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Abstract The minimisation of the total cost of ownership is hard to be faced by the
owners of large scale computing systems, without affecting negatively the quality
of service for the users. Modern datacenters, often included in distributed environ-
ments, appear to be “elastic”, i.e., they are able to shrink or enlarge the number of
local physical or virtual resources, also by recruiting them from private/public clouds.
This increases the degree of dynamicity, making the infrastructure management more
and more complex. Here, we report some advances in the realisation of an adaptive
scheduling controller (ASC) which, by interacting with the datacenter resource man-
ager, allows an effective and an efficient usage of resources. In particular, we focus on
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the mathematical formalisation of the ASC’s kernel that allows to dynamically config-
ure, in a suitable way, the datacenter resourcesmanager. The described formalisation is
based on a probabilistic approach that, starting from both a hystorical resources usage
and on the actual users request of the datacenter resources, identifies a suitable prob-
ability distribution for queue time with the aim to perform a short term forecasting.
The case study is the SCoPE datacenter at the University of Naples Federico II.

Keywords Adaptive scheduling · Resources management · Large scale and
distributed systems · Queue time forecasting

1 Introduction

TheTCOof large scale computing systems, supporting awide range of users and differ-
ent applications, includes also the initial hardware cost (for computing nodes, storage
systems, racks, facilities, etc.), the personnel/system administrator costs (salaries
for software and hardware maintenance requiring specialised know-how), business
premises, and energy costs (e.g. the additional power requirements for cooling and
power delivery inefficiencies) [15].

Users of such large scale systems, which are often integrated in complex distributed
computing environments (e.g. grid and cloud), can have conflicting demands in terms
of resources request since they ask to execute very different jobs (i.e., short versus
long jobs, sequential versus parallel applications, etc.).

The aim of a good system manager is the TCOminimisation without neglecting all
users satisfaction. In other words, the system manager has to “configure” the system
in such a way to not “waste” resources (if not required by any user) and to recruit
the “suitable” number of resources in order to execute, in a “reasonable time”, all the
applications submitted by the users.

The overall time to solution of an application on such computing resources is
made of a part related to its execution time plus a part spent in waiting that such
resources are available on the system. While the execution time of an application on a
certain fixed system configuration is a priori known on the contrary, on a large general
purpose system, the waiting time depends both on the application requirements (in
terms of hardware resources demand) and on the system state at the time of application
submission. The user satisfaction depends on the total time required to complete its
submitted jobs. Thus, the overall users satisfaction depends on how the system is able
to complete the whole jobs work flow.

Modern computing techniques and paradigms (e.g. virtualisation and cloud com-
puting) can help the system manager to suitable activate on demand the right number
of the system resources, in order to balance the TCO minimisation and all users sat-
isfaction maximisation.

In the described scenario, an adaptive approach to the scheduling problem seems
to be suitable to solve the above optimisation problem.

We are working since some years (see [2,3]) to realise an adaptive scheduling con-
troller (ASC), a complex system that, using an adaptive approach to the scheduling
problem, is able to periodically recognise a change in the job work flow scenario in

123



1166 Int J Parallel Prog (2017) 45:1164–1193

order to verify if the actual system configuration (in terms of scheduler parameters)
allows to grant the same level of performances measured by means of classical effi-
ciency and effectiveness metrics. In case of performance degradation, the scheduler
has to assume a new configuration increasing the level of performances.

Already in [2,3], the SCoPE datacenter of the University of Naples Federico II has
been used as test case to study the issues related to the design and the implementation of
ASC. The SCoPE datacenter, in fact, is a distributed computing infrastructure, which
has the twofold role of local computing resources provider for the academic research
groups and of remote resources provider for both the IGI [9] and the EGI Federated
Cloud [6].

This paper describes the advancements in the mathematical formalisation and
implementation of ASC’s kernel module. Main results concern the definition of a
heuristic approach to find the most suitable probability distribution function to model
the queue times meanwhile forecasting them for different classes of jobs. The classi-
fication is made on the basis of job duration and degree of parallelism (DoP).

In Sect. 2, we provide some details on the related works both in the field of adaptive
scheduling and in the field of queue time forecasting, focusing on the key differences
between the existing approaches andours. InSect. 3,we report a short description of the
ASC system, focusing on the mathematical formalisation of one of its important core
module. In Sect. 4, we describe the case study of the SCoPE computing infrastructure
at University of Naples Federico II. In Sect. 5, the approach used both to characterise
queue time and to forecast them by means of a hybrid approach based on numerical
and statistical techniques is presented.

2 Related Work

According to [5], an adaptive solution to the scheduling problem is able to change
dynamically algorithms and parameters defining the scheduling policy, taking into
account the past and present behaviour of the system and the previous decisions of
the scheduling system itself (see [18]).

A preliminary approach in jobs scheduling, such as those described in [19], models
adaptive control systems that are able to maximise a given performance criterion, such
as system throughput.However, in the last years the heterogeneity of applications using
general purpose computing systems grows together with the complexity of resource
requirements. Moreover, the overall set of resources, generally included in a modern
“elastic” datacenter, is dynamic and heterogeneous itself, because of the chance to
include different resources (e.g. from clouds).

In this scenario, characterised by a high level of dynamicity, the system throughput
maximisation shouldn’t longer be the only requirement for a scheduling scheme. The
user perceives a good quality of service (the so called “user satisfaction”) if his problem
is solved in an“acceptable” time [7] and this regards not only the application execution
time but all the time from job submission until job completion.

Recent approaches in jobs scheduling take into account both efficiency and fairness
for homogeneous workloads [21], but the open challenge is to achieve the same goal
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for not homogeneous workloads also due to the high computational complexity of the
optimisation problem to be solved.

With the aim to reduce the computational complexity for the optimisation problem,
in [2,3], we proposed a pragmatic approach, based on the assumption that the overall
set of users is organised in communities each of them having almost homogeneous
requirements. These conditions induce a classification of the users (or equivalently of
the jobs) driven by two parameters: the job duration and the job DoP.

Moreover, the most of the approaches existing in literature, present and discuss
the task distribution problem onto HPC, distributed systems or service infrastructures
with the aim to improvemainly the performance and load balancing of the applications
[1,4,8,11,13,16]. Our approach, instead, aims to achieve the efficiency of the entire
system rather than the performance of a single application.

All said is possible only if we are able to find the relationship between a configu-
ration of the scheduling system and the values of the metrics to be optimised.

In our previous work [2], we reformulated the problem of metrics optimisation in
such a way to depend only on a queue time estimation. Thus, if we are able to obtain,
for each system configuration and each work flow, a queue time estimation, we are
also able to forecast values for metrics and, then, to assess whether the current system
configuration is good or needs to be changed for a certain work flow.

Here we introduce a probability distribution function (PDF) useful to forecast the
queue time. In existing literaturemany articles have been produced in the field of queue
time theory. In [17,22] are well described Queuing Theory and some mathematical
models of queuing systems of the last 50years.

However, in theoretical studies with the aim to reduce problem complexity, these
parameters are often simplified up to the point of no longer being representative of
a real system. In distributed and on demand systems, e.g., there may be more than
a server (thousand of nodes, that may change both in number and in type) and the
scheduling algorithm can be not simple but a combination of basic modules.

While the theoretical studies offer refined models, instead the heuristic approaches
provide amore realistic system representation. In the last decades, some authors began
to use probabilistic approaches to describe queue time in queue systems starting from
the dataset related to the work flow data. In some of these works, the dataset used in
the probabilistic approach is not real but “simulated” and sometimes related to only
one class (e.g., see [21]) of “users” (parallel, sequential, etc.).

In our approach, even if we follow a probabilistic approach in queue time charac-
terisation, however we also consider real data collected during the past year on the
SCoPE datacenter (see Sect. 4 for the description of the case study). In this case, the
probability distribution for queue time varies in time due to the heterogeneity and
dynamicity of jobs in work flow.

According to some recent results [14], we focused mainly on two promising prob-
ability distribution function (PDF): the Gamma function and the General Pareto
function. There, queue time is represented as the sum of two random variables: the
first one having a distribution of Gamma type, the second one of Pareto type.

Our approach doesn’t take into account the mathematical formalisation of the PDF
sum, but starts from the following assumption: on the basis of the system status,
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the values for the random variable of the queue time are generated according to a
probability distribution that is more akin to a type Gamma or Pareto.

3 The ASC Core Module: A Statistics Optimiser Formulation

In a dynamic context, where the number of jobs (and their type) may change as well as
the number of system resources, an adaptive scheduler has to verify periodically the
status of the job work flow and, in case of some changes, it has to verify if the actual
system configuration (in terms of scheduler parameters) is the right to grant the same
performances measured by means of classical efficiency and effectiveness metrics. If
a change in the configuration parameters is needed, an adaptive scheduler controller
has to look for a new “optimal” configuration.

We define “adaptive” a system able to “reconfigure” itself on the basis of changing
in the user typology. Such a mechanism, analysing system behaviour by some clas-
sical key-statistics (e.g. depending on queue waiting time, jobs throughput, resource
usage, and so on), dynamically defines a new set of scheduler key-parameters val-
ues. The scheduler’s new configuration has to meet both the user satisfaction and the
efficiency/productivity in the computational resource usage.

Here we describe the mathematical formalisation at the basis of the ASC’s ker-
nel module: the Statistics Optimiser (see [2] for a complete description of the ASC
architecture and operating model). As in our previous works [2,3], we suppose the
whole work flow of heterogeneous jobs partitioned into m classes of homogeneous
jobs. Then, ∀ j ∈ {1, . . . , m}, we look for a function Fj such that:

C =
m∑

j=1

α j (J) · Fj (S) (1)

where C is the set of the resource manager configurations (each of them is identified
by a set of value for key-parameters), J is the vector representing the work flow, S
contains the values of the considered metrics.

The function Fj computes optimal parameters values for the j th job type, while α j

expresses the weight to be considered for the j th job type. In other words, Fj has to
act in the following way:

Fj (S) =
{(

ci1,i2,...,k
)opt

j if Sk � (Sk)
opt
j

leaves unchanged
(
ci1,i2,...,k

)
j otherwise

For each job class, we consider the following classic key-statistics:

System effectiveness ratio E ( j) =
∑n( j)

i=1 p( j)
i t ( j)

i
P( j)T ( j) ;

System Make span M ( j)
k = maxi=1,...,n( j)

(
t ( j)
i + q( j)

i

)
;

Queue waiting time average Q( j) =
∑n( j)

i=1 q( j)
i

n( j)
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where P( j) is the total number of available processors allocated by job type j , n( j)

is the total number of jobs in the j th jobs class, T ( j) = ∑n( j)

i=1 t ( j)
i is the wall clock

run time for all jobs in the j th class, p( j)
i , t ( j)

i and q( j)
i are respectively the number of

requested processors, the execution time and the queue time for the i th job in the j th
jobs class.

As showed in our previous work [2], and under the realistic assumption:

n∑

i=1

qi <

n∑

i=1

ti (2)

for each job class j ∈ {1, . . . , m}, we want to solve the following:
Problem 1 To compute the set of the scheduler key-parameters C( j)

Opt such that

C( j)
Opt = Fj

(
S( j)

Opt

)
(3)

where S( j)
Opt =

(
E ( j)

Opt , Mk
( j)
Opt , Q( j)

Opt

)
and E ( j)

Opt , Mk
( j)
Opt , Q( j)

Opt are the solutions of

the constrained “optimisation” problem:

{
max{E ( j)} s.t.
T ( j) ≤ (Mk

( j) + n( j)Q( j))
(4)

��
Among the described three key-statistics, we want to maximise the efficiency and,

than, the optimisation problem is defined thanks to the constraints related to users
satisfaction (Makespan and Queue Waiting Time average).

We can estimate E , Q and Mk only if a PDF for the queue time values is known for
all the jobs in the work flow. Once an estimation for the metrics is done, the system
can evaluate if the actual configuration is good or has to be changed. In this last case,
a new system configuration has to be defined optimising metrics estimation.

In the next sections we describe the approach followed to identify the PDF that
allows both to describe and to forecast queue time for all the classified jobs.

4 Our Case Study Description

We use computational resources available at the University of Naples Federico II,
acquired in the context of PON Italian National Project titled S.Co.P.E. Sistema Coop-
erativo Per Elaborazioni scientifiche multidisciplinari [12]. SCoPE resources are also
available both to national and to international relevant distributed infrastructures (IGI
and EGI). A large number of applications run on this infrastructure; among them,
those ones who more intensively use the system, belong to a some different scientific
fields (from Biology to Physics, from Engineering to Numerical Analysis).
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Fig. 1 Jobs “ideal
classification”

Job duration
short medium long

DoP
low T0P0 T1P0 T2P0

medium T0P1 T1P1 T2P1
high T0P2 T1P2 T2P2

Due to the heterogeneity of the user communities, the computational resources are
used both for “traditional” GRID jobs and for HPC applications. From our heuristic
analysis, we observe that SCoPE jobs are mostly sequential or with a low DoP with
a short/medium duration. Just a subset of SCoPE jobs has a medium-high DoP and a
more long duration.

The computational resources (about 2000 cores) are accessed by means of a
Resource Management System (based on Maui-Torque systems).

Jobs are classified on the basis of an“ideal classification” driven by the job duration
and the tasks number (see Fig. 1). Figure 2 shows the real work flow characterisation
during the last year 2015. Different type of work flows and jobs are present on SCoPE
infrastructure confirming the need for an adaptive approach to the scheduling problem.

We remark that, with the terms short, medium and long for the job duration, we
intend: short till to 2 h, medium from 2h to 2days and long above 2 days. With
the terms low, medium and high for the job DoP we respectively intend: sequential
jobs, parallel jobs with up to eight concurrent tasks and parallel jobs with more eight
concurrent tasks.

Fig. 2 Job work flow representation (Year 2015): # of jobs per type versus year week number
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5 Queue Time Characterisation and Forecast

A mathematical characterisation of the waiting time q is necessary to evaluate some
of the metrics defining the optimisation problem (4) (e.g., M ( j)

k and Q( j)) and it is
also useful during the decision process for the definition of the scheduler configu-
ration parameters. One of the approaches used for the characterisation of the queue
waiting time provides the chance to define q as a random variable with an associated
PDF.

5.1 Probabilistic Characterisation of the Queue Time

As described in [14], q can be considered as the sum of two independent random
variables q = qnotwaiting +qwaiting where qnotwaiting and qwaiting represent the non-
waiting and waiting time, respectively: qnotwaiting and qwaiting are associated to a

Fig. 3 Trends of the estimated Pareto and Gamma distributions parameters for medium long sequential
jobs for every week of the year 2015

123



1172 Int J Parallel Prog (2017) 45:1164–1193

Fig. 4 Real and estimated queue time trend (a) and its probabilistic representation in terms of a Q–Q plot
versus both an estimated Pareto distribution and a Gamma distribution (b) for medium long sequential jobs
during the 20th week of the year 2015
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Fig. 5 Real and estimated queue time trend (a) and its probabilistic representation in terms of a Q–Q plot
versus both an estimated Pareto distribution and a Gamma distribution (b) for medium long sequential jobs
during the 26th week of the year 2015
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Fig. 6 Real and estimated queue time trend (a) and its probabilistic representation in terms of a Q–Q plot
versus both an estimated Pareto distribution and a Gamma distribution (b) for medium long sequential jobs
during the 28th week of the year 2015
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Fig. 7 Real and estimated queue time trend (a) and its probabilistic representation in terms of a Q–Q plot
versus both an estimated Pareto distribution and a Gamma distribution (b) for medium long sequential jobs
during the 40th week of the year 2015
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Table 1 Q values for real and
estimated queue time for
medium long sequential jobs

Week

20 26 28 40

q 10.839 156.745 3.846 30.850

qG Est 10.838 156.771 3.849 30.860

q P Est 10.832 156.715 3.845 30.847

Table 2 Mk values for real and
estimated queue time for
medium long sequential jobs

Week

20 26 28 40

q 281.65 269.15 54.08 123.29

qG Est 161.49 443.76 128.10 274.13

q P Est 1370.47 235.84 56.84 153.98

1: function PERFORMPARAMETERSFORECAST(tForecasted, nt)
2: for t ← tForecasted − nt, tForecasted − 1 do
3: estimate Pareto distribution parameters from qt available data
4: PARpart ← ESTIMATEPARETO(qt)
5: estimate Gamma distribution parameters from qt available data
6: GAMpart ← ESTIMATEGAMMA(qt)
7: end for
8: Choose a fitting line for all the PARpart values
9: PARp ← FITTHEDATA(PARpar)
10: Choose a fitting line for all the GAMpart values
11: GAMp ← FITTHEDATA(GAMpar)
12: Compute the value PARparForecasted at tForecasted of the
13: line fitting the PARpart values
14: PARpar ← EVALUATE(PARp, tForecasted)
15: Compute the value GAMparForecasted at tForecasted
16: of the line fitting the GAMpart values
17: GAMpar ← EVALUATE(GAMp, tForecasted)
18: if (decision criterion is satisfied for Pareto parameters) then
19: type ← Pareto Choose Pareto distribution to characterise
20: tForecasted

21: params ← PARparForecasted
22: else
23: type ← Gamma Choose Gamma distribution to characterise
24: tForecasted

25: params ← GAMparForecasted
26: end if
27: return type, params
28: end function

Fig. 8 Queue time forecast algorithm

Pareto and to a Gamma PDFs defined respectively by the following (5) and (6).

fqnotwaiting (x) = aca

(x + c)a+1 (5)
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Table 3 Q values for real and forecasted queue time for medium long sequential jobs

Week

20 26 28 40

q 10.8 156.7 3.85 30.8

Rgr. Spl.,Kts.4 Spl.,Kts.5 Rgr. Rgr.,Wgtd.

qG For 6.7 9.6 61.5 100.6 182.2 44.2 10.4

q P For 6.9 14.8 35.7 45.1 150.7 73.1 17.1

Table 4 Mk values for real and forecasted queue for medium long sequential jobs

Week

20 26 28 40

q 281.6 269.1 54.1 123.2

Rgr. Spl.,Kts.4 Spl.,Kts.5 Rgr. Rgr.,Wgtd.

qG For 122.7 201.6 708.1 997.4 722.8 470.4 114.4

q P For 594.4 103.7 172.2 237.4 267.0 502.6 120.6

fqwaiting (y) = yα−1 exp (−y/λ)

λαΓ (α)
(6)

Parameters a and c in (5) are named shape and scale of the Pareto distribution
respectively. Parameters α and λ in (6) are named shape and scale of the Gamma
distribution respectively.

Assuming that the work flow (or its subset) acting on the system is characterised
by a huge set of jobs with a close to zero waiting time, then we can assume that the
random variable qnotwaiting dominates qwaiting in the sense described in [10]. Vice
versa, if all the jobs (or most of them) have a not null waiting time, we can assume
that qwaiting dominates qnotwaiting .

All above said, depending on how the work flow can be characterised (primarily as
consisting of a very large number of jobs which not have to wait—respectively, have
to wait—in the queue), we assume that the variable q can be better characterised as a
random variable with distribution of type Pareto (respectively, Gamma).

To experimentally validate our assumptions, we performed some tests using one of
the jobs classes represented in Fig. 1. In particular, we focus our attention on the jobs
belonging to the T1P0 class constituted by sequential jobs with a medium execution
time (it ranges from 2h to 2 days). We choose these jobs since they are a substan-
tial part of the entire work flow and, thus, they represent a statistically significant
sample.

The validation process is performed by the following steps:
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Fig. 9 Trend and forecast (by using a linear regression approach) of distribution parameters for medium
long sequential jobs during the 20th week of the year 2015

1. Fixed the reference time period of 1 week, we collected the values of queue time
q for all the jobs in T1P0 class terminated during the reference time period;

2. We estimated the values of α and λ parameters starting from the values of q
assuming that they are distributed as a Gamma distribution;

3. We estimated the values of a and c parameters starting from the values of q
assuming that they are distributed as a Pareto distribution;

4. We compared, using a quantile–quantile (Q–Q) plot, the trends of the quantile of
the “estimated” distribution identified at the above point 2 and the trends of the
quantile of q;

5. We compared, using a quantile–quantile (Q–Q) plot, the trends of the quantile of
the “estimated” distribution identified at the above point 3 and the trends of the
quantile of q.

Parameters estimation can be performed by classical statistical methods such as
the “method of moments” and the “maximum likehood estimation” [20]. A quantile–
quantile (Q–Q) plot is often used to see if a given set of data belongs to a specified
distribution. It should be approximately linear if such distribution is the correct model
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Fig. 10 Real and forecasted queue time trend (a) and Q–Q plot of real versus forecasted (by using a linear
regression approach) queue time (b) for medium long sequential jobs during the 20th week of the year 2015
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Fig. 11 Real and forecasted queue time trend (a) and Q–Q plot of real versus forecasted (by using a linear
regression approach) queue time (b) for medium long sequential jobs during the 40th week of the year 2015
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Fig. 12 Trend and forecast (by using a linear regression approach) of distribution parameters for medium
long sequential jobs during the 40th week of the year 2015

(e.g., see [23]). In Fig. 3 we plot trends of the estimated values for α and λ and for a
and c related to q in all the weeks of the 2015 year. Note the strong variation of these
parameters as a symptom of the strong variability of q during the past year.
Here and in the next subsection we will focus on:

– Weeks preceded by regular behaviour for the parameters trend (e.g., the 20th and
40th weeks),

– Weeks corresponding to a significant peak (e.g., the 26th week):
– Weeks preceded by at least a week with a significant peak (e.g., the 28th week).

In Figs. 4a, 5a, 6a and 7a we show the values of q, q P Est and qG Est for all the
jobs terminated during the 20th, the 26th, the 28th and the 40th weeks of the year
2015. With the symbols q P Est and qG Est we represent values generated from the
distributions identified at the above points 3 and 2 respectively. In Figs. 4b, 5b, 6b and
7b we show the trends of the Q–Q plots obtained at the points 4 and 5 above for all
the jobs terminated respectively during the same weeks.

From Fig. 4, we can observe that when the number of jobs with null waiting time is
very high, q is well represented by a Pareto distribution. Vice versa when all jobs wait
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Fig. 13 Trend and forecast (by using a linear regression approach) of distribution parameters for medium
long sequential jobs during the 26th week of the year 2015

some time (see Fig. 5), q is very well represented by a Gamma distribution. Both the
representations are affected by issues related with the maximum values for q P Est and
qG Est . From Fig. 6 and 7 we can argue that, in hybrid scenarios, q can be represented
well enough by both the distributions. From Tables 1 and 2 we can also observe that
the “estimated” distributions generate numbers q P Est and qG Est useful to compute
values of Q and Mk very close to those ones computed from the real values of q (in
some cases values of Mk are very overestimated because of the maximum values of
q P Est and qG Est ).

5.2 Queue Time Forecast by Means of Probabilistic Characterisation and Data
Fitting

The probabilistic characterisation of the queue time q can be useful as a tool that,
combined with other techniques, provides a short term forecast of queue time itself
starting from the queue time estimated in some nt time references in the past
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Fig. 14 Real and forecasted queue time trend (a) and Q–Q plot of real versus forecasted (by using a linear
regression approach) queue time (b) for medium long sequential jobs during the 26th week of the year 2015
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Fig. 15 Real and forecasted queue time trend (a) and Q–Q plot of real versus forecasted (by using a spline
based approach—knots = 5, order = 1) queue time (b) for medium long sequential jobs during the 26th
week of the year 2015
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Fig. 16 Trend and forecast (by using a spline based approach—knots = 5, order = 1) of distribution
parameters for medium long sequential jobs during the 26th week of the year 2015

{q (t)}t=t Forecasted−nt,...,t Forecasted−1 .

We use the algorithm in Fig. 8 to estimate q (t Forecasted) (the queue time to be
forecasted). The algorithm 8 combines numerical analysis techniques, as the fitting of
data, with statistical tools as the parameters estimation.

We validated the algorithm through some tests aimed, essentially, to verify the
quality of the parameters P ARpar and G AMpar (see lines 14 and 17 of the algo-
rithm in Fig. 8) “forecasted” (Figs. 9, 12, 13, 16, 17, 20, 21) for both the considered
distributions by means of:

– The trends comparison for the values of qG Est and q P Est generated by the distri-
butions “estimated” from the data q and the values of qG For and q P For whose
parameters have been “forecasted” by the algorithm in Fig. 8 [see Figs. (4, 5, 6,
7)a vs. (10, 11, 14, 15, 18, 19, 22)a];

– The trends comparison for the Q–Q plot related to qG Est and q P Est with qG For

and q P For [see Figs. (4, 5, 6, 7)b vs. (10, 11, 14, 15, 18, 19, 22)b];
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Fig. 17 Trend and forecast (by using a spline based approach—knots = 4, order = 1) of distribution
parameters for medium long sequential jobs during the 26th week of the year 2015

– The comparison of the values for the key-statistics Q and Mk computed from
qG Est and q P Est with qG For and q P For (see Tables 1, 2 vs. 3, 4).

The reference time period constists in 1 week. The considered weeks are the same
used for the tests described in previous Sect. 5.1 where the time references in the past
is nt = 4. These weeks are representative of the following four possible real scenarios:

Weeks nr. 20 and 40 The trend of the parameter values is quite regular (see Fig. 3) in
the time interval

[t Forecasted − nt, . . . , t Forecasted] .

In a such scenario a fitting technique, based on the linear regression (see Figs. 9, 12),
appears to be working well enough (see Q–Q plots in Figs. 10b and 4b or 11b and
7b). Moreover, the fitting technique used seems to have regularising properties in
parameters values calculation since distributions identified by the latter seem to best
describe q than those ones identified by estimating the same parameters from q do
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Fig. 18 Real and forecasted queue time trend (a) and Q–Q plot of real versus forecasted (by using a spline
based approach—knots = 4, order = 1) queue time (b) for medium long sequential jobs during the 26th
week of the year 2015
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Fig. 19 Real and forecasted queue time trend (a) and Q–Q plot of real versus forecasted (by using a linear
regression approach) queue time (b) for medium long sequential jobs during the 28th week of the year 2015
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Fig. 20 Trend and forecast (by using a linear regression approach) of distribution parameters for medium
long sequential jobs during the 28th week of the year 2015

(see q trends in Figs. 10a and 4a or 11a and 7a). The regularising properties seem to
have beneficial effects also for a more correct estimate of Mk values (see Tables 2, 4)
“smoothing” the contribution from the maximum values of qG For and qG Est .

Week nr. 26 The trend of the parameter values is quite regular in the time interval

[t Forecasted − nt, . . . , t Forecasted − 1] ,

but it presents a significant peak for t = t Forecasted (see Fig. 3). It represents the
worst possible scenario: here, only non-linear fitting techniques (for example those
based on spline, see Figs. 13, 17, 16) are able to predict accurate enough values for
the parameters (see comparison of Q–Q plots in Figs. 14b with 5b, 15b with 5b and
18b with 5b).

Week nr. 28 The trend of the parameter values is not regular in the time interval

[t Forecasted − nt, . . . , t Forecasted]
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Fig. 21 Trend and forecast (by using a weighted linear regression approach) of distribution parameters for
medium long sequential jobs during the 28th week of the year 2015

because of the presence of an internal significant peak (see Fig. 3). In this scenario, a
fitting technique based on weighted (see Fig. 21) linear regression (see Q–Q plots in
Figs. 6b, 22b) partially mitigates the problems related to the use of the classic linear
regression (see Fig. 20) (see Q–Q plots in Figs. 6b, 19b). Unfortunately, the estimated
values of Q and Mk are quite unsatisfactory.

6 Conclusion and Future Work

In this document, we described the progresses made to devise ASC, which aims to
gain a balanced, efficient and effective use of computing resources by heterogeneous
users communities. Here, we gave details about an approach to find the most suitable
PDF able to characterise and to forecast queue time. The final aim is the chance to
have a computable estimation of the considered key-statistics.

Some preliminary results are presented, validated on the SCoPE use case. We
implemented an embryonal algorithm that computes both queue time estimation and
forecast. We still have to work on refining the proposed approach at the aim to:
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Fig. 22 Real and forecasted queue time trend (a) and Q–Q plot of real versus forecasted (by using a
weighted linear regression approach) queue time (b) for medium long sequential jobs during the 28th week
of the year 2015
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– Build a decision criterion to choose the best distribution describing the data (see
line 18 of the algorithm in Fig. 8);

– Build a decision criterion to choose the best fitting method of the historical para-
meters (see lines 9 and 11 of the algorithm in Fig. 8).

We also are working to improve the overall quality of Q and Mk values computed
from the forecasted queue time.
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