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Abstract In Internet applications, due to the growth of big data with more features,
intrusion detection has become a difficult process in terms of computational complex-
ity, storage efficiency and getting optimized solutions of classification through existing
sequential computing environment. Using a parallel computing model and a nature
inspired feature selection technique, a Hadoop Based Parallel Binary Bat Algorithm
method is proposed for efficient feature selection and classification in order to obtain
optimized detection rate. The MapReduce programming model of Hadoop improves
computational complexity, the Parallel Binary Bat algorithm optimizes the promi-
nent features selection and parallel Naive Bayes provide cost-effective classification.
The experimental results show that the proposed methodologies perform competently
better than sequential computing approaches on massive data and the computational
complexity is significantly reduced for feature selection as well as classification in big
data applications.
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1 Introduction and Related Work

Due to the expansion of computer networks, the number of intrusion incidents is
increasing gradually. This may challenge the network administrators to prevent unau-
thorized access to confidential and privileged information and this had led many
researchers to focus on constructing a system called intrusion detection system (IDS).
Various sorts of IDS approaches can be emphasized on the network access events in
the context of system security management. The two common approaches are misuse
detection and anomaly detection [1,12,31,34]. In the former the detection is about
observed behaviors that match a predefined pattern of events described as known
attacks. The later approach aims at detecting user’s behavior that move away from the
normal profile [5]. The drawback in misuse detection is that it cannot detect undefined
attacks. To overcome this problem, anomaly intrusion detection is used which can
predict an undefined attack by detecting any deviation from the learned user’s normal
profile.

In order to resolve the disadvantages of these two intrusion detection approaches,
several hybrid IDSs have been proposed recently by combining different machine
learning techniques. Pfahringer [23], the winner of the KDDCup99, developed a cost-
effective bagged boosting algorithm by integrating C4.5 decision trees, while Levin
[16] built an optimal decision forest using Kernel Miner technique. Both have accept-
able detection rates in detecting Normal, DoS and Probe attacks but undesirable rate in
detecting R2L and U2R attacks. Depren et al. [5] suggested a hybrid IDS consisting of
an anomaly detection component, a misuse detection component and a decision sup-
port system. To improve the detection rate further, Peddabachigari et al. [22] designed
an IDS by fusing decision trees and support vector machines, while Xiang et al. [35]
constructed a multiple-level tree classifier which contains three-levels of decision
tree classification. However, these two methods suffer from low detection rates for
unknown attacks.

Adaboost based intrusion detection systems are developed to improve the attacks
detection rate in which the output of a classifier is boosted further by adjusting the
learning weights [7,11,13,21,33]. These approaches promised a higher detection rate
with a minimum false alarm rate, but suffered from higher resource consumption and
slow training and testing processes. To overcome these issues many researchers have
proposed feature selection techniques.

Feature selection (FS) is defined as the process of choosing an optimal promi-
nent subset of features that represents the entire dataset [27,28]. Principal Component
Analysis (PCA) is one of the most widely used feature reduction technique for data
analysis and compression. Venkatachalam and Selvan [29] applied the three feature
reduction techniques of Principal Component Analysis (PCA), Linear Discriminant
Analysis (LDA) and Independent Component Analysis (ICA) to the KDDCup99
dataset. These techniques perform a linear mapping of the data to a lower dimensional
space in such a way that the variance of the data in the low dimensional depiction gets
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maximized. The dataset with reduced attributes are applied to Binary tree, ART and
LAMPSTAR Neural Network classifiers with improved results.

Parallel computing may be a good solution to feature selection and classification, in
which computations are carried out concurrently. Task parallelism tries to run different
tasks in parallel while data parallelism targets to execute the same process on multiple
data sets. These two parallel mechanisms are utilized to parallelize the feature selection
process. Mohammad et al. [20] distributed the entire dataset into multiple nodes in the
cluster and applied the feature selection algorithm to get sufficiently good subsets of
attributes in a high dimensional search space through parallel computing for synthetic
datasets only. Deng et al. [4] decomposed the whole high-dimensional dataset into
many sub-tables and suggested an approach for parallel feature selection from a series
of decision subsystems.

Recently, a simple and parallel computation approach called MapReduce [3], has
been used by many researchers, which is a highly scalable parallel programming model
for data-intensive and computation-intensive applications on a cluster of commodity
machines. MapReduce has been successfully applied in data mining [10,26,30] and
machine learning [2,9,14,17,18,24,37].

The salient features of MapReduce model are as follows. It hides many system-
level details such as hardware heterogeneity and platform differences from the user
and without human intervention parallelize the computation across large-scale clusters
of machines. This model also handles machine failures in the cluster and schedules
communications among the cluster of machines to make an efficient use of networks
and storage media.

The main contributions of this paper can be enumerated as follows.

1. Parallel version of Binary Bat Algorithm (PBBA) using the iterative MapReduce
programming model to select the prominent subset of features.

2. Distributed classification model using Naive Bayes algorithm to improve the
attacks classification accuracy and attacks detection time.

The subsequent sections of the paper are organized as follows. Section 2 presents
sequential Bat and sequential Binary Bat algorithms. The MapReduce based Parallel
Binary Bat algorithm is presented in Sect. 3. The sequential and parallel Naive Bayes
classification algorithms are presented in Sect. 4. Section 5 presents the experimental
results and discussion, while Sect. 6 gives the conclusions of the proposed work.

2 Overview of the Bat Algorithms
2.1 Bat Algorithm

Bat Algorithm (BA) has been developed based on the echolocation behavior of bats.
Typically, bats emit a short pulse of sound and receive the echo of the sound after a
fraction of time which is used to determine their remoteness from an object. Also, they
have the capability to distinguish between an obstacle and a prey which helps them
to hunt in a complete dark environment [36]. In BA, an artificial bat has a position,
velocity and frequency vectors which are updated during the course of iterations. The
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artificial bats move around the search space utilizing the position and velocity vectors
or updated position vectors within the continuous real domain.

For each bat (b;), there is a position (x;), frequency (f;) and velocity (v;). At each
step of t, the bats move to the next position with new velocities which is

vi (1 + 1) = v; (1) + (x; (1) — gbest) fi ey

where gbest is the best solution obtained so far. After computing the velocity, the
position of the bat is updated as follows.

xi(t+1)=x;i(@)+v (t+1) 2)
The frequency of ith bat is computed in each iteration as follows.

fi = fmin + (fmax - fmin) B 3)

where f is a random number uniformly distributed in the range [0,1]. The exploitation
capability of BA is improved by using a random walk method which is given by

Xnew = Xold + eA’ 4

where ¢ is a random number between [—1,1] and A’ is the loudness of the emitted
sound. The loudness and pulse emission rate are adjusted in each iteration, as follows.

A+ 1D = A; %)
ri(t+ 1) =ri (1) + [1 —exp(—y1)] (©6)

where « and y are constants.

2.2 Binary Bat Algorithm

In the feature selection problem, each feature subset is coded as a binary string of 1s
and Os where 1 denotes the presence and O represents the absence of a feature. To map
the problem with BA, each bats position is considered as a binary value which creates
a binary search space and the bats can move to a new position by flipping various
numbers of bits. In the continuous version of BA, the artificial bats can move around
the search space by utilizing the position and velocity vectors within the continuous real
domain. Consequently, the concept of position updating can be easily implemented for
bats by adding velocities to positions and however, the meaning of position updating is
different in a discrete binary space. The position updating process cannot be performed
like the BA which has a continuous version and the movement of the bat in the search
domain has only the binary values ‘0’ and ‘1’, known as binary BA. Hence, the
binary version of BA employs a different strategy to update its velocity and position.
Therefore, a transfer function is used to change the bats’ positions from “0” to “1” or
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vice versa [15,19,25]. The transfer function for updating the bat position in the binary
space is
2
Vv (vlk) = ’ — arctan (z) vl’»‘
b4 2

where vfis the velocity of the bat ‘i’ in kth dimension. Now the position of the bat is
modified as

(N

0if Vk(t+1)>38

Lif Vk(@t+1) <8 ®)

¢a+n=[
where § is uniformly distributed between [0,1]. After updating the position, the fitness
of each bat is evaluated.

2.3 Fitness Function for BBA

Feature selection (FS) is defined as the process of choosing an optimal prominent sub-
set of features that represents the entire dataset. All of these feature selection methods
may be grouped into filter based and wrapper based approaches. The filter approach
relies on general characteristics of high-dimensional datasets with fast evaluation and
feature selection in subsets and it does not take into account mining algorithms. But,
the wrapper approach is an optimizing algorithm that adds or removes features for con-
struction of various subset features and then employs a mining algorithm to evaluate
the subset of features.

The present work deals with unsupervised feature selection using the k-means
clustering algorithm with wrapper approach in order to classify a given dataset through
a certain number of clusters. The goal of the k-means algorithm is to find k points of a
dataset where point ‘k’ is the cluster center or centroid of each cluster. In particular, k-
means clustering algorithm is used to cluster or group ‘n’ data points into ‘k’ disjoint
subsets s, containing n; data points so as to minimize the mean square error (MSE)
and is given as,

Mean Square Error (MSE) = Zl;_l Znes. |xn - /Lj‘ ®)
- J

where x, is a feature vector representing the nth data point and w; is the geometric
centroid of the data point in s;. Thus, fitness is evaluated based on the cluster quality
measured using Mean Square Error.

3 Hadoop Based Parallel BBA (HPBBA)

Hadoop is a framework proposed by Google which provides a fault tolerant and
reliable environment for parallel algorithms and the programmers can place various
components of the distributed application in the networked computers resourcefully.
Furthermore, to handle large volume of data, this framework supports a scalable file
system called Hadoop Distributed File System (HDFS) which stores very large files
in blocks across various machines in a large cluster of commodity hardwares.
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Fig. 1 Iterative MapReduce
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Fig. 2 Mapper—Chainer model for Parallel Binary Bat algorithm

In general, nature inspired computing algorithms need high computational
resources to find an optimal solution within exhaustive search spaces. To reduce com-
putation time and memory requirement, Hadoop parallel implementation is employed
with binary BA. Hence, nature inspired computing algorithms can be articulated as
iterative procedures to obtain optimal solutions with minimum computing resources
and storage requirements. The iterative operations can be expressed as fitness eval-
uation, finding local optimum solution and global solution over the distributed data.
We establish an extension of the MapReduce programming model, known as Iterative
MapReduce method, which supports iteration as a primary construct. The proposed
iterative MapReduce model is used for feature selection of KDDcup99 dataset which
is illustrated in Fig. 1.

The different observations about the iterative MapReduce programming model are:
(1) there is a one-to-one correspondence between the map task and the reduce task,
since the execution unit in both the map task and reduce task is the processor core (2)
Each iteration is articulated as only one MapReduce job (3) the locality optimization
supported by the Hadoop framework reduces the loading effort of DFS data in to a
map for each iteration.

The proposed feature selection methodology shown in Fig. 2 adopts the Mapper—
Chainer model with two parts. The first part consists of a single MapReduce job
responsible for bat initialization and the second part is an iterative MapReduce job to
determine the best optimal solution.

Part-1: Bat Initialization: The bat search space is assumed as an area that contains
many food/prey sources on it. Since, the best of food/prey source locations are not
known ahead, it is required that an initial population is randomly generated from an
integer-valued vector with a number of bats ‘n,’ and dimension ‘d’. The bats are
initialized as per Algorithm 1 with the initial value for the minimum frequency set

@ Springer



1200 Int J Parallel Prog (2017) 45:1194-1213

as 0 (fmin = 0) and the maximum frequency set as 1 (fnax = 1). The pulse rate 1;
and loudness A; for each bat are also initialized. After the initialization of various
bat parameters, the initial fitness value for each bat is calculated and finally the best
current bat is obtained.

Algorithm 1. HPBBA — Bat Initialization

input : partitioned dataset ; output : initialized population

/ *initialize the bat population */
FOR i — 1tony
FOR j—1tod
xj<—rand(Qor 1) ;
ENDFOR
/* initialize the bat parameters */
Sonin— 0 ; fonax —1; 7« 0.5; Ai— 0.25;
/* compute the fitness for each bat ‘b;’ as per equation (9) */
J6) = Tfer Tnesltn = wyl :
current gbest «— best [f(b)];
ENDFOR

The dataset ‘D’ is partitioned into 64 MB size multiple input files, stored by the

HDFS across data nodes of a Hadoop cluster. After the bat populations are randomly
initialized throughout the search space and after obtaining the best bat, (composite
key, values) pairs are obtained as inputs for the iterative MapReduce part. In complex
operations, where several parameters are used, the basic (key, value) pair is not suffi-
cient. Hence, a composite key is created using Writable Comparable interface object
of Hadoop framework.
Part-2: Iterative MapReduce: The map tasks in the iteration will be started after com-
pletion of bat initialization. Each map function sequentially reads each partitioned
dataset from its local input split as per the format (composite key, values). Now, mul-
tiple map functions runs in parallel mode and the fitness value (fp(b;)) is computed
for each bat with the given partitioned dataset. The pseudo code of HPBBA-Map is
given in Algorithm 2.

Algorithm 2. HPBBA-Map(key, value)

input : key<input file offset, bat id> ; value < partitioned instances, fitness of each bat>

output : key’<partition id, bat id> ; value’'< new fitness value of each bat for its partition>
FORi—1ton,
/* update velocity and frequency parameters */
v (t+1) <« v; (t) + [x; (t) — gbest]f; ;
fi < fmin + Fnax = fmin) B+
/* evaluate current fitness value */
Jo(b) (*Z§=1 Yn ESjlxn - #jl ;
key’ « (partition id, b;) ;
value’ «— f,(b;) ;
emit <key’, value>
ENDFOR
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Next, these fitness values emitted by different map functions of the ‘m’ different
partitions with dataset are summed up in the combiner for ‘n,’ bats. The average
fitness value for each bat of the entire dataset (fp(b;)) is obtained as per Algorithm 3.

Algorithm 3.HPBBA-Combine(key,value)
input: key<partition id, b> ; value< f,(b;))>
output: key <partition id, bat id> ; value’< fitness of each bat for dataset D>
FOR i—1ton,

FOR j—1tom

fo(by) «—fo(b) + foj (b)) ;

ENDFOR

So(b) «— tfo(b)/m ;

key’ <« (partition id, b;);

value’ «— fp(by) ;

emit < key’, value >

ENDFOR

Finally, the combiner emitted values in the form of (composite key, values) are obtained
by Algorithm 4. The next position of the bat is updated and a new solution is generated.
The best solution among the solutions from the bats is stored in Gbest state variable
and the updated bat with its fitness is passed to the next iteration.

Algorithm 4 HPBBA-Reduce(key, value)
input : key<partition id, b;> ; value<fp(b;)>

output: key’ <partition id, bat id> ; value’ <best fitness>
FOR i« 1tony

update Xpey

/* choose gbest randomly */
if (rand() > 1)
gbest < rand(best solution),
end if
/*generate a new solution by flying randomly */
if [(rand < A;) and (f(b;) < gbest)]
A (t+1) «ad;,
(t+1) en@+ [1-exp(-y 0],
end if
/* rank the bats and find the current gbest */
gbest «— fobest(bi) ;
key’<partition id, bi> ;
value '<fgpesi(bi)> ;
emit< key’, value™ ;
ENDFOR

Part-2 of Fig. 2 is executed until the termination criteria are met. The pseudo-code for
the proposed feature methodology is given in algorithm 5.
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Algorithm 5.HPBBA
input : dataset D

output : reduced dataset with selected features
/* initialize feature set fs */
fs—¢ ;
/* bat initialization */
CALL (algorithm 1)
WHILE (t <= maximum_number of iterations)
block «—partition(D) ;
/* create m instances of map */
map tasks «— m;
CALL (algorithm 2)
/* fitness computation */
CALL (algorithm 3 )
/* gbest computation */
CALL (algorithm 4 )
END WHILE
fs« features(best bat)

It can be seen here that the various stages of the Binary Bat algorithm can be combined
with iterative MapReduce in a trouble-free approach.

3.1 Time Complexity of HPBBA

The running time of the HPBBA is the total time required to initialize the bat (Algo-
rithm 1) and to perform the iterative MapReduce operation. The time complexity to
initialize the bat population is Tjui = tx * m * (2nkd + nk + nd) /n., where n is the
number of instances, d is the number of attributes, k is the number of clusters, tx is
the number of iterations required for k-means to converge, n. is the number of cores
in the cluster and m is the number of partitions of the dataset.

The time complexity of the map function in part-2 of iterative MapReduce is Tjqp =
np * tp * (2nkd + nk + nd) /n., where nj is the number of bats. The combiner
function requires 7;,,, = np * c time and the reducer takes a time of T;.q = np * r.
Here c is the number of combiners and r is the number of reducers. The total running
time ‘T’ of HPBBA is Tinis + Tinap + Teom + Trea-

In the total running time ‘7", the map function which uses k-means clustering to
cluster the instances of the dataset requires the highest computation time 75,4, This
Tinap increases linearly with the number of attributes as well as instances of the dataset.
Also, it is assumed that the time for node communication, which depends on quality
of the network, is constant. Hence, Tini; + Teom + Treq may not be considered for
running time execution and the resultant running time is based only on 7}, and the
time complexity of HPBBA is O (np, * ty * (2nkd + nk + nd) /n.) .
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4 Naive Bayesian Classification

A Naive Bayes classifier is a simple probabilistic classifier based on Bayes theorem
with effective independence assumptions. It assumes that the presence of a particular
attribute of a class label such as normal or attack categories in a dataset is unrelated
to the presence of any other attribute, for the class condition variable.

The Naive Bayes classification model is trained with a known training data set. The
computation of maximum likelihood value for the occurrences of events is used to
estimate the required parameters of Naive Bayes model. This characteristic of Naive
Bayes enables the user to work with the Naive bayes model without considering the
Bayesian probability or applying any Bayesian approaches in practical applications
[6]. The following features of the Naive Bayes classifier make it very useful in many
research domains.

Each distribution can be independently estimated as a one dimensional distribution
Minimum computational cost is ensured

Provides efficiency to handle missing values and noise in the dataset

The variance is very low due to a lesser amount of searching.

Naive Bayes follows Incremental learning and due to this characteristic the new
training samples are learnt quickly.

The Parallel Naive Bayesian Classifier (PNBC) is implemented as a combination of
map and reduce functions. The pseudo code of the map function is shown in Algorithm
6. Each map function sequentially reads each vertically partitioned dataset from its
local input split as per the format (Composite Key, Values). Multiple map functions
run in parallel and compute the conditional probability values for the given vertically
partitioned dataset.

Algorithm 6. PNBC-Map (key, value)

input : key<input file offset, attributes> ; value < partitioned instances>

output : key’<attributes and classes> ; value < conditional probability>
/* for attributes A1, A>, ..., Aqp and class label C,C,,...,Ci of vertically partitioned dataset D), */
FOR j « Itol
FOR i — 1todp
P(Cld)—p(4iC) » p(C) ;
ENDFOR
ENDFOR
key <attributes, classes> ;
value '<conditional probability for all classes> ;

emit < key’, value’>

Next, these conditional probability values emitted by different map functions for
the ‘m’ different partitions and ‘d’ attributes are multiplied in the reducer for the same
classes of the entire dataset. The pseudo code of the reducer function is shown in
Algorithm 7. The class with the maximum obtained conditional probability is chosen
as the class label for the given input X.
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Algorithm 7. PNBC-Reduce (key, value)

input: key<attributes, classes> ; value <conditional probability for various classes>

output: key’< class> ; value’ <highest conditional probability>
/* highest conditional probability for given condition variable X */
FORj<—1tol
FOR i —1tom
calculate p(Cj|X;) from all map functions ;
ENDFOR
label(C)) «highest [p(C|X;)]
ENDFOR
key '<classes> ;
value’<highest conditional probability> ;
emit < key’, value’>

The implementation of the parallel Naive Bayesian classifier is shown in the above
algorithms, where evaluation of the conditional probabilities p(C;|X;) is done in
parallel, by distributing the attributes and instances among different cores in the cluster
of machines.

4.1 Time Complexity

Let n be the number of instances in the dataset and d is the number of attributes. The
dataset is distributed among n. cores in the cluster. The computational complexity
of PNBC is O(n * d/n.) and it shows that the computational time reduces gradually
when the number of cores in the cluster increases.

5 Experiments and Results Analysis

In this section, the datasets, software and cluster configuration used in the experiment
are described. The feature selection results using the proposed HPBBA and the classi-
fication results using the proposed PNBC are presented. The detection results from the
proposed parallel classification approach as well as those of the winners of KDDCup99
competition and other published work in available literature are compared.

5.1 Descriptions of Datasets, Software and Cluster Configuration

The proposed method for intrusion detection was evaluated using the KDDCup99
dataset which is widely used as a benchmark dataset by many researchers for IDS
evaluation. The three independent sets of KDDCup99 are the full KDDCup99 training
set, 10 % KDDCup99 training set and 10 % KDDCup99 test set. Each record represents
a network connection described by 41 features and a class label specifying the type
of this record as either normal or one of 39 specific attack types. The attack types in
KDDCup99 can be categorized as either a normal class or one of four attack classes,
namely Denial of Service (DoS), Probe, Remote to Local (R2L) and User to Root
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Table 1 The number of instances in the training and testing datasets

Attack category Number of instances in
Full KDDCup99 10 % KDDCup99 10 % KDDCup99
training data training data test data

Normal 972,778 97,277 60,593

Dos 3,914,580 391,458 229,853

Probe 41,102 4107 4166

R2L 1126 1126 16,189

U2R 52 52 228

Total 4,929,638 494,020 311,029

Table 2 List of features selected using PBBA

Total number of features selected Names of the feature

24 duration, service, flag, src_bytes, dst_bytes, hot,
num_failed_logins, logged_in, num_compromised,
root_shell, num_root, num_file_creations,
num_access_files, is_guest_login, srv_count,
dst_host_count, dst_host_srv_count,
dst_host_same_srv_rate, dst_host_diff_srv_rate,
dst_host_same_src_port_rate,
dst_host_srv_diff_host_rate, dst_host_srv_serror_rate,
dst_host_rerror_rate and dst_host_srv_rerror_rate

(U2R). Table 1 lists the number instances present in the KDDCup99 training and test
datasets.

The performance of our algorithms are evaluated with an in-house Hadoop cluster
equipped with 16 nodes. Each node has an Intel core-i5 3.2 GHz quad core processor,
8 GB main memory and runs on the Ubuntu 12.1 operating system, on which Java
JDK 1.6, Hadoop 2.6 and Apache Mahout Library are installed. All the nodes in the
cluster are equipped with Gigabit Ethernet network interface cards and connected to
the Gigabit ports on the high speed manageable switch. The nodes in the cluster use the
secure shell protocol to communicate with one another. The default Hadoop parameter
configurations are used to set the replication factor as 3 and the number of Map tasks
per core is set as one.

5.2 Results for Feature Selection Experiment

The feature selection experiment using PBBA has been performed on full KDD-
Cup99 dataset with 41 features and the most significant features that contribute to the
improvement of classification accuracy are listed in Table. 2.

In the following sections, the various other characteristics of the proposed work
such as speedup, scaleup and sizeup are observed by employing different sizes of
KDDCup99 training dataset on a cluster of different sizes.
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5.3 Speedup

Speedup or strong scalability evaluates the capability of the parallelism and is used to
enhance the execution time. It is defined as the ratio of the sequential execution time
to the parallel execution time. Speedup can be expressed as

ET (1)

Speedup (m, D) = T(;n)

(10)

where m is the number of cores in the computing cluster, ET(1) is the execution time
of the tasks on one core of the computing node, ET(m) is the execution time of the
parallel tasks with m cores [24,32].

To measure the speedup performance of our algorithm, the full KDDCup99 dataset
of 5 million instances is used in a single core and the number of cores has been
increased in a step by step manner. In particular, HPBBA algorithm is first applied in
a system consisting of 1 core, and then gradually increased. The number of cores in
the experiment varies from 2 to 64 in the order of 2, 4, 8, 16, 32 and 64. The speedup
evaluation experiment on datasets has been repeated with different sizes by duplicating
the full KDDCup99 dataset into 2, 3 and 4 times. Figure 3 illustrates the experimental
results.

The speedup of the PBBA algorithm becomes approximately linear when the size of
the dataset increases, especially when the dataset contains 15 and 20 million instances.
It is observed that the performance of 64-core system on very large dataset is much
better than the performance of the same with a smaller dataset which is due the fact that
the data processing takes more time than the communication time owing to network
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latency among the nodes in the cluster and the fault-tolerance time, which gives a good
speedup performance.

The ideal parallelism exhibits a constant speedup with increasing number of cores
in the computing cluster. However, in practice, it is very difficult to achieve the linear
speedup because of the communication cost among the nodes due to network latency
and the skew of the slaves. Though, the dataset is partitioned uniformly among the
map tasks in the cluster, the read/write operations varies among the disk drives in the
nodes and the slowest slave node decides the total time needed to complete the task.

5.4 Scaleup

Scaleup or the weak scalability defines the ability of the parallel computation algorithm
to grow both the number of processing cores in the cluster and the dataset size. It is also
defined as the ability of an m-times larger system in the cluster to perform an m-times
larger job in the same run-time as the original system and this can be expressed as

S _ ET(,D)
caleup (m, D) = m (11)

where m is the number of cores in the computing cluster, ET(1,D) is the execution
time of the tasks on one core with data size of D, ET(m, mD) is the execution time of
the parallel tasks with m cores in the computing cluster with data size m times of D.
An ideal parallelism shows a constant scale up with increasing number of computing
cores in the cluster and dataset size [24,32].

To demonstrate how well the PBBA scales up, scalability experiments were per-
formed where the size of the dataset was increased in proportion to the number of cores.
The experiments with datasets size of 1.25, 2.5, 5, 10, 20 and 40 million instances
were performed on 2, 4, 8, 16, 32 and 64 cores respectively and Fig. 4 shows the
performance results on these datasets. It is observed that the scalability of HPBBA
decreases slowly when the size of the dataset increases and it maintains a value of
scale up higher than 81 %. The HPBBA algorithm is seen to scale very well.

5.5 Sizeup

Sizeup measures the ability of the parallelism to handle the data growth. It calculates
how much longer it takes to complete the parallel tasks, when the dataset size is n-times
larger than the original dataset. Sizeup analysis is performed by keeping the number
of computing core in the cluster as constant and increasing the size of the datasets by
the factor ‘n’. It can be expressed as follows

. _ ET (m,nD)
izeup (m) = e Th (12)

where m is the number of computing cores and n is the incremental factor of the data
size. T(m,D) is the execution time of the parallel tasks with m computing cores for the
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dataset size D and T(m,nD) is the execution time of parallel tasks with m computing
cores and with dataset size n times of D [24,32].

To measure the performance of sizeup, the number of cores were chosen as 4, 8,
16, 32 and 64 with the dataset sizes of 2.5, 5, 10, 20 and 40 million instances. Figure 5
shows the sizeup results on different cores. It is observed that when the number of
cores is small such as 4, 8 and 16 the sizeup performances vary modestly. However,
the value of sizeup on larger number of cores such as 32 and 64 decreases significantly
when compared to smaller size cores of 4, 8 and 16 on the same datasets.
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Table 3 Confusion matrix

Class Predicted negative class Predicted positive class
Actual negative class TN FP
Actual positive class FN TP

5.6 Results for Classification Experiments

The selected features in the above experiment are used as the inputs of the classifier.
The parallel Naive Bayes classification algorithm is used for evaluating the classi-
fication accuracy of the proposed feature selection approach. The trained model of
the distributed classifier is constructed by employing the full KDDCup99 training
dataset. To test the detection accuracy of the trained classifier model and performance
of parallelism, the 10 % KDDCup99 test dataset is duplicated 10 times.

The output from the detection model is known as the confusion matrix. Table 3
lists the confusion matrix and consists of four classes: False Positive (FP), and False
Negative (FN), True Positive (TP) and True Negative (TN).

The classification performances of the proposed algorithms are measured using
two metrics, namely Detection Rate (DR) and False Positive Rate (FPR). These can
be calculated from the confusion matrix, and are defined as,

Detection Rate (DR) = TP/(TP+FN) (13)
False Positive Rate (FPR) = FP/(FP+TN) (14)

Looking at the results of Table 4, it is observed that the overall performance in detection
rates of five classes have been improved while considering the 24 features selected
from the feature selection approach PBBA. It can be seen that the PNBC performs
better in detecting the Normal, DoS and Probe attacks with a lowest false positive
rate of 1.57 %. The PNBC is enhanced in detecting DoS and Probe attacks and the
performance is not exceptional in R2L and U2R category of attacks due to the following
reason.

e There is an unequal distribution of the attack class categories in full KDDCup99
training dataset that could significantly affect the classifier learning and detecting
of R2L and U2R attacks.

e In the complete KDDCup99 dataset, 79.4 and 19.7 % of the instances belong to
DoS and Normal categories respectively and the remaining 0.9 % of the training
dataset instances belong to Probe, R2L. and U2R categories of attacks.

e However, the number of instances for Probe attacks is 41,102, which is sufficient
for training the classifier.

e Also, more number of new attacks in the R2L and U2R test dataset which are not
present in the training dataset affects its detection rate.

In the detection of attacks, PNBC outperformed the other classifiers in detecting the
Probe, R2L and U2R attacks. As shown in Table 5, PNBC achieved the highest probe
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Table 4 Detection rates and false positive rate of PNBC

No. of features (%) of detection rate % of false
positive rate
Normal DoS Probe R2L U2R
41 97.81 96.34 92.93 45.56 72.51 2.18
24 98.42 97.53 93.54 47.41 74.13 1.57

Bold values indicate the highest detection rate

Table 5 Comparison of overall detection rates

Category KDDCup99 KDDCup99 DSSVM MLHC [35] PNBC
winners [23] runners [16] [8]

Normal 99.50 99.4 98.4 96.80 98.42

DoS 97.10 97.5 97.2 98.66 97.53

Probe 83.30 84.5 87.5 93.40 93.54

R2L 8.40 7.3 6.3 46.97 4741

U2R 13.20 11.8 3.1 71.43 74.13

Bold values indicate the highest detection rate

Table 6 Running time of PNBC on different sizes of clusters

No. of cores in the cluster Training time (s) Testing time (s)
2623 1327
1467 792
764 431
16 312 176

attacks detection rate of 93.54 % and the R2L attacks detection rate is at 47.41 % and
the U2R attacks detection rate is at 74.13 % in classifying the KDDCup99 test dataset.

Speed is always an important metric as the use of intrusion detection system is
for real time applications. Table 6 shows the running time recorded for the training
and testing of the classifier PNBC on different sizes of the cluster. The number of
cores were chosen as 2, 4, 8 and 16. It is observed that the training takes longer
time than testing and when the number of cores is increased the training and testing
time decreases significantly. The total running time for classifying all the connection
records of 100 % KDDCup99 test dataset on the cluster of 16 cores is 1765.

From the literature survey, it has been found that mostly the classification and
feature selection of IDS have been experimented in sequential algorithm with single
node and the results in terms of complexity, detection rate and alarm rate have been
presented. But, the proposed work was experimented with parallel algorithm in which
multiple nodes were used for execution. So, speedup, sizeup and scaleup parameters
of the present algorithm are more productive compared to existing sequential algo-
rithm methods. Our work has also been compared with some existing approaches of
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sequential algorithm and the detection rate and alarm rate are more in the proposed
parallel algorithm approach.

6 Conclusion

This work proposes methods for the fast and scalable IDS for large volume data and
aims to improve upon existing works from two perspectives. Firstly, the parallel version
of Binary Bat Algorithm has been developed which is employed as a wrapper based
feature selection tool and has greater impact on minimizing the memory requirement
for IDS and computational complexity of the classifier. Next, a parallel Naive Bayes
model has been employed as the classification engine in a multi node cluster which
improves the attack detection rate of Probe and U2R attack categories and also reduces
the detection time drastically which is proportional to the number of nodes in the
cluster.
The main findings of the present work can be summarized as follows:

1. The proposed system is more suitable for Big data analysis.

2. The detection rate of Probe (93.54 %) and R2L (74.13 %) attack categories of the
proposed system is better as compared to existing works discussed in the literature.

3. The performance of the parallel execution system in terms of scale up, speedup
and size up has been measured in a cluster with different sizes and it is found that
the performance is proportional to the number of nodes in the cluster.
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