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Abstract Many-core processors are accelerating the performance of contempo-
rary high-performance systems. Managing power consumption within these systems
demands low-power architectures to increase power savings. One of the promising
solutions offered today by microprocessor architects is asymmetric microprocessors
that integrate different core architectures on a single die. This paper presents analytical
models based on scaled power metrics to analyze the impact of various architectural
design choices on scaled performance and power savings. The power consumption
implications of different processing schemes and various chip configurationswere also
analyzed. Analysis shows that by choosing the optimal chip configuration, energy effi-
ciency and energy savings can be increased considerably.

Keywords Energy efficiency · Gustafson–Barsis’s law · Hybrid architecture ·
Performance per Watt · Modeling techniques

1 Introduction

The major challenge that microprocessor designers will face in the coming decade is
not just power, but also energy efficiency. Upcoming newmobile devices will consume
more power, while supercomputers in the foreseeable future will consume hundreds
of megawatts of power. Although Moore’s Law [1] continues to offer solutions with
more transistors, power budgets limit our ability to use them.

However, there are promising solutions such as heterogeneous many-core archi-
tectures that will provide higher performance at lower energy requirements and
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reduced leakage. Recent research shows that integrated CPU–GPU processors have
the potential to deliver more energy efficient computations, which is encouraging
chip manufacturers to reconsider the benefits of heterogeneous parallel computing.
The integration of CPU and DSP cores on a single chip has provided an attractive
solution for the mobile and embedded market segments, and a similar direction for
CPU–GPU computing appears to be an obvious move. It is known that the integration
of thin cores and fat cores on a single processor achieves a better performance gain per
watt. For example, a study of analytical models of various heterogeneous multi-core
processor configurations found that the integration of many simplified cores in a single
complex core achieved greater speedup and energy efficiency when compared with
homogeneous simplified cores [2]. Thus, it is generally agreed that a heterogeneous
chip integrating different core architectures, such as CPU and GPU, on a single die
is the most promising technology [3–8]. Chip manufacturers such as Intel, NIVIDIA,
and AMDhave already announced such architectures, i.e., Intel Sandy Bridge, AMD’s
Fusion APUs, and NVIDIA’s Project Denver.

Intel researchers have shown that integration of general-purpose cores alongside
special-purpose hardware accelerators can improve energy efficiency by an order of
magnitude [9]. Based on their view, the future tera-scale processor will contain a
few dedicated hardware accelerators such as speech recognition accelerators, GPU
accelerators, and encryption accelerators that operate at ultra-low voltage (down to
320 mV) and ultra-low frequency (down to 23 MHz) and consume ultra-low power
(down to 56 µW).

Despite some criticisms [10,11], Amdahl’s law [12] and Gustafson–Barsis’s Law
[13,14] are still relevant at the dawn of a heterogeneous many-core computing era.
Both laws are simple analytical models that help developers to evaluate the actual
speedup that can be achieved using a parallel program. They represent two points of
view that are not contradictory, but rather complement each other. However, neither
of these laws is perfect. Amdahl’s Law and Gustafson–Barsis’s Law do not account
for overheads associated with the creation/destruction of processes/threads and with
maintaining cache coherence. Neither do they account for other types of serial tasks
such as identification of critical sections, synchronization, lock management, and
load balancing. Taking in account all these issues for making performance analysis is
very difficult. Therefore, to keep our analytic models simple, as Amdahl’s Law and
Gustafson–Barsis’s Law, the extensions proposed in this paper do not incorporate
the parallel computations and communication overheads. Our models incorporate
only a few factors (Table 1) that are necessary for energy efficiency analysis of dual-
architecture systems.

Amdahl’s Law is based on the assumption that a problem of fixed size is being
solved in parallel, while Gustafson–Barsis’s Law is based on the assumption that a
problem of fixed time is being solved in parallel. Therefore, depending on the applica-
tion domain, either Amdahl’s or Gustafson–Barsis’s assumptions might be valid. For
example, extremely parallel computations such as in image rendering are processing
many pixels simultaneously and independently. As the number of cores increases, so
does the problem size, and the inherently serial portion becomes much smaller as a
proportion of the overall problem. Because Amdahl’s Law cannot address this rela-
tionship, Gustafson modified Amdahl’s work to state that the overall problem size
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Table 1 List of parameters appear in the formulas

c The number CPU of cores

g The number GPU of cores

f The fraction of a program’s execution time that is parallelizable

α The fraction of a program’s parallel execution time where the program runs

in parallel on the CPU cores

β A GPU core’s performance normalized to that of a CPU-core

kc The fraction of power a single CPU core consumes in its idle state

kg The fraction of power a single GPU core consumes in its idle state

wg The active GPU core’s power consumption relative to that of an active CPU-core

should increase proportionally to the number of cores, while the size of the serial
portion of the problem should remain constant as the problem size increases.

Furthermore, the future relevance of the laws requires their extension by the inclu-
sion of constraints and architectural trends demanded bymodernmultiprocessor chips.
In [15,16], we extended Amdahl’s Law according to the work of Woo and Lee [2]
and applied it to the case of a hybrid CPU–GPUmulti-core processor. In this work we
extend Gustafson–Barsis’s Law by using the same methodology as we done in [15–
17], and applied it to the case of a hybrid many-core processor. Since we are using the
same methodology, part of the wording of the issues is the same but the formulas and
the equations are different. In Sect. 2 we elaborate about our previous work in [15,16]
and in Sect. 7 we compare the results of [15,16] against the results of this study.

Core contributions of this paper are as follows:

– To define and formulate three metrics: scaled speedup, scaled performance per
watt, and scaled performance per joule.

– Using the above metrics, to evaluate the energy efficiency and scalability of three
processing schemes available for heterogeneous computing: symmetric, asymmet-
ric and simultaneous asymmetric.

– For each processing scheme, to examine how performance, power and energy are
affected by different chip configurations.

– Finally, to analyze and compare the outcomes of the three analytical models and
to show how considerable energy savings can be achieved by choosing the optimal
chip configuration.

The remainder of this paper is organized as follows. Section 2 presents an overview
of the related work in this area. Section 3 presents an analytical model of a symmet-
ric multi-core processor that reformulates Gustafson–Barsis’s Law to capture power
constraints. In Sect. 4 we continue by applying energy constraints to an analytical
model of an asymmetric processor. In Sect. 5 we study how performance and power
consumption are affected by chip configurations in simultaneous asymmetric process-
ing. In Sect. 6 we compare the three analytical models. Section 7 is a discussion about
future work and the findings found in this study compared to our previous work related
to Amdahl’s Law. Section 8 concludes the paper.
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2 Related Work

In our previous work [15] we extend a study conducted byWoo and Lee [2] and apply
it to the case of hybrid CPU–GPU multi-core processors. In [2] the authors study
three chip configurations. (a) A symmetric many-fat-core processor that replicates a
superscalar processor on a single chip. (b) A symmetric many-thin-core processor that
replicates a simplified power-efficient core on a single chip, and (c) an asymmetric
many-thin core processor with simplified efficient cores and only one fat core as the
host processor. In our study we investigate chip configurations of different number of
fat cores and thin cores on a single die.

We investigate how energy efficiency and scalability are affected by the power
constraints imposed onmodern CPU–GPU based heterogeneous processors.We study
how the performance per watt is affected by different CPU–GPU performance ratios,
different values of active GPU cores power consumption relative to that of an active
CPU-core, and different fractions of power a single CPU core and a single GPU-core
consume in their idle states. This part of the study does not appear in [2].

We present analytical models that extend Amdahl’s Law by accounting for energy
limitations and we analyze three processing modes available for heterogeneous com-
puting, i.e., symmetric, asymmetric, and simultaneous asymmetric. In [2], the authors
studied only the symmetric mode and the asymmetric mode for a single fat core. We
study the asymmetric mode for any number of thin cores and fat cores and present a
new processing mode called simultaneous asymmetric where the CPU cores and the
GPU-cores are executed simultaneously.

The simulations show that greater parallelism opportunities yield better speedup
and offermore chip configuration choices,while encouraging the search for better scal-
able software with power saving. Simultaneous processing yields excellent speedup
with a peak performance at a chip configuration with a single CPU-core. In contrast,
asymmetric speedup delivers poor speedups at the extreme points where the number
of CPU-cores is small or large, indicating that dynamic configuration is required to
identify and set the optimal chip organization. The performance per watt in the three
cases analyzed, i.e., symmetric(s), asymmetric (a), and simultaneous asymmetric (sa),
show that simultaneous processing outperforms the other cases, with a peak perfor-
mance at a chip configuration with a single CPU-core. This configuration also yields
the best performance in the symmetric case, but it achieves 28% less performance
compared to the simultaneous asymmetric case. The results of the performance per
joule show that greater parallelism yields better energy efficiency and offers more chip
configurations choices, while encouraging the search or better scalable software with
energy saving. Simultaneous processing yields an excellent performance per joulewith
peak performance using a chip configuration of a single CPU-core. In contrast, the
asymmetric processor delivers poor performance per joule at extreme points where the
number of CPU-cores is small or large, which requires that the dynamic configuration
is identified and set for optimal chip organization.

Hill and Marty [18] studied the implications of Amdahl’s law on multi-core hard-
ware resources and proposed the design of future chips based on the overall chip
performance rather than core efficiencies. The major assumption in that model was
that a chip is composed of many basic cores and their resources can be combined
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dynamically to create amore powerful corewith higher sequential performance. Using
Amdahl’s law, they showed that asymmetric multi-core chips designed with one fat
core and many thin cores exhibited better performance than symmetric multi-core
chip designs. For example, with f = 0.975 (the fraction of computation that can be
parallelized) and n = 256 (Base Core Equivalents), the best asymmetric speedup was
125.0, whereas the best symmetric speedup was 51.2. Individual core resources could
be dynamically combined to increase performance of the sequential component, so
the performance was always improved. In our example, the speedup was increased to
186.0.

Woo and Lee [2] developed a many-core performance per energy analytical model
that revisited Amdahl’s Law. Using their model the authors investigated the energy
efficiency of three architecture configurations. The first architecture studied contained
multi-superscalar cores, the second architecture containedmany simplified and energy
efficient cores, and the third architecture was an asymmetric configuration of one
superscalar core and many simplified energy efficient cores. The evaluation results
showed that under restricted power budget conditions the asymmetric configuration
usually exhibited better performance per watt. The energy consumption was reduced
linearly as the performance was improved with parallelization scales. Furthermore,
improving the parallelization efficiency by load balancing among processors increased
the efficiency of power consumption and increased the battery life.

Sun andChen [19] studied the scalability ofmulti-core processors and reachedmore
optimistic conclusions compared with the analysis conducted by Hill and Marty [18].
The authors suggested that the fixed-size assumption of Amdahl’s law was unrealistic
and that the fixed-time and memory-bounded models might better reflect real world
applications. They presented extensions of these models for multi-core architectures
and showed that therewas noupper boundon the scalability ofmulti-core architectures.
However, the authors suggested that the major problem limiting multi-core scalability
is the memory data access delay and they called for more research to resolve this
memory-wall problem.

Esmaeilzadeh et al. [20] performed a systematic and comprehensive study to
estimate theperformancegains from thenext fivemulti-core generations.Accurate pre-
dictions require the integration of asmany factors as possible. Thus, the study included:
power, frequency and area limits; device, core and multi-core scaling; chip organiza-
tion; chip topologies (symmetric, asymmetric, dynamic, and fused); and benchmark
profiles. They constructed models based on pessimistic and optimistic forecasts, and
observations of previous works with data from 150 processors. The conclusions were
not encouraging. Over five technology generations only a 7.9x average speedup was
predicted with multi-core processors, while over 50% of the chip resources will be
turned off due to power limitations. Neither multi-core CPUs nor many-core GPUs
architectures were considered to have the potential for delivering the required perfor-
mance speedup levels.

Cho and Melhem [21,22] studied the mutual effects of parallelization, program
performance, and energy consumption. Their analytic model was applied to a machine
that could turn off individual cores, while others do not make this assumption. The
main prediction was that greater parallelism (a greater ratio of the parallel portion in
the program) and more cores helped reduce energy use. Moreover, it was shown that

123



Int J Parallel Prog (2017) 45:1026–1045 1031

is possible to reduce the processor speeds and gain further dynamic energy reductions
before static energy becomes the dominant factor determining the total amount of
energy used.

Hong and Kim [23] developed an integrated power and performance modeling
system (IPP) for the GPU architecture. IPP is an empirical power model that aims to
predict performance-per-watt and the optimal number of active cores for bandwidth-
limited applications. IPP uses predicted execution times to predict power consumption.
In order to predict the execution time the authors used a special-purposeGPUanalytical
timing model. Moreover, to obtain the power model parameters, they designed a set
of synthetic micro-benchmarks that stress different architectural components in the
GPU.

The evaluation of the proposed model was done by using NVIDIA GTX280 GPU.
The authors show that by predicting the optimal number of active cores, they can save
up to 22.09% of runtime GPU energy consumption and on average 10.99% of that for
five memory bandwidth-limited benchmarks. They also calculated the power savings
if a per-core power gating mechanism is employed, and the result shows an average of
25.85% in energy reduction. IPP predicts the power consumption and the execution
time with an average of 8.94% error for the evaluated benchmarks GPGPU kernels. It
can be used by a thread scheduler in order tomanage the power systemmore efficiently
or by the programmers to optimize program configurations.

Pei et al. [24] present an enhanced performance-energy efficiency analytical model
for integrated heterogeneous parallel multi-core system which takes into account
the overhead cost of data preparation (i.e., accessing memory, communication on-
chips or off-chips and synchronization among cores). Their analysis shows that higher
parallelism gained from either computation or data preparation brings greater energy-
efficiency.

Karanikolaou et al. [25] proposed an analytic modeling for evaluation the energy
consumption of distributed and many-core platforms. They measured the power
consumption of the processors in idle and fully utilized modes and compared the
theoretical estimations to the experimental results using performance/power and per-
formance/energy ratio metrics.

Kim et al. [26] studied the energy efficiency of the sequential part acceleration,
and how to find out the optimal frequency boosting ratio which maximizes energy
efficiency. The results show that energy efficiency of the acceleration increases with
the number of cores and an optimal frequency boosting ratio can be determined.

3 Symmetric Processors

In this section we reformulate Gustafson–Barsis’s Law to capture the necessary
changes imposed by power constraints. We start with the traditional definition of
a symmetric multi-core processor and continue by applying energy constraints to the
equations following the method of Woo and Lee [2] and Marowka [15].
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3.1 Symmetric Scaled Speedup

Gustafson–Barsis’s Law begins with a parallel computation and estimates how much
faster the parallel computation is than the same computation executing on a single
core. Gustafson argues that, as processor power increases, the size of the problem
set also tends to increase. This is why the speedup determined by Gustafson–Barsis’s
Law, also called scaled speedup, is the time required by a parallel computation divided
into the time hypothetically required to solve the same problem on a single core.

According to the Gustafson–Barsis’s Law, a typical program has a serial portion
that cannot be parallelized (and therefore can be executed only by a single core) and a
parallel portion that can be parallelized (and therefore can be executed by any number
of cores in the processor). Let the parallel execution time of the program be normalized
to 1, and let the serial and parallel portions be denoted by s and p respectively. Then
the following equation concisely describes the law:

Scaled Speedups = s + (1 − s) · c = c + (1 − c) · s (1)

where c is the number of cores and s is the fraction of a program’s execution time that
is spend in serial code (0 ≤ s ≤ 1).

Figure 1 shows the symmetric scaled speedup as a function of number of CPU
cores for various values of s. Clearly, these graphs show that the performance result
continues to scale upward as more processor cores are applied to the computational
load.

3.2 Symmetric Scaled Performance Per Watt

To model power consumption in realistic scenarios, we introduce the variable kc to
represent the fraction of power a single CPU core consumes in its idle state (0 ≤

Fig. 1 The symmetric scaled
speedup as a function of number
of CPU cores for various values
of s
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kc ≤ 1). In the case of a symmetric processor, one core is active during the sequential
computation and consumes a power of 1, while the remaining (c − 1) CPU cores
consume (c−1)kc. During the sequential computation period, the processor consumes
a power of 1+(c−1)kc. Thus, during the parallel computation timeperiod, cCPUcores
consume c power. It requires s and (1−s) to execute the sequential and parallel codes,
respectively, so the formula for the average power consumption Ws of a symmetric
processor is as follows.

Ws = s · {1 + (c − 1) · kc} + (1 − s) · c

s + (1 − s)
(2)

Next, we define the scaled performance per watt (Perf/W) metric to represent the
amount of performance that can be obtained from 1 watt of power. Perf/W is basically
the reciprocal of energy. The Perf/W of a single CPU core execution is 1, so the scaled
Perf /Ws achievable for a symmetric processor is formulated as follows.

Perf

Ws
= Speedups

Ws
= c + (1 − c) · s

s · {1 + (c − 1) · kc} + (1 − s) · c
(3)

Figure 2 plots the scaled performance per watt for a symmetricmulti-core processor
as modeled by Eq. (3), showing that the performance per watt decreases rapidly for a
small number of cores. However, as the number of cores increases, so does the problem
size, and the inherently serial portion becomes much smaller as a proportion of the
overall problem. Therefore, the performance per watt remains almost constant as the
number of cores increases and reflects the assumption that the execution time remains
fixed.

Fig. 2 Scaled performance per
watt as a function of the number
of CPU cores of a symmetric
multi-core processor when
kc = 0.3
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3.3 Symmetric Scaled Performance Per Joule

The definition of scaled Perf /W metric allows us to evaluate the performance achiev-
able by a derived unit of power (watt). Power is the rate at which energy is converted,
so we can define a Performance per Joule (Perf/J) metric where the joule is the derived
unit of energy, representing the amount of performance stored in an electrical battery.
The Perf /J of a single CPU core execution is 1, so the scaled Perf /Js achievable by
a symmetric processor is formulated as follows.

Perf

Js
= Speedups · Perf

Ws

= {c + (1 − c) · s}2
s · {1 + (c − 1) · kc} + (1 − s) · c

(4)

Figure 3 plots the scaled performance per joule for a symmetricmulti-core processor
as a function of the number of CPU cores. It can be observed that parallelism costs a
substantial amount of energy,which increases linearly as the number of cores increases.
The increase in performancematches the increase in power consumption, so the scaled
performance per joule increases linearly. For simplicity, hereafter we will omit the
prefix scaled from the metric definitions.

4 Asymmetric CPU–GPU Processors

In this section, an asymmetric CPU–GPU processor where CPU and GPU cores are
integrated on the same die and share the same memory space and power budget
will be referred to as a hybrid processor.

We assume that a program’s execution time can be composed of a time periodwhere
the program runs sequentially (s), a time period where the program runs in parallel

Fig. 3 Scaled performance per
joule as a function of the number
of CPU cores in a symmetric
multi-core processor when
kc = 0.3
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on the CPU cores (α), and a time period where the program runs in parallel on the
GPU cores (1 − α). Note that in this case it is assumed that the program runs in
parallel on the CPU cores or on the GPU cores, but not on both at the same time.
Simultaneous asymmetric processing will be the topic of the next section.

To model the power consumption of an asymmetric processor we introduce another
variable, kg , to represent the fraction of power a single GPU core consumes in its
idle state (0 ≤ kg ≤ 1). We introduce two further variables, α and β, to model
the performance difference between a CPU core and a GPU core. The first variable
represents the fraction of a program’s execution time that is parallelized on the CPU
cores (0 ≤ α ≤ 1), while the second variable represents a GPU core’s performance
normalized to that of a CPU core (0 ≤ β). For example, comparing the performance
of a single CPU core (Intel Core-i7-960multi-core processor) against the performance
of a single GPU core (NVIDIA GTX 280 GPU processor) yields values of β between
0.4 and 1.2. Furthermore, recent studies such as [27] shows that a GPU processor
(NVIDIA GTX 280) achieves only 2.5× speedup in average compared to a multi-core
processor (Intel Core-i7-960).

We assume that one CPU core in an active state consumes a power of 1 and the
power budget (PB) of a processor is 100. Thus, g = (P B −c)/wg is the number of the
GPU cores embedded in the processor where variable wg represents the active GPU
core’s power consumption relative to that of an active CPU core (0 ≤ wg).

4.1 Asymmetric Speedup

Now, if the sequential code of the program is executed on a single CPU core the follow-
ing equation represents the theoretical achievable asymmetric speedup (speedupa).

Speedupa = s + N · (1 − s) ·
{
α · c + (1 − α) · g

β

}
(5)

where N is the number of hybrid processors. Each hybrid processor contains c CPU
cores and g GPU cores.

Figure 4 shows the speedup of an asymmetric processor as a function of the number
of hybrid processors and as a function of CPU cores within each hybrid processor.

Fig. 4 Asymmetric speedup as
a function of the number of
hybrid processors and various
CPU–GPU chip configurations
for s = 0.3, wg = 0.25, α = 0.5
and β = 1.0
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When an abundance of parallelism is available (s = 0.3), the speedup increases
linearly with the increase in the number of hybrid processors.Moreover, the maximum
speedup is obtained for a chip configuration of 4 hybrid processors, 1 CPU core and
396 GPU cores.

4.2 Asymmetric Performance Per Watt

To model the power consumption of an asymmetric processor we assume that during
the sequential computation phase, one CPU core is in active state and the amount of
power it consumes is 1, the c − 1 idle CPU cores consume (c − 1)kc and the g idle
GPU cores consume g · wg · kg . During the parallel computation on the CPU cores,
the CPU cores consume c and the g idle GPU cores consume g · wg · kg . During the
parallel computation on the GPU cores, the GPU cores consume g · wg and the idle
CPU cores consume c · kc.

Let Ps, Pc, and Pg denote the power consumption during the sequential, CPU, and
GPU processing phases, respectively.

Ps = s · {1 + (c − 1) · kc + g · wg · kg}
Pc = α · (1 − s) · {c + g · wg · kg}
Pg = (1 − α) · (1 − s) · {g · wg + c · kc}

It requires time (1 − s) to perform the parallel computation, which is the sum of
times α · (1 − s) and (1 − α) · (1 − s) to perform the parallel computations on the
CPU and GPU, respectively, so the average power consumption Wa of an asymmetric
processor is as follows.

Wa = Ps + Pc + Pg (6)

Consequently, Perf /Wa of N asymmetric processors is expressed as

Perf

Wa
=

s + N · (1 − s) ·
{
α · c + (1−α)·g

β

}
Ps + N · (Pc + Pg)

(7)

Figure 5 shows the performance per watt of an asymmetric processor for s = 0.3 as
a function of the number of hybrid processors and as a function of CPU cores within
each hybrid processor. It can be seen that the Perf /Wa decreases slowly with the
increase in the number of hybrid processors, as expected, and decreases faster as the
number of the CPU cores increases. Furthermore, the optimal Perf /Wa is obtained
for a chip configuration of 4 hybrid processors, 1 CPU core and 396 GPU cores.
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Fig. 5 Asymmetric perf/W as a
function of the number of hybrid
processors and various
CPU–GPU chip configurations
for s = 0.3, wg = 0.25, α =
0.5, kc = 0.3, kg = 0.2 and
β = 1.0
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Fig. 6 Asymmetric perf/J as a
function of the number of hybrid
processors and various
CPU–GPU chip configurations
for s = 0.3, wg = 0.25, α =
0.5, kc = 0.3, kg = 0.2 and
β = 1.0
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4.3 Asymmetric Performance Per Joule

Based on our definition of performance per joule, thePerf /Ja of N asymmetric proces-
sors is expressed as follows.

Perf

Ja
=

{
s + N · (1 − s) ·

(
α · c + (1−α)·g

β

)}2
Ps + N · (Pc + Pg)

(8)

Figure 6 shows the performance per joule of an asymmetric processor for s = 0.3 as
a function of the number of hybrid processors and as a function of CPU cores within
each hybrid processor. It can be observed that the Perf /Ja increases dramatically with
the increase in the number of hybrid processors and reaches peak performance for a
chip configuration of a single CPU core. On the other hand, the Perf /Ja decreases
extremely fast once the GPU cores become dominant.

5 CPU–GPU Simultaneous Processing

In the previous analysis we assumed that a program’s execution time is divided into
three phases as follows: a sequential phase where one core is active, a CPU phase
where the parallelized code is executed by the CPU cores, and a GPU phase where
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the parallelized code is executed by the GPU cores. However, the aim of hybrid CPU–
GPU computing is to divide the program while allowing the CPU and the GPU will
execute their codes simultaneously.

5.1 Simultaneous Asymmetric Speedup

We conduct our analysis assuming that the CPU’s execution time overlaps with the
GPU’s execution time. Such an overlap occurs when the CPU’s execution time α · p ·c
equals the GPU’s execution time (1−α)·p·g

β
. Let α′ denote the value of α that applies

to this equality:

α′ = g

g + c · β

We assume that the sequential code of the program is executed on a single CPU
core. Thus, the following equation represents the theoretical achievable simultaneous
asymmetric speedup (speedupsa):

Speedupsa = s + N · (1 − s) · {α′ · c}
= s + N · (1 − s) ·

{
(1 − α′) · g

β

}
(9)

where N is the number of hybrid processors. Each hybrid processor contains c CPU
cores and g GPU cores.

Figure 7 shows the simultaneous speedup of an asymmetric processor for s = 0.3
as a function of the number of hybrid processors and as a function of CPU cores within
each hybrid processor. It can be observed that the Speedupsa increases slowly with the
increase in the number of hybrid processors. The speedup curve increases very sharply
for chip configurations combining a small number of CPU cores with many GPU
cores. The superior scalability of the GPU cores is the source of the high performance
computation obtained. As the value of α decreases, the time period parallelized by
the GPU increases and speedup is also increased. The speedup then begins to increase
slowly as the number of CPU cores is increased (and the number of GPU cores is

Fig. 7 Simultaneous
asymmetric speedup as a
function of the number of hybrid
processors and various
CPU–GPU chip configurations
for s = 0.3, wg = 0.25 and
β = 1.0
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decreased) until it reaches the point beyond which the speedup decreases fast where
the dominance of the GPU cores is negligible. For example, for α = 0.5, β = 1.0 and
s = 0.3 (Fig. 7) the peak performance occurs at the configuration point where CPU
cores = 80, GPU cores = 80 and hybrid processors = 4.

5.2 Simultaneous Asymmetric Perf/W

To model the power consumption of an asymmetric processor in a simultaneous
processing mode, we assume that one core is active during the sequential compu-
tation and consumes a power of 1, while the remaining c − 1 idle CPU cores consume
(c − 1)kc and g idle GPU cores consume g · wg · kg . Thus, during the parallel com-
putation time period, c active CPU cores consume c and g active GPU cores consume
g · wg . It requires (1− p) to execute sequential code and α′ · p to execute the parallel
codes on the CPU and the GPU simultaneously, so the average power consumption of
an asymmetric processor in a simultaneous processing mode is

Wsa = Ps + Pc + Pg (10)

where

Ps = s · {1 + (c − 1) · kc + g · wg · kg}
Pc + Pg = α′ · (1 − s) · {c + g · wg}

Consequently, Perf /Wsa of N asymmetric processors in a simultaneous processing
mode is expressed as follows.

Perf

Wsa
= s + N · (1 − s) · {α′ · c}

Ps + N · (Pc + Pg)
(11)

Figure 8 shows the performance per watt of an asymmetric processor, as modeled
by Eq. (11), for s = 0.3 as a function of the number of hybrid processors and as
a function of CPU cores within each hybrid processor. It can be observed that the
Perf /Wsa slightly decreases with the increase in the number of hybrid processors.

Fig. 8 Simultaneous
asymmetric Perf/W as a function
of the number of hybrid
processors and various
CPU–GPU chip configurations
for s = 0.3, wg = 0.25, kc =
0.3, kg = 0.2 and β = 1.0
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Fig. 9 Simultaneous
asymmetric Perf/J as a function
of the number of hybrid
processors and various
CPU–GPU chip configurations
for s = 0.3, wg = 0.25, kc =
0.3, kg = 0.2 and β = 1.0
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Furthermore, it can be seen that the low performance per watt reflects the behavior of
the asymmetric speedup (Fig. 7). When the performance of the CPU cores dominates,
the graph increases rapidly as the number of CPU cores increases (and the number of
GPU cores is decreases). Then, it reaches the point beyond which the performance per
watt decreases very rapidly because the dominance of the GPU cores is negligible.

5.3 Simultaneous Asymmetric Perf/J

Based on our definition of performance per joule, the Perf /Jsa of N asymmetric
processors in the simultaneous processing mode is expressed as follows.

Perf

Jsa
= {s + N · (1 − s) · (α′ · c)}2

Ps + N · (Pc + Pg)
(12)

Figure 9 shows the performance per joule of an asymmetric processor, when the
CPU and the GPU are in simultaneous processing mode, for s = 0.3 as a function of
the number of hybrid processors and as a function of CPU cores within each hybrid
processor. It can be observed that the Perf /Jsa slightly decreases with the increase in
the number of hybrid processors. Moreover, it increases fast with the increase in the
number of CPU cores. It continues to do so until it reaches the point beyond which
the performance per joule decreases rapidly because the dominance of the GPU cores
is reduced.

6 Synthesis

Figure 10 shows the three speedups investigated in this study, i.e., symmetric
speedup(s), asymmetric speedup (a), and simultaneous asymmetric speedup (sa) for
a single hybrid processor. The main finding from this comparison is that the same
chip configurations choices have different impact on the performance of different
processing schemes. For example, a chip configuration of a single CPU core offers
the best performance while in asymmetric processing mode. On the other hand, in
symmetric processing mode the speedup increases linearly with the increase in the
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Fig. 10 Symmetric (s),
asymmetric (a) and
simultaneous asymmetric (sa)
speedups as a function of the
number of CPU cores for one
hybrid processor and for
s = 0.3, wg = 0.25, α = 0.5
and β = 2.0
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Fig. 11 Symmetric (s),
asymmetric (a) and
simultaneous asymmetric (sa)
Perf/W as a function of the
number of CPU cores for one
hybrid processor and for
s = 0.3, wg = 0.25, α = 0.5
and β = 2.0
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number of CPU cores while simultaneous processing yields a peak performance at a
specific chip configuration of 58 CPU cores and 164 GPU cores. These phenomena
indicates that dynamic configuration is required to identify and set the optimal chip
organization. Another noticeable observation is that fixed time speedup does not scale
when heterogeneous architecture is offered. Therefore, when the problem size has
to be increased with the increase in the number of the resources is better to prefer
homogeneous architecture.

Figure 11 shows the performance per watt of the three processing schemes that were
studied in this research [symmetric (s), asymmetric (a), and simultaneous asymmetric
(sa)] and how they are affected by chip configuration. First, it can be observed that the
chip configuration has no effect on Perf /W while processing in symmetric mode, as
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Fig. 12 Symmetric (s),
asymmetric (a) and
simultaneous asymmetric (sa)
Perf/J as a function of the
number of CPU cores for one
hybrid processor and for
s = 0.3, wg = 0.25, α = 0.5
and β = 2.0
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can be expected. In simultaneous processing mode, Perf /W improves with increasing
number of CPU cores until it reaches peak performance for a chip configuration
of approximately 85 CPU cores and 60 GPU cores (Fig. 11). Beyond this point,
Perf /W decreases rapidly to a point where the contribution of the GPU cores is
negligible. On the other hand, in asymmetric processing mode, a chip configuration
consisting of a single CPU core yields an optimal performance per watt, and any
attempt to increase the number of CPU cores in the chip organization leads to a
significant decrease in performance per watt. The performance per watt offered by the
simultaneous processing mode is the worst at any configuration setting. Therefore, the
best configuration setting for fixed time system in order to achieve the best performance
per watt is homogeneous configuration of GPU cores.

Similarly to Figs. 10 and 11, Fig. 12 shows the three performance-per-joule graphs
for the analytical models investigated [symmetric (s), asymmetric (a), and simulta-
neous asymmetric (sa)] and how they are affected by power constraints and chip
organization. The first notable finding is the excellent performance-per-joule values
that can be obtained by asymmetric processing compared to symmetric and simulta-
neous asymmetric processing modes. Again, the peak performance occurs for a chip
configuration consistingof a singleCPUcore.The secondnotablefinding is that perfor-
mance per joule in symmetric and simultaneous asymmetric processingmodes reflects
the behavior of the speedup and performance per watt of these processing modes. The
Perf /Ws has a constant value and therefore is not affected by chip organization, while
Speedups increases linearly with increasing number of CPU cores. Therefore, Perf /Js
also increases linearly with increasing number of CPU cores. Likewise, Speedupsa and
Perf /Wsa which exhibit bell curves with maximum values at a specific chip organi-
zation, reflect similar behavior for Perf /Jsa . Moreover, it can be observed again that
the performance per joule offered by the simultaneous processing mode is the worst at
any configuration setting, and the best performance per joule that a fixed time system
can achieved is when it consists of homogeneous GPU cores.
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7 Discussions and Future Work

The aim of this section is to summarize our insights from our studies that are presented
in [15] and in this paper. In these works we explore the impact of power consumption
constrains on current and future heterogeneous many-core processors. We chose to
investigate this effect by using The two popular Laws that are used for performance
analysis of parallel systems: Amdahl’s law and Gustafson–Barsis’s law. The first law
is used to model fixed size scalable systems where the goal is to solve e a problem
as fast as possible when the number of cores increases and the problem size remains
without change. The second law is used to model fixed time large scale systems where
the goal is to solve the biggest problem that is possible by increasing the number of
cores while the execution time remains fixed.

In the case of homogenous architecture, where all the cores are identical, Amdahl’s
and Gustafson’s speedups exhibit increase in performance as the number of cores
increases. Gustafson’s speedup predicts more optimistic results. These speedups led
to steady performance per watt as the system’s resources increases and linear increase
in the performance per joule. While the curves of the performance per watt of the two
models show similarity, the performance per joule modeled by Gustafson’s predicts
better saving of battery’s energy.

As the architecture become heterogeneous while combining fat cores alongside thin
cores that share the same die and power budget, the energy efficiency of the architec-
ture is changing dramatically. First, the both laws predict substantial increase in the
speedup in case of asymmetric processing mode for configurations of one or a few fat
cores and many thin cores. On the other hand, the speedup predicted for simultaneous
asymmetric processing mode becomes worst. These results reflect exactly the pre-
dicted behavior of the performance per watt and the performance per joule of the two
heterogeneous processing modes that were examined. Therefore, we can summarize
that heterogeneous system that combined a few CPU cores alongside GPU cores can
improves the energy efficiency of the systemwhen operating in asymmetric processing
mode but not in simultaneous asymmetric mode.

8 Conclusions

We investigated three analytical models of symmetric, asymmetric, and simultaneous
asymmetric processing. These models extended Gustafson–Barsis’s Law for symmet-
ric many-core and heterogeneous many-core processors by taking in account various
chip organizations and power constraints.

This study of the impact of chip organization on power efficiency and energy con-
sumption has shown that processing in asymmetric mode with a chip configuration
consisting of a single CPU core yields outstanding speedup, performance per watt, and
performance per joule compared to symmetric and simultaneous asymmetric process-
ing modes. Therefore, asymmetric processing mode offers a substantial improvement
in power consumption and energy savings.

The analysis of the three performance metrics with regard to various chip configu-
rations suggest that future many-core processors should be a priori designed to include
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one or a few fat cores alongside many efficient thin cores to support energy efficient
hardware platforms. Moreover, to achieve optimal scalability and energy savings, a
dynamic configuration mechanism is required for identifying and implementing the
optimal chip organization.

The work presented in this paper is theoretical. In order to validate the analytical
models developed in this work an experimental evaluation is needed. However, the
technologies for building heterogeneous processors that allow changing their config-
uration programmatically do not exist yet. Therefore, the only way to validate our
models is by simulations. Fortunately, we have not found an existing simulator that
can be served for our purpose. Therefore, we are developing a new simulator these
days from the ground up.
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