GPU cards (for example CUDA programs run only on NVIDIA hardware
[22]). OpenCL provides three key mechanisms to parallelize programs in GPU: thread
group hierarchy, shared memories, and barrier synchronization. These mechanisms
provide fine-grained parallelism nested within coarse-grained task parallelism. Cre-
ating the optimized code on GPU cards is not a trivial task, so thorough knowledge
about this hardware accelerator architecture is needed. The main issues to solve are
usage of memory, efficiency of dividing code to parallel threads, and thread communi-
cations. Programmers should optimally use them to speed up access to data on which
an algorithm operates. Another important aspect is to optimize synchronization and
communication between the threads. Synchronization of the threads between blocks
is much slower than within a single block. If necessary, it should be solved by the
sequential running of multiple kernels.

3.2 OpenMP

OpenMP [8] is a concurrency platform for multi-threaded, shared-memory paral-
lel processing multi-core architectures for C, C++ and Fortran languages. By using
OpenMP, the programmer does not need to create the threads nor assign tasks to
each thread. The programmer inserts directives to assist the compiler into generating
threads for the parallel processor platform. OpenMP is a higher-level programming

123

1112 Int J Parallel Prog (2017) 45:1108–1127

model compared to pthreads in the POSIX library. The OpenMP consists of the fol-
lowing major components:

– Compiler directives which enable the programmer to instruct the compiler thread
creation, data management, thread synchronization, etc. Most popular are: atomic
(memory location that must be updated atomically), barrier (synchronization of
all threads in the same region), critical (defines critical section executed by single
thread at a time), for (defines for loop iterations should be run in parallel), and
parallel (defines region of the code that will be run by multiple threads). Each
OpenMP directive can be followed by a collection of clauses which mainly define
thread variables and their access policy:

– Runtime library functions control the parallel execution environment, control and
monitor threads, control and monitor processors;

– environment variables variables to alter the execution of OpenMP applications.

The most important advantage of the OpenMP framework is that the programmer
does not have to restructure the sequential source code. The process of making parallel
version only consists of insertion appropriate compiler directives to restructure the
serial program to a parallel one.

4 Parallel Implementation of Watermarking Algorithms

The implemented algorithm can be divided into few steps. The most important ones
are:

• generation of resistant hash
• watermark creation based on generated hash
• adding the watermark into the image

The detection process is similar apart from the last step, where apart from adding
watermark into the image the detection algorithm is performed to decide if image
was modified. At the beginning the image is divided to separate 64×64 blocks. All
implemented operations (apart discrete cosine transformation) are run on these blocks.
The smaller blocks then the quality of correlation (as a detection method) is and the
security (less combinations to fraud) are worse. Each block of image is projected to
vector (with 4096 pixels). For each vector Nh pseudo random sequences Si (normal
distribution with between (0,1)) are generated using specified key K . The low-band
signal filter is run on each sequence. From the output the average value is subtracted
to removed constant component. Then projection to single bit of each block sequences
is performed (Eq. 4.1). Therefore we receive Nh bit hash for each data block.

h j =
{
1 when 1

M

∣∣xT · s j ∣∣ < Te
0 otherwise

(4.1)

value Te is a quantization threshold computed as median from blocks hashes (set of
binary values with equal number of zeros and ones).

The next stage is a generation of watermark from computed hash. The input values
are: hash, predefined key K and number of block. These values allow creating Nh new

123

Int J Parallel Prog (2017) 45:1108–1127 1113

unique keys Nξ . From computed keys Nh pseudo random sequences ξ are generated.
Sequences are used to create final watermark η. Process of keys Kξ and watermark
creation was proposed in [9]. All operations are performed on 64× 64 blocks. Firstly,
hash is permuted Np times (usually five times). Hash and its permutations are written
in row order. Each column consists of Np elements (each element from different
permutation) used for computing each Kξ (i) key. Then these chosen elements from
permutations are combined with key K , number of block and number of generated
key (number from Nh). Usually it is done by XOR operations (Eq. 4.2). After that,
set of Nh keys Kξ is received. The keys are used by generator to create new pseudo
random sequences ξ with values of uniform distribution from (-1, +1).

ξ (i) = PRNG (K ⊕ B ⊕ Bit No ⊕ b1 ⊕ b21 ⊕ b48 ⊕ b12 ⊕ b9) (4.2)

where K—key, B—number of block, BitNo—bit number in hash bi − Np bits from
chosen from permutations.

Final watermark is generated by adding sequences in element-wise manner
(Eq. 4.3).

η =
√

3

Nh

∑Nh

i=1
ξi (4.3)

The received watermark independently from Nh value has number of elements equals
number of block elements (4096). Then watermark can be embedded in source image.
In case of detection process algorithm checks if watermark was changed.

In presented algorithm watermark embedding is done in spatial domain. In case of
color images the compression to YCbCr scale is performed and further operations are
executed on Y channel. After watermark insertion the reverse transformation is done.
The method of watermark insertion is additive Spread Spectrum method (Eq. 4.4),
insertion force is the same on whole image.

y = x + α · η (4.4)

where: y—input image, x—output image, α—insertion force η—watermark.
Detection process run in similar way. Steps with generating hash and creating

watermark are repeated. Then new watermark and watermark from received image
are used to compute theirs mutual correlation (correlation coefficient, equation). If
value of correlation is bigger than threshold Dth , block of the image is approved to be
unchanged. Correlation ensures resistance from modifications of constant component
of image and adding constant value to each pixel (Eq. 4.5).

ṽ = v − v̄

w̃r = v − w̄r

zcc (v,wr) = ṽ × w̃r√
(ṽ × ṽ) (w̃r × w̃r)

(4.5)

where wr—signal which is checked, v—received signal, x̄—average value. The pre-
sented above algorithmwas changed for using Frequency Domain. Therefore Discrete

123

1114 Int J Parallel Prog (2017) 45:1108–1127

Cosine Transform was implemented. The DCT runs on 8 × 8 blocks, so the 64 × 64
blocks are divided to 64 blocks (JPEG standard). After the two dimensional transform
watermark is embedded and the reverse transform is performed. Detector to presented
frequency domain is used from [12]. It ensures better detection quality of modified
blocks than previous one (Eq. 4.6).

DR (Y,W) =

(∑N
i=1 sgn (Yi) × Wi × |Yi |

1−γ
1+γ

)2

∑N
i=1 |Y + i |2(1−γ)/(1+γ)

(4.6)

where: γ—shape parameter, N–number of elements in block, Y—received image,
W—watermark.

The nextmodification is change ofwatermark generation and its embedding. There-
fore method presented in [13] was used. In this method watermark is not generated
from hash. Hash is embedded directly in image. It is used by QIM technique inde-
pendently of domain. In QIM algorithm the whole step of watermark generation is
omitted (permutation, Gaussian sequence generation). The embedded watermark is a
bit series received from tresholding Nh pseudo random sequences (in this case hash
bits). The Nh value in QIM algorithm is constant and equals 64. The 64 × 64 block
is divided to 8 × 8 blocks in which one bit is embedded. The rule of embedding is
described in equation. The force of watermark insertion can be changed by� parame-
ter (parameter responsible for quantization step). The higher value of this parameter
then force of embedding increases. The process of watermark embedding consists of
modification of pixel by using two quantizers (Eq. 4.7).

y = Q (x,�, b) =
{⌊ x

�

⌋ · �, dla b = 0⌊ x
�

⌋ · � + �
2 , dla b = 1

(4.7)

where: y—output value, x—input value, �—quantization step, b—hash bit, �x�—
rounding down of value x .

The number of modified pixels in 8 × 8 blocks in implemented QIM algorithm
depends on domain in which watermark is embedded. In spatial domain it is 32
elements, in case of frequency domain it is 5 pixels in low-band frequencies. It com-
promise between force of insertion and resistance changes.

The detection process in QIM is quite different in case of Spread Spectrummethod.
The chosen pixel is quantized for bit value 0 and 1. The received value closer to input
value was signed as more likely. One bit is embedded in each 8 × 8 block. Therefore
number of 1 and 0 values are counted in each protection block 64× 64 and the higher
is selected. An the end it is compared with appropriate watermark bit and the decision
is made if received watermark is correct.

Parallel implementation should be preceded by analysis of the source code. Firstly,
control and data flow graphs should be known to evaluate the chance to speed up
computations of given algorithm. DFG (data flow graph) can help to extract degree
of hidden parallelism. It is worth to mentioned that loops are parts of code in which
the programs spend about 90% of its whole time of execution, furthermore they are
main source of parallelism. After that adaptation of the code to parallel units should be

123

Int J Parallel Prog (2017) 45:1108–1127 1115

Fig. 1 GPU architecture

performed. The crucial aspects is projecting sequential control flow to parallel threads
and mapping data to memory hierarchy in particular hardware accelerator.

4.1 GPU Implementation

The architecture of a GPU card is described in Fig. 1. GPU is constructed as N mul-
tiprocessor structure with M cores each. The cores share an Instruction Unit with
other cores in a multiprocessor. Multiprocessors have dedicated memory chips which
are much faster than global memory, shared for all multiprocessors. These memo-
ries are: read-only constant/texture memory and shared memory. The GPU cards are
constructed as massive parallel devices, enabling thousands of parallel threads to run
which are grouped in blocks with shared memory. A dedicated software architectures
as described in previous sectionOpenCL or CUDAmakes possible programmingGPU
using high-level languages such as C and C++.

Each part of the algorithm described above was implemented as a separate module
in GPU. It can be run as a separate kernel function. Hash generation can be mapped
in such way that single thread is responsible for processing one block of size 64× 64.
Pseudo random sequences are generated and stored in thread local memory. Then
low-bound filtration, constant subtraction and projection are performed on sequences.
This process is run sequentially by the thread and output bit is generated and stored
in device memory. The second approach of hash creation can be done by mapping
sequence generation among block threads. In results section the first implementation
is measured.

123

1116 Int J Parallel Prog (2017) 45:1108–1127

Fig. 2 Parallel reduction in GPU

The watermark generation is divided to following device procedures:

• Function which permutes hash and stores them in shared memory (each thread
responsible for single image block), the permuted sequences are stored in amanner
to avoid bank conflicts in shared memory,

• Function that generates from permuted sets the new keys and sequences and sums
theirs elements (Eq. 4.3) to create watermark

The watermark embedding is implement as element-wise multiplication and addition
which is fully parallelized in GPU. Each thread processes single pixel of input image,
force of insertion vector and watermark (Eq. 4.4). The same vector multiplication and
subtraction is used in detection process (Eq. 4.5). Firstly element wise operation are
used then parallel reduction is executed (Fig. 2). The reduction is implemented that
each thread process single pixel, addition is performed without bank conflicts and in
the last stage (less elements than 64 to sum) all threads in warp are unrolled (no need
of synchronization).

In case of frequency domain the Discrete Cosine Transform was implemented.
Each block is responsible for one 8 × 8 block processing. Each thread computes
single output value in frequency domain. The current version of DCT is with no com-
plexity reduction. Therefore there is no need of synchronization of block threads. The
discrete values of cosine function are pre-computed and stored in constant memory.
The frequency domain correlation (Eq. 4.6) is based on distance computing (vector
multiplication and reduction).

The last module QIMmethod divide 8× 8 blocks among threads. Each thread read
one bit of watermark and executes quantization (Eq. 4.7) on chosen pixels of block
(32 pixels in spatial domain and 5 pixels in frequency domain).

In all cases images are read from device memory to shared memories in coalesced
manner to avoid memory access delays.

4.2 Multicore CPU Implementation

Multicore implementation is based on previous analysis. All mentioned parallel sec-
tions are covered by OpenMP directives (parallel for). The source data are stored in
aligned manner. The code is also fully vectorized for SSE and AVX modules.

123

Int J Parallel Prog (2017) 45:1108–1127 1117

5 Experimental Results

In this section results of testing the describedwatermarkingmethods will be presented.
The execution time of whole algorithms were measured and selected most interesting
parts of them. The hardware platforms on which algorithms were run are single and
multicore CPU platforms, general purpose graphic cards and heterogeneous cluster
system. The main steps of the algorithm measured by the systems are:

• Sequence generation—based on key there are generated pseudo-random sequences
which are used for projection hash to image. In case of video material generation
is executed only once at the beginning of algorithm,

• Pre-processing—preprocessing computing e.g. buffers and variables initialization,
image format conversion,

• Sequence projection—computing values of hash bymultiplying (projection) image
with generated pseudo-random sequences,

• Median computing—median computing for each independent block from values
received from projection process,

• Value thresholding—thresholding of hash values based on computed median to
receive binary sequence,

• Permutations—permutation of received hash for key generation,
• Key generation—process based on values received from earlier permutations,
• Creating watermark,
• Watermark embedding/detection,
• end processing—process of releasing allocated memory, format conversion etc.

In case of QIM implementation steps of creating watermark have not been executed
because only resistant hash is embedded. In case of GPU implementation in OpenCL
additional stepsmust be executed like a kernels creation (reading, building and creating
final kernel object), data transfer between host and GPU’s global memory and data
structure initialization.

In the Table 1 there are presented results of running of spread spectrum algorithm
with spatial domain on eight core cluster node. It describes the relation (linear depen-
dency) between number of sequences used for generating watermark and time of
protection/detection process. All results are presented for two different image sizes
(1280×720 and 1920×1080 pixels). The protection is faster in both cases (spread
spectrum method) than the detection process. The reason of that fact is additional
time of mutual correlation computation which is need to detect watermark. Table 2
presents the times of each part of the algorithm in case of different numbers of gen-
erated sequences. Additionally we can notice strong linear dependence of sequence

Table 1 Time of protection and detection processes (ms)

Size of image 1280 × 720 1920 × 1080

Number of sequences 16 32 50 64 16 32 50 64

Protection 82.64 135.57 193.79 240.89 179.67 280.32 429.09 527.36

Detection 114.01 192.49 242.08 292.89 267.28 358.57 553.83 648.03

123

1118 Int J Parallel Prog (2017) 45:1108–1127

Table 2 Time of execution of parts of the algorithm (ms)

Size of image 1280 × 720 1920 × 1080

Number of sequences 16 32 50 64 16 32 50 64

Sequences generation 202.75 331.28 484.26 546.86 307.85 587.46 884.1 1017.81

Pre-processing 9.84 10.4 9.93 10.51 24.4 22.21 22.39 22.41

Sequences projection 10.53 20 30.97 39.76 18.9 38.2 63.22 80.35

Median computing 0.13 0.17 0.22 0.24 0.24 0.32 0.43 0.48

Tresh calculation 0.21 0.23 0.31 0.31 0.4 0.49 0.55 0.62

Creating watermark 42.47 84.86 133.94 169.68 97.18 192 294.45 385.25

Adding watermark 8.86 8.78 8.81 8.89 19.93 19.76 19.64 26.65

End processing 7.35 7.67 7.35 7.65 16.89 16.87 16.91 16.94

Fig. 3 The relation of
protection and sequence
generation times (ms)

02
7x

08
21

,6
1

h
N

02
7x

08
21

,2
3

h
N

02
7x

08
21

,0
5

h
N

02
7x

08
21

,4
6

h
N

08
01

x0
29

1,
61

h
N

08
01

x0
29

1,
23

h
N

08
01

x0
29

1,
05

h
N

08
01

x0
29

1,
46

h
N0

500

1000

1500

2000

protection
sequence generation

Ti
m

e
[m

s]

Fig. 4 The relation of detection
and sequence generation times
(ms)

02
7x

08
21

,6
1

hN
02

7x
08

21
,2

3
hN

02
7x

08
21

,0
5

hN
02

7x
08

21
,4

6
hN

08
01

x0
29

1,
61

hN

08
01

x0
29

1,
23

hN
08

01
x0

29
1,

05
hN

08
01

x0
29

1,
46

hN

0

500

1000

1500

2000

detection
sequence generation

Ti
m

e
[m

s]

projection,median computing, watermark creation and thresholding. In Table 2we can
also read percentage time execution of each step in whole algorithm. Therefore we can
estimate which steps are most time consuming and should be taken in comparative
studies between different algorithms. Figures 3 and 4 describe detection/protection
times in relation with sequences generation. The process of sequence generation takes
significant part of total algorithm time (more than 50% of all the algorithm time). In

123

Int J Parallel Prog (2017) 45:1108–1127 1119

Table 3 The partial times of spread spectrum technique on 1280 × 720 image (ms)

Technique Spread spectrum

Domain Spatial DCT

Implementation Single core Eight cores OpenCL Single core Eight cores OpenCL

Sequence generation 2242 546.86 544.4 2274 604.72 531.14

Kernels creation − − 1008 − − 270.65

Preprocessing 10.17 10.51 19.74 10.15 10.21 15.21

Writing sequence − − 82.2 − − 74.7

Writing image − − 0.7 − − 0.67

Sequence projection 204.5 39.76 7.95 202.45 39.5 7.7

Median computing 1.18 0.24 0.6 1.19 0.26 0.6

Tresh computing 1.3 0.31 0.05 1.29 0.3 0.05

Permutation − − 0.51 − − 0.48

Key creation − − 0.18 − − 0.18

Watermark creation 1000 169.68 380.67 999.7 168.37 636.65

Adding watermark 51.38 8.89 0.29 94.11 15.99 19.8

Buffer reading − − 1.8 − − 1.8

Realease OpenCL objects − − 0.3 − − 0.67

End processing 7.2 7.65 7.68 7.28 7.35 7.37

further analysis number of sequences will be 64. This value is a trade-off between
quality and security of embedding and detection of watermarks in the image.

Tables 3, 4, 5, and 6 present results of running four different algorithms (spread
spectrumandQIMtechniques in spatial andDCTdomain) on images of size 1280×720
and 1920 × 1080 on single core, multicore and GPGPU platform, respectively. We
can notice that each step execution time depends on technique and domain of the
algorithm and hardware platform. The time of projection operation and watermark
creation (executed only for spread spectrum algorithm) is constant and depends on
hardware platform only. The watermark creation is fastest on the multicore platform,
the projection process on the GPU platform.

Table 7 describe efficiency of protection and detection process in all configuration.
As it can be seen the GPU implementation enables fastest execution of these steps.
After adding additional steps (data transfer, write buffers etc.) to protection and detec-
tion time it turns out that OpenMP on the multicore platform gives the best results
(faster than GPGPU). The worst case is while executing the algorithm on the single
core (Figs. 5, 6).

In case of video input the influence of preprocessing (additional operation) can be
minimalized because they are run only once at the beginning of the algorithm (it does
not depend on number of frames). The following parameters were measured while
running watermarking algorithms on video sources:

• Catching the frame,
• Protection/detection proces,

123

1120 Int J Parallel Prog (2017) 45:1108–1127

Table 4 The partial times of QIM technique on 1280 × 720 image [ms]

Technique QIM

Domain Spatial DCT

Implementation Single core Eight cores OpenCL Single core Eight cores OpenCL

Sequence generation 2299 600.5 574.53 2276 571.48 556.16

Kernels creation − − 266.35 − − 268.36

Preprocessing 10.2 9.9 11.37 10.37 10.2 13.61

Writing sequence − − 72.08 − − 73.53

Writing image − − 0.62 − − 0.69

Sequence projection 204.22 39.25 7.53 204.85 39.81 7.61

Median computing 1.2 0.26 0.62 1.2 0.26 0.62

Tresh computing 1.32 0.3 0.05 1.26 0.33 0.06

Permutation − − − − − −
Key creation − − − − − −
Watermark creation − − − − − −
Adding watermark 50.35 12.73 0.44 8.76 18.05 1.01

Buffer reading − − 1.95 − − 2.14

Realease OpenCL objects − − 0.3 − − 0.43

End processing 7.29 7.33 9.5 7.27 7.35 10.5

Table 5 The partial times of spread spectrum technique on 1920 × 1080 image (ms)

Technique Spread spectrum

Domain Spatial DCT

Implementation Single core Eight cores OpenCL Single core Eight cores OpenCL

Sequence generation 4693 1026 1033 4718 1000 1038

Kernels creation − − 504.09 − − 338.25

Preprocessing 22.03 22.39 22.27 22 22.26 32.54

Writing sequence − − 154.88 − − 147.52

Writing image − − 0.88 − − 0.89

Sequence projection 417.24 79.93 83.9 42 79.05 13.21

Median computing 2.68 0.5 0.55 2.51 0.49 0.82

Tresh computing 2.71 0.63 0.61 2.69 0.61 0.05

Permutation − − 0.34 − − 0.33

Key creation − − 0.34 − − 0.33

Watermark creation 2107 378.22 383.17 2111 380.13 636.7

Adding watermark 110.08 26.48 19.68 200.45 36.13 47

Buffer reading − − 3.49 − − 3.42

Realease OpenCL objects − − 0.43 − − 0.74

End processing 16.88 16.9 17.06 16.87 16.88 16.94

123

Int J Parallel Prog (2017) 45:1108–1127 1121

Table 6 The partial times of QIM technique on 1920 × 1080 image (ms)

Technique QIM

Domain Spatial DCT

Implementation Single core Eight cores OpenCL Single core Eight cores OpenCL

Sequence generation 4676 1021.5 1001 4680 1029.5 993.3

Kernels creation − − 332.1 − − 337.42

Preprocessing 22 22.2 32.74 22.02 22.41 24.62

Writing sequence − − 138.36 − − 142.47

Writing image − − 0.98 − − 0.91

Sequence projection 419.09 79.59 13.49 414.58 71.63 13.21

Median computing 2.45 0.55 0.82 2.46 0.48 0.82

Tresh computing 2.68 0.6 0.05 2.77 0.63 0.05

Permutation − − − − − −
Key creation − − − − − −
Watermark creation − − − − − −
Adding watermark 107.73 27.81 0.72 185.74 39.83 1.42

Buffer reading − − 3.43 − − 3.43

Realease OpenCL objects − − 0.34 − − 0.44

End processing 17.11 16.88 16.99 16.84 17.07 16.99

Table 7 The times of protection and detection processes with additional operations (ms)

Size of image 1280 × 720 1920 × 1080

Algorithm Spread spectrum QIM Spread spectrum QIM

Domain Spatial DCT Spatial DCT Spatial DCT Spatial DCT

Protection single-core 3539.65 3590.58 2358.64 2259.42 7381.03 7509 5263.87 5352.68

Protection muti-core 786.89 861.31 682.19 668.98 1572.91 1565.94 1183.63 1128.11

Protection GPGPU 2328.03 1590.14 978.18 954.25 2409.84 2301.34 1579.59 1546.94

Detection single-core 3726 3767.26 3621.08 2607.29 7847.03 7897 5354.73 5373.66

Detection-multi-core 825.24 916.34 697.17 673.59 1662.09 1667.35 1222.17 1118.55

Detection GPGPU 2315.19 1559.22 955.33 937.59 2401.65 2256.84 1546.12 1523.91

• Writing the results,
• Video creation (in case of protection process).

The whole system enables run described algorithms on several available nodes in
a cluster. The algorithm can be run in multiple configurations. The first solution is
the trial of parallelization the GPU implementation by running the algorithm on two
graphic cards controlled by independent cores on a single node. The example results of
such solution is described in Table 12. The second proposed solution is to execute the
algorithm using multiple cluster nodes. It can be realized by MPI API. The one node
is a master divides and broadcast the images and videos to other nodes. Then all nodes

123

1122 Int J Parallel Prog (2017) 45:1108–1127

Fig. 5 The comparison of the
sequence generation times on
each hardware platform

single-core
multi-core

GPGPU

0

100

200

300

400

500

1280x720
1920x1080Ti

m
e

[m
s]

Fig. 6 The comparison of the
sequence generation times in
each domain

SS_SPAT
SS_DCT

QIM_SPAT
QIM_DCT

0

20

40

60

80

100

single-core
multi-core
GPGPUTi

m
e

[m
s]

Infiniband QDR 4x

6-core CPU

Xeon
6-core CPU

Xeon
6-core CPU

Xeon

6-core CPU

Xeon

GPGPU GPGPU GPGPU GPGPU GPGPU GPGPU GPGPU

Single independent

 node

4 GB/s 4 GB/s

GPGPU

Fig. 7 Architecture of cluster

execute algorithm write the results and send to the master node (scatter and gather
function are used). The transfer time and initializations operations in MPI increases
significantly the total time because of size of image and video data. The example
transfer times are presented in Table 11. The other way is to prepare input data for
each node in its local memory. Then the achieved speed up of running the algorithm
were linear. The delay of transferring the data before running the algorithm depends
on hard disk parameters used in particular cluster system.

Watermarking algorithm were adapted and run on cluster system. The cluster con-
sists of several computing nodes [21]. Each node has two six core CPUs. The single

123

Int J Parallel Prog (2017) 45:1108–1127 1123

Table 8 The times of protection and detection processes (ms)

Size of image 1280 × 720 1920 × 1080

Algorithm Spread spectrum QIM Spread spectrum QIM

Domain Spatial DCT Spatial DCT Spatial DCT Spatial DCT

Protection single-core 1287.48 1306.43 275.44 312.05 2666 2771 565.87 650.66

Protection muti-core 229.69 246.41 71.79 76.38 524.52 543.68 149.93 76.21

Protection GPGPU 672.03 699.14 54.18 43.25 709.84 751.34 75.59 69.94

Detection single-core 1473.83 1483.11 311.88 320.92 3132 3159 656.73 671.64

Detection-multi-core 268.04 301.44 86.77 80.99 613.7 645.09 188.47 66.65

Detection GPGPU 659.19 668.22 31.33 26.59 701.65 706.84 42.12 46.91

Table 9 The times of protection process of video sources [ms]

Size of image Algorithm Platform Time of
execution

Image catch Image
writing

Video
creation

1280 × 720 SS_SPAT Single-core 132.98 7.5 0.05 150.8

Twelve-cores 30.38 1.2 0.05 35.7

GPGPU 69.9 1.19 0.11 76.6

SS_DCT Single-core 137.275 7.57 0.04 146.5

Twelve-cores 31.39 1.19 0.06 32.3

GPGPU 71.81 1.2 0.11 72.4

QIM_SPAT Single-core 32.2 7.5 0.04 64.9

Twelve-cores 14.13 1.25 0.05 17.8

GPGPU 8.48 1.22 0.11 10.6

QIM_DCT Single-core 70.68 8.1 0.06 75.4

Twelve-cores 16.4 1.24 0.05 18.3

GPGPU 8.45 1.26 0.1 11.2

1920 × 1080 SS_SPAT Single-core 277.29 13.3 0.25 320.8

Twelve-cores 63.21 2.54 0.33 74.6

GPGPU 77.01 2.56 0.23 83.8

SS_DCT Single-core 307.59 12.6 0.26 315.6

Twelve-cores 67.43 2.55 0.32 65.6

GPGPU 79.21 2.55 0.27 82.5

QIM_SPAT Single-core 68.37 12.89 0.26 315.6

Twelve-cores 25.92 2.3 0.32 65.6

GPGPU 16.88 2.54 0.27 82.5

QIM_DCT Single-core 75.13 13.3 0.26 315.6

Twelve-cores 26.56 2.54 0.32 65.6

GPGPU 16.98 2.56 0.27 82.5

123

1124 Int J Parallel Prog (2017) 45:1108–1127

Table 10 The times of detection process of video sources [ms]

Size of image Algorithm Platform Time of
execution

Image catch Image
writing

Video
creation

1280 × 720 SS_SPAT Single-core 148.66 7.5 0.05 150.8

Twelve-cores 29.32 1.2 0.05 35.7

GPGPU 67.15 1.19 0.11 76.6

SS_DCT Single-core 151.97 7.57 0.04 146.5

Twelve-cores 31.39 1.19 0.06 32.3

GPGPU 71.81 1.2 0.11 72.4

QIM_SPAT Single-core 32.55 7.5 0.04 64.9

Twelve-cores 11.43 1.25 0.05 17.8

GPGPU 4.61 1.22 0.11 10.6

QIM_DCT Single-core 31.82 8.1 0.06 75.4

Twelve-cores 11.34 1.24 0.05 18.3

GPGPU 4.31 1.26 0.1 11.2

1920 × 1080 SS_SPAT Single-core 315.36 13.3 0.25 320.8

Twelve-cores 65.12 2.54 0.33 74.6

GPGPU 70.62 2.56 0.23 83.8

SS_DCT Single-core 320.83 12.6 0.26 315.6

Twelve-cores 67.37 2.55 0.32 65.6

GPGPU 72.84 2.55 0.27 82.5

QIM_SPAT Single-core 65.08 12.6 0.26 315.6

Twelve-cores 18.46 2.55 0.32 65.6

GPGPU 9.1 2.55 0.27 82.5

QIM_DCT Single-core 65.41 12.6 0.26 315.6

Twelve-cores 18.99 2.55 0.32 65.6

GPGPU 9.15 2.55 0.27 82.5

CPU core has access to 4 graphic cards which are available on each cluster node.
Therefore single node enables to parallelize applications to be run in multicore envi-
ronmentwithmany coreGPUs. In presented implementation each node is programmed
by OpenMP environment. In first mode only CPU cores are used to make water-
marking computations on independent input images and video sequences. The second
solution is based on using graphic cards for accelerating protection and detection
process of watermarking image data. Running application on more than four graphic
cards or more than twelve cores MPI library must be used to enable communica-
tion between cluster nodes. One cluster node is chosen as a root node to coordinate
and supervising other nodes. Each node receives input data and then start execut-
ing algorithm in a single process which is forked by OpenMP to given number of
available core or to delegate the computations to graphic card connected to the node.
Figure 7 describes process (root), which uses for executing the task maximal available
resources on single node (CPU unit, run 4 independent watermarking computations on

123

Int J Parallel Prog (2017) 45:1108–1127 1125

Table 11 Data transfers
measured on infiniband by MPI
API

Size of data Transfer time (ms)

10 MB 0.6

20 MB 1.1

100 MB 4.5

1000 MB 35

Table 12 Speedup the algorithm (Spread Spectrum SS_SPAT) run on two GPUs available in a cluster node

Size of data processed Single GPGPU time (s) Two GPGPUs time (s)

1 MB 12.1 7.5

2 MB 23.8 13.1

4 MB 46.8 24.2

8 MB 94.1 47.6

parallel cores which delegate algorithm to graphical cards available on single cluster
node).

The cluster has peak performance about 136.7 TFlops. Each node consist of Intel
Xeon 56XX family processors and NVIDIA Tesla M2050 and M2090 graphic cards.
The bus between CPU and GPU enables 4 GB/s bandwidth. The interconnection
between nodes cluster is based on Infiniband QDR 4x (peak about 40 GB/s).

6 Conclusions and Future Work

The possibilities of improving the performance of content authentication system using
multiprocessor systems were investigated in the presented work. Two key paralleliza-
tion technologies –OpenMP forCPUsystems andOpenCL forGPUcomputing—have
been used for implementation of redesigned hash-based watermarkingmethod. Devel-
oped hybrid processing architecture aided by MPI protocol takes advantages of both
processing domains and enables building advanced computing solution. Considered
algorithm is based on semi-fragile watermarking and hash function in diverse embed-
ding domains. The idea behind the proposed solution is to speed up video processing
and maintain high embedding efficiency.

Execution time were examined both for digital images and video sequences. Per-
formance of authentication system with computing parallelization was measured for
single andmulticore CPU platforms, general purpose graphic cards and heterogeneous
cluster system. Analysis of results reveals that compared to single-core implementa-
tion in parallel processing environment a speed up of watermark algorithms in case of
images can rise to over 30 times for protection (maximal speed up for QIM_SPAT) and
over 5 times for detection can be achieved (Tables 7, 8). In case of video sources the
achieved speed up is about 5–7 times for protection and detection processes (Tables 9,
10) (the best times measured in GPU). In addition a real-time processing is possible
especially for QIM methods where the best speed up was achieved. Detailed inves-

123

1126 Int J Parallel Prog (2017) 45:1108–1127

tigation performed on algorithm steps helped to identify crucial parts of the whole
processing chain. The results also enabled verification of the introduced algorithm
modifications, that have contributed to reduction in processing times and to increasing
the performance of the system. Future work is aimed at providing end-user authentica-
tion services together with efficient storage and distribution system. Further research
will also concentrate on optimization of algorithms and theirs implementations in
OpenCL with running them in other hardware accelerators like FPGA (Tables 11, 12).

The main benefit of our work was to show that watermarking algorithm as one
of the video authentication method can be significantly speed up parallel hardware
accelerators. Nowadays, GPU andmulti-core processor are common inmodernmobile
devices and embedded systems. Therefore they can be used for real time image and
videos authentication and authorization inmany applications and devices like cameras,
bank systems etc.

References

1. Haouzia, A., Noumeir, R.: Methods for image authentication: a survey. Multimedia Tools Appl. 39(1),
1–46 (2008)

2. Fridrich, J.: Methods for tamper detection in digital images. In: Proceedings of the Multimedia and
Security Workshop at ACM Multimedia (1999)

3. Wen, C.-Y., Yang, K.-T.: Image authentication for digital image evidence. Forensic Sci. J. (2006)
4. Zhu, B., Tewfik, A.H.: Low bit rate near-transparent image coding. In: Proceedings of SPIE (1995)
5. Fawad, A., Siyal, M.Y.: A secure and robust DCT-based hashing scheme for image authentication.

10th IEEE Singapore International Conference on Communucation Systems (2006)
6. Lin, C., Zhao, L., Yang, J.: A high performance image authentication algorithm on GPU with CUDA.

Int. J. Intell. Syst. Appl. 3(2), 52–59 (2011)
7. OpenCL—Open Computing Language. www.khronos.org/opencl (2014)
8. OpenMP—Open Multi-Processing. www.openmp.org (2014)
9. Fridrich, J., Goljan, M.: Robust hash functions for digital watermarking. International Conference on

Information Technology: Coding and Computing (2000)
10. Dominguez-Conde, G., Comesa, P., Perez-Gonzalez, F.: Performance analysis of the Fridrich-Goljan

self-embedding authentication method. 16th IEEE International Conference on Image Processing
(2009)

11. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE Trans. Comput. 23(1), 90–93
(1974)

12. Nikolaidis, A., Pitas, I.: Asymptotically Optimal detection for additive watermarking in the DCT and
DWT domains. IEEE Trans. Image Process. 12(5), 563–571 (2003)

13. Zarnowiec, K., Korus, P., Dziech, A., Glowacz, A.: Practical implementation of visual hash functions
for CCTV footage authentication. Commun. Comput. Inf. Sci. 368, 309–323 (2013)

14. Chen, B., Wornell, G.: Quantization index modulation: a class of provably good methods for digital
watermarking and information embedding. IEEE International Symposium on Information Theory
(2000)

15. Open MPI: Open source high performance computing. www.open-mpi.org (2014)
16. Cox, I., Miller, M., Bloom, J., Fridrich, J., Kalker, T.: Digital Watermarking and Steganography, 2nd

edn. Morgan Kaufmann, Burlington (2007)
17. Seitz, J.: Digital Watermarking For Digital Media. Information Science Publishing, Charlotte (2005)
18. Fridrich, J.: Visual Hash for Oblivious Watermarking, Security and Watermarking of Multimedia

Contents II, Vol. 3971 (2000)
19. Cox, I. J., Kilian, J., Leighton, T., Shamoon, T.: Secure spread spectrum watermarking for images,

audio and video. International Conference on Image Processing (1996)
20. Chen, B., Wornell, G.: Quantization index modulation: a class of provably good methods for digital

watermarking and information embedding. IEEE International Symposium on Information Theory
(2000)

123

www.khronos.org/opencl
www.openmp.org
http://www.open-mpi.org

Int J Parallel Prog (2017) 45:1108–1127 1127

21. Flynn, M. J.: Very high-speed computing systems. In: Proceedings of the IEEE (1966)
22. Nvidia, Nvidia CUDA C Programming Guide, version 4.2. www.nvidia.com
23. OpenCV—Open Source Computer Vision. www.opencv.willowgarage.com (2014)

123

www.nvidia.com
www.opencv.willowgarage.com

	Implementation of Digital Watermarking Algorithms in Parallel Hardware Accelerators
	Abstract
	1 Introduction
	2 Digital Watermarking
	3 Parallel Software Environments
	3.1 OpenCL Programming Model
	3.2 OpenMP

	4 Parallel Implementation of Watermarking Algorithms
	4.1 GPU Implementation
	4.2 Multicore CPU Implementation

	5 Experimental Results
	6 Conclusions and Future Work
	References

