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Abstract Graph applications are common in scientific and enterprise computing.
Recent research used graphics processing units (GPUs) to accelerate graph workloads.
These applications tend to present characteristics that are challenging for SIMDexecu-
tion. To achieve high performance, prior work studied individual graph problems, and
designed device-specific algorithms and optimizations to achieve high performance.
However, programmers have to expend significant manual effort, packing data and
computation to make such solutions GPU-friendly. This usually is too complex for
regular programmers, and the resultant implementations may not be portable and per-
form well across platforms. To address these concerns, we propose and implement a
library of software building blocks with application examples, BelRed which allows
programmers to build graph applications with ease. BelRed currently is built on top
of the OpenCL™ framework and optimized for GPUs. It consists of fundamental
linear-algebra building blocks necessary for graph processing. Developers can pro-
gram graph algorithms with a set of key primitives. This paper introduces the API and
presents several case studies on how to use the library for a variety of representative
graph problems. We evaluate application performance on an AMD GPU and investi-

BelRed is famous road across Bellevue and Redmond, WA USA. This manuscript is an extension to the
6-page paper, “BelRed: Constructing GPGPU Graph Applications with Software Building Blocks”, in the
2014 IEEE High Performance Extreme Computing Conference.

B Shuai Che
Shuai.Che@amd.com

Bradford M. Beckmann
Brad.Beckmann@amd.com

Steven K. Reinhardt
Steve.Reinhardt@amd.com

1 Advanced Micro Devices, Bellevue, WA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-016-0448-z&domain=pdf


658 Int J Parallel Prog (2017) 45:657–679

gate optimization techniques to improve performance. We show that this framework
is useful to provide satisfactory GPU acceleration of various graph applications and
help reduce programming efforts significantly.

1 Introduction

The highly parallel compute throughput andmemory bandwidth of GPUsmake them a
desirable platform to accelerate data-parallel, compute-intensive applications. For the
past few years, general-purpose computing on GPUs (GPGPU) has shown successes
in various application domains, including image and video processing, data mining,
bioinformatics, numerical simulations and so on. Most of these applications map well
to GPUs’ SIMD architectures and programming models and achieve performance
speedups on GPUs compared to CPUs. Recent research efforts have advanced GPU
computing into the areas of SIMD-unfriendly workloads [1,2]. Graph applications are
an emerging set of such irregular workloads. They are used in social network analy-
sis, knowledge discovery, business analytics, infrastructure planning and engineering
simulation. Many big-data applications involve graph processing on large datasets. In
contrast to regular applications, programming and optimizing these graph applications
tend to be a challenge. In addition, understanding how efficiently these applications
can leverage GPUs is essential to improve hardware and software for irregular work-
loads.

In parallel computing, designers increasingly face the challenge of balancing perfor-
mance and programming efforts. Highly tuned applications for a particular platform
achieve high performance but require significant engineering. Possible side effects
include complex code and poor performance portability. High-level languages and
APIs make programming easier, but may cause additional overhead due to extra layers
of abstraction. For graph applications, most prior GPGPU research took problem-
specific approaches for parallelization andoptimizations of individual problems.These
advanced techniques usually are not intuitive for regular programmers because signif-
icant effort is needed to restructure SIMD computation and memory accesses. Ideally,
programmers need an easy way to program graph applications while in the meantime
achieve high-performance and portability.

This paper resolves these issues by developing andfine-tuning a set of linear-algebra
building blocks shared by many important graph algorithms. Our goal is to provide a
frameworkwhich allows programmers to achieve good programmability, performance
and portability for GPGPU graph processing. Inspired by the prior work [3–5], we
adopt the concept and development of graph algorithm research in the linear-algebra
language. Though there could be alternative abstractions for solving graph problems
[6], primitives designed in linear algebra are promising to map relatively well to
SIMD architectures with optimizations. We develop the BelRed library, encapsulating
commonprogramming primitives into reusable functions.Wedemonstrate the usage of
these functions to program a set of representative graph algorithms for GPUs. BelRed
enables programmers to focus on high-level algorithms rather than device-specific
mapping and optimization. Improving performance of individual API functions (e.g.
by software vendors) leads to better overall performance, while preservingmodularity.

123



Int J Parallel Prog (2017) 45:657–679 659

The library can also be easily extended to support multiple machine nodes. This paper
makes several contributions:

– We present the BelRed library framework and describe a set of important routines
(e.g., diverse sparse-matrix andvector operations) for graphprocessing.Wepresent
their GPU parallelization and optimization techniques.

– We present several representative graph applications and their GPU implementa-
tions. We use several case studies on how to build them with the BelRed API.

– We show application performance on an AMD discrete GPU with comparisons to
the Pannotia [2] library. We discuss performance implications of device-specific
optimizations, data layouts and access patterns. We show that the diverse data
structures provided by BelRed offer the capabilities to process different graphs
efficiently.

2 Background

In this section,we describe theGPUarchitecturewith anAMDGPUas an example and
OpenCL. We also present some common features shared by many graph applications.

2.1 AMD GPUs and OpenCL

AMD Radeon™ HD 7000 series and later GPUs use the AMD Graphics Core Next
(GCN) architecture [7], which is a radically new design compared to prior AMD
designs based on very long instruction word (VLIW) architectures. The AMD GPU
includes multiple SIMD compute units (CUs). Each CU contains one scalar unit and
four vector units [8]. Each vector unit contains an array of 16 processing elements
(PEs). Each PE consists of one ALU. The four vector units use SIMD execution of
a scalar instruction. Each CU contains a single instruction cache, a data cache for
the scalar unit, a L1 data cache and a local data share (LDS) (i.e., software-managed
scratchpad). All CUs share a single unified L2 cache. The GPU supports multiple
DRAM channels.

OpenCL is a programming model to develop applications for GPUs and other
accelerators [9]. InOpenCL, a host program launches a kernel withwork-items over an
index space (NDRange).Work-items are grouped into work-groups. OpenCL supports
multiplememory spaces (e.g., the global memory space shared by all work-groups, the
per-work-group local memory space, the per-work-item private memory space, etc.).
In addition, there are constant and texturememory spaces for read-only data structures.
The original OpenCL uses two types of barrier synchronizations in different scopes:
local barriers for all the threads (i.e., work-items) within a work-group and global
barriers for all the threads launched in a kernel. The new OpenCL 2.0 defines an
enhanced execution model and a subset of the C/C++11 memory modes. It supports
work-item atomics and synchronizations visible to other work-items in a work-group,
across work-groups executing on a device, or for sharing data between the OpenCL
device and host [9].
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2.2 Graph Applications

Graph applications are an emerging application domain, thanks to recent developments
generally referred to as “big data”. Graphs with millions of vertices and edges are
common. Graph algorithms are applied to solve a variety of problems, including
intelligence (e.g., data analytic, security, and knowledge discovery), social network,
life science and healthcare (e.g., bioinformatics), infrastructure (e.g., road network
and energy supply) and scientific and engineering simulations in high-performance
computing. These graph applications, which process a large amount of data in parallel,
require massive computation power and memory. Recent studies [1,2,10–13] show
that GPUs can be powerful to compute structured, regular data-parallel applications
and also promising to accelerate irregular applications such as graph processing.

Graph applications present certain characteristics not in other regular GPU work-
loads. For example, they present low arithmetic intensity, that is, relatively less
arithmetic compared to memory operations. This imposes much pressure on off-chip
memory bandwidth. Certain applications present poor data reuse. Access patterns are
hard to predict. This makes it difficult to exploit on-chip data locality. In addition,
SIMD underutilization is a common issue in many graph workloads. The reasons can
be due to branch divergence which occurs when threads in the same wavefront take
different execution paths, or due to different amounts of work assigned to different
threads. In these cases, some GPU threads must be masked off, leading to a subset of
active SIMD lanes [8]. Another issue is memory divergence due to undesirable mem-
ory coalescing. Uncoalesced memory accesses require multiple memory transactions
to supply data with poor cache-line utilization. Efficient coupling between data layouts
and access patterns is needed.

However, the above inefficiencies are difficult to remove entirely for SIMD exe-
cution. Our primitives based on sparse-matrix and vector operations are relatively
friendly to SIMD architectures. Furthermore, we provide several solutions to opti-
mize data layouts and access patterns and perform GPU-specific optimizations.

3 BelRed

BelRed is a library of sparse-matrix and vector operations, consisting of diverse and
optimized functions necessary for graph applications on GPUs. The goal is to allow
GPU programmers to leverage these functions to construct their applications. The
actual implementation is transparent to programmers. In addition, another contribution
is thatweprovide a set of representative graph applications implemented usingBelRed.
BelRed uses graph algorithms in linear algebra [4], and supports diverse graph formats
and data layouts. The current API is implemented on top of OpenCL, but can be
extended to any programming model (e.g., C++, CUDA, Python, or Matlab). It is not
restricted to GPU uses and thus implementations can target any computer architecture
or dedicated hardware. BelRed has multiple advantages:

Programmability The BelRed library provides a high-level abstraction and pro-
gramming primitives for GPGPU graph processing. Programmers can construct GPU
graph applications with the BelRed API easily with minimum programming efforts.
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Performance The BelRed implementation applies various optimizations to achieve
high performance for each individual library function.

Portability Applications which use BelRed are portable across different GPUs and
accelerator devices. Performance portability can be achieved by offering library imple-
mentations optimized for different devices (e.g., by library vendors).

Our library does not target algorithm-level functions (e.g. single-source shortest
path, breadth first search, etc.). It is focused on low-level primitives useful for these
graph algorithms. In addition, they can be useful for other sparse-matrix problems.

3.1 Formal Definitions

BelRed represents graphs using matrices. Graphs can be stored in sparse matrices.
We first define operations mathematically for easy notation and explanation. We use
a similar form by Kepner and Gilbert [4] and Matlab. We use U , u and u to denote
a 2-D matrix, a vector, and scalar element, respectively. For example, given a m × n
matrix M and a vector w with dimension n, the product Mw (i.e., M + . ∗ w ) is a
vector of dimension m (see Sect. 4.1). Besides multiplication, other operations are
also supported. For example, Mmin. + w is a m-wide vector whose i th element is
min(M(i, j) + w( j) : 1 ≤ j ≤ N ) (see Sect. 4.2). For vector vwith dimensionm and
vector w with dimension n, the outer product of v and w is described as v ◦ w, which
is a m × n matrix whose (i, j) element is the result of v(i) ∗ w( j). In this paper, we
show outer sum, in which the multiplication operation is substituted by addition (see
Sect. 4.5). If A and B are matrices of the same size, the element-wise product A.× B
is the matrix C with C(i, j) = A(i, j) ∗ B(i, j) where 1 ≤ i ≤ m and 1 ≤ j ≤ n.
Similar notation applies to other element-wise binary operators (e.g., C = A.minB).
There are similar element-wise operations for vectors, for instance, the AND and OR
of two vectors v and w can be denoted as v&w and v|w respectively (see Sect. 4.3).
For vector-wise operations, they generate a value with all the elements in a vector, for
instance, max(w(i) : 1 ≤ i ≤ N ) (i.e., the max for a vector).

3.2 BelRed Functions

This section summarizes the BelRed functions. Table 1 shows a subset of library func-
tions and their descriptions (see Fig. 2 for a graphical representation). Programmers

Table 1 Sample BelRed API functions and descriptions

API Description

u = SpMV (M, v) Sparse-matrix vector multiplication

u = MinDot Add(M, v) The min.+ operation

u = SegReduc_Op(M) Segmented reduction. Op = +,&,min . . .

U = Outer Sum(v,w) The outer sum operation

u = ElemWise_Op(v,w) Element-wise operations. Op = +,&,min, . . .
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Table 2 Operations and current data structure support

BelRed functions Data structure support

SpMV , min.+ and SegReduc_Op CSR, COO and ELL

Outer Sum and ElemWise_Op 2-D array and vector

can call these functions on the host. This is by no means a complete list for graph
processing; BelRed is extensible to support other operations, and each function may
be extended to different variants (e.g., semirings [4] ) with replacement of other oper-
ators (e.g., ×,+,min). For example, OuterSum may have a variant of OuterProduct.
Similarly, min.+ may have a variant of max .+. It may also be useful to provide
user-defined functions for matrices or vectors. Software vendors can provide highly
optimized implementations for individual functions which target specific devices. In
addition, with BelRed, application behavior and performance become relatively easy
to predict with a breakdown into individual functions. In Sects. 4 and 5, we show how
we implement and optimize these functions and how to use them to build a variety of
graph algorithms.

3.3 Data Structure Layout

The BelRed framework currently supports a few data structures internally to store
graphs. We found that different algorithms and traversal patterns may prefer different
memory layouts. These include the compressed sparse row (CSR), coordinates list
(COO) andELLPACK (ELL) formats to store sparse graph structures (e.g., in Bellman–
Ford, Maximal Independent Set, Coloring and PageRank). BelRed is extensible to
other data layouts. In Sect. 7.2, we discuss the reasons why we choose these data
layouts and their pros and cons. Figure 1 shows a graphical representation of these data
layouts. Other operations support regular 2-D adjacency list and 1-D vector. Table 2
lists the BelRed functions and the associated data structures they currently support.
Future BelRed development will extend the framework to other data structures (e.g.
diagonal and hybrid formats).

3.4 Graph Inputs

BelRed includes support for widely used graph formats: DIMACS Challenge [14,15],
METIS [16] and Matrix Market [17] formats. The library contains utility routines to
parse graph inputs in these formats. BelRed uses many real-world graphs for differ-
ent problems (e.g, co-author and citation graphs, road networks, numerical simulation
meshes, clustering instances, web, etc.). We include sample graphs from the DIMACS
Implementation Challenges [14,15] for shortest-path, graph partitioning, and cluster-
ing problems. Some graphs are obtained from the University of Florida Sparse Matrix
Collection [18]. GTGraph [19] is used to generate random graphs.
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Fig. 1 Different data structures supported by BelRed (e.g., 2-D adjacency matrix, compressed-sparse row,
coordinate and ELLPACK). Some format such as ELL requires padding and storage in the column-major
format

4 Graph Building Blocks

In this section, we present some key operations and functions in the BelRed API.
Each function is implemented and optimized for the GPU and can be called in a
GPU program. Figure 2 shows the graphical representation of sample operations. 2-D
matrices in the figure can be represented in compact sparse formats.

4.1 SpMV

Sparse matrix-vector product (SpMV) is a computational kernel that is critical to
many scientific and engineering applications. Figure 2a is a graphical view of SpMV.
SpMV-type operation is a natural fit for graph applications in which vertices have
data exchanges with their neighbors. For example, SpMV can be used to expand the
neighbor list (e.g., in breadth-first search [4]). Also, SpMV can be modified with other
operators to meet different purposes. For instance SpTouch can be defined by substi-
tuting × and + in the inner loop with |. There can be multiple GPU implementations
for SpMV. The outer loop of SpMV can be unfolded such that each GPU thread is
responsible for processing one row. An alternative is that eachwavefront is responsible
for one row. In this case, intra-wavefront parallel reduction is needed to calculate the
sum. Prior studies [20–22] demonstrate approaches to optimize SpMV on GPUs. It is
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Fig. 2 Sample BelRed operations: amatrix-vectormultiply,bmin.+, c segmentedmin reduction,d vector-
vector AND, and e outer sum. For b and c, the blank regions represent big numbers (i.e., ∞) while for (a),
(d) and (e), the blank regions represent zeroes. The 2-D matrices can be stored in a sparse format.

one of the useful building blocks for graph processing. The implementation of SpMV
in this paper is currently for dense vector V. Recent work by Yang et al. [23] studies an
approach to improve sparse-matrix and sparse-vector multiplication (SpMSpV); we
leave the evaluation of SpMSpV for future work.

4.2 min.+

As discussed in Sect. 3.1, the min.+ operation is another important programming
primitive for graph processing [4]. Vertex-value comparison is a common operation in
shortest-path and graph-partitioning algorithms. For each row in the adjacency matrix
and a dense vector, min.+ sums each pair of two elements in the row and vector,
and then performs a reduction with a min operation across all pairs. Two pseudocode
examples formin.+ are shown inFig. 3. Thefirst example usesCSR to store thematrix,
and each thread is responsible for processing one row. The second example uses ELL,
and each thread is responsible for one row as well. The ELL matrix is stored in a
column-major order with additional padding. This helps improve memory coalescing
whenmultiple threads in awavefront access data elements in the cache simultaneously.
Also, there is no divergent branch but with additional redundant computation.

Figure 2b is a graphical representation of the min.+ operation. We use min.+ to
implement the Bellman–Ford algorithm, which solves the single-source shortest path
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Fig. 3 Pseudocode examples of min.+ (b = data min.+ a) in CSR (top) and ELL (bottom)

(SSSP) problem. We also use it as an example to show performance impacts of using
different graph data structures in Sect. 7.2.

4.3 Element-Wise Operations

Element-Wisematrix-matrix operations take twomatrices and generate a result matrix
with an operator (e.g.,×,+,min) applied on each pair of elements from twomatrices.
To implement element-wise GPU operations, each thread is assigned to compute each
result element in parallel. Element-wise vector–vector operations are also very com-
mon in many graph algorithms. For instance, an algorithm may decide which vertices
are active or inactive. Figure 2d is graphical view of an AND operation. GPU imple-
mentations of these operations seem to be straightforward with threads processing
different regions of an array or vector. But the performance will be suboptimal if inap-
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propriate parameters are chosen, such as OpenCL workgroup size and the amount of
work (data chunk in bytes) assigned for each workitem. BelRed relieves programmers
from dealing with device-specific tunings.

4.4 Segmented Reduction

Segmented reduction calculates a vector with each its element calculated by reducing
the elements in a segment of the vector (e.g., each segment can be a row in a sparse
matrix). One useful operation in many graph partitioning problems is to compare
the values of all the vertices in a row and calculate the maximum or minimum. For
example, given a 2-D adjacency matrix, SegReduc_Min produces a vector with each
element being the minimum of the elements in each row (see Fig. 2c).

4.5 Outer Sum

The outer sum operation calculates an m × n matrix using two 1-D vectors as inputs,
with a size of m and n respectively. It is useful for calculating all-to-all relationship.
Figure 2e shows the outer-sum operation in which for a 2-Dmatrix M and two vectors
v and w, the element M(i, j) is the sum of v(i) and w( j) where i ∈ [1,m] and
j ∈ [1, n]. For a GPU implementation, an m × n 2-D ND-Range is configured to
launch an OpenCL kernel. All the points in the computation domain are mapped to 2-
D indices and processed concurrently. TheFloyd–Warshall algorithm,which computes
the all-pairs shortest-path (APSP) problen can use the outer sum operation.

4.6 Other Building Blocks

Prior studies investigated other basic building blocks for irregular applications. Our
work is complementary to theirs. For instance, one famous example is a set of
scan primitives developed by Sengupta [24]. They implemented the classic scan and
segmented-scan operations for GPUs. Merrill et al. [12] developed a highly optimized
Breadth-First algorithm with prefix-sum. Bolt C++ [25] and Thrust [26] implemented
a GPUAPI similar to the C++ standard template library (STL). Our library is designed
particularly for graph processing.

5 Graph Algorithms with BelRed

In this section, we present several case studies which use BelRed to program graph
applications.

5.1 PageRank

PageRank (PRK) is an algorithm to calculate probability distributions representing
the likelihood that a person randomly clicking on links arrives at any particular page.
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In a typical implementation, the value of each vertex first is initialized to 1
num_vertices .

In each step of the main computation loop, each vertex assigned to a GPU thread
sends along its outgoing edges the current PageRank value divided by the number
of its outgoing edges [27]. Each thread then sums the values arriving at each vertex,
and calculates a new PageRank value. The algorithm terminates when convergence
is determined by an aggregator or after running a user-specified number of iterations.
Each GPU thread can traverse the neighbor list of a vertex and atomically adds the
associated PageRank amount PgRankVal

num_outgoing_edges to each neighbor in the neighbor list
[2]. With BelRed, this step can be substituted with a SpMV operation on the GPU. A
preprocessing step is conducted first to compute a matrix which stores the percentage
of PageRank a vertex transfers to each of its neighbors.A transpose is performedfirst so
that the i th row of the new matrix represents the information for all the vertices which
have an outgoing edge to the i th vertex. Then the algorithm goes into the main loop,
launching SpMV followed by an update kernel to calculate PageRanks. The update
kernel is written by the user and finalizes the PageRank value for each vertex at the end
of an iteration. This uses the equation PageRank[tid] = (1 − d)/num_vertices +
d ∗ PageRank′[t id], where d is a damping factor (0.85 in our study) and tid is the
GPU thread id.

5.2 Bellman–Ford

The SSSP algorithm is a common subroutine in various graph applications. Given
a user-specified source vertex, the algorithm searches the shortest path between the
source vertex and all the other vertices in the graph. SSSP keeps track of a distance
array, saving the shortest distances while the program proceeds. In a typical SSSP
implementation [2], each vertex in the graph is assigned to a GPU thread. Starting at
the source vertex, GPU threads gradually explore frontiers while a vector keeps track
of the active vertices. Each thread processes an active vertex, traverses the neighbor
list and performs edge relaxation. If the shortest distance of the active vertex to the
source plus the edge weight to a particular neighbor is less than the recorded distance,
a new shortest distance is updated atomically by a GPU thread.

In this study, we use the Bellman–Ford algorithm [1,28] to solve the single-source
shortest path problem. Figure 4 is an example showing four iterations of Bellman–
Ford on a sample graph with six vertices and eleven edges. The core of the algorithm
is performing the min.+ operation on a matrix M and a vector w on the GPU. The
vectorw stores the shortest distances of all the vertices to the source. The source vertex
i in w is initialize to 0 (i.e., zero distance to itself), while all the other vertices are
initialized to a ∞ value (i.e., a big integer). w′ = Mmin. + w produces the shortest
distances for all the vertices directly connected to the source at the end of the first
iteration. Similarly,w′′ = Mmin.+w′ produces the shortest distances after traversing
two layers of vertices from the source. The same process repeats until convergence. A
check_convergenceGPU kernel followingmin.+ in the main loop is used to determine
program termination. The min.+ operation is a basic primitive useful for solving a
variety of problems; Bellman–Ford is used as case to show its usage. Recent work
shows a new GPU technique to solve SSSP [29] which is of better computational
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Fig. 4 Conduct min.+ repeatedly to implement the single-source shortest path (SSSP) algorithm. We use
a square adjacency matrix for demonstration. The actual storage can be in a sparse-matrix format. For an
element ( j, i)with valuew, it means vertex i connects to vertex j with an edgeweight ofw. All the elements
along the diagonal are initialized to zeroes with the rest initialized to a big number. The source vertex in
this example is vertex 3

complexity than Bellman–Ford. On the other hand, it is interesting to compare their
execution times and memory requirements when computing concurrent SSSPs ( given
multiple sources), which may be efficient and easy to do using min.+ with multiple
vectors. We leave this comparison for future work.

5.3 Coloring

Graph coloring (CLR) partitions the vertices of a graph such that no two adjacent
vertices share the same color. We use an algorithm similar to that used in prior work
[30]. In the initialization step, each vertex is labelled with a random integer. The
algorithm takes multiple iterations to solve the problem, with each iteration labelling
vertices with one color. For each vertex, a GPU thread compares its vertex value
with that of its neighbors. If the value of a given vertex happens to be the largest (or
smallest) among its neighbors, it labels itself with the color of the current iteration.
The algorithm converges when all vertices are colored.

In fact, the step of determining whether a vertex is a local maximum or mini-
mum can leverage a BelRed library function. To achieve this, given a matrix M , the
SegReduc_Min operation spanned across multiple rows calculates a temporary vec-
tor u. Each element i in u is max/min for the elements in each individual row of M
(i.e., the neighbor list for each vertex). Each GPU thread (or wavefront) can be respon-
sible for a row. The algorithm then compares the temporary vector with the vector that
stores the current vertex values, and decides if a vertex is local maximum or minimum
in order to label a color. In this problem, we use a specific version of GPU vector-wise
max/min. We maintain a mask vector recording the activeness of each vertex. The
max/min operation is applied only to those vertices active in a given iteration.

5.4 Maximal Independent Set

An independent set are vertices in a graph in which none are adjacent. In Maximal
Independent Set (MIS), it is not possible to add another vertex to the set without
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violating that property. This algorithm is commonly used to solve problems in graph
partitioning and task scheduling. A typicalMIS implementation uses Luby’s algorithm
[31]. Each vertex is labelled with a random integer and each GPU thread compares
the value of a vertex to its neighbors and determines whether it should be added to the
set (based on the local maximum/minimum). For each vertex added to the set, each
thread visits its neighbor list and marks all the neighbors inactive, which will not be
evaluated in the next iteration.

With BelRed, Maximal Independent Set can be implemented using the same build-
ingblock asColoring to calculate localmax/min.However, in this study,weuse another
algorithm described by Shah et al. [32,33]. In our implementation, the program first
selects a subset of vertices, select , randomly as an initial set. It conducts SpTouchwith
a graph M and the vector select as inputs. Remember that SpTouch is used to expand
the neighbor list of the selected vertices. The algorithm marks the touched neighbors
as “visited” vertices, and subsequently determines whether the expanded neighbors
and selected vertices overlap. This can be achieved through an AND operation (i.e.,
select&SpTouch(M, select)). For the result, we evaluate the overlapped vertices
and keep only those with higher degrees, f inal_select , which is implemented with a
specific kernel. Then we add them to the set mis. This step is achieved through an OR
operation (i.e., mis| f inal_select). All neighbors of f inal_select are discarded; the
following iterations process the remaining vertices, until all the vertices are evaluated.

5.5 Floyd–Warshall

Floyd–Warshall (FW) solves the all-pairs shortest paths (APSP) problem. This prob-
lem can be solved in a manner of dynamic programming in 2-D matrix operations
[11]. For instance, given a graph G(V, E), a function shortestPath(i, j, k) returns the
shortest possible path from i to j using vertices from the set 1, 2 , …, k as intermediate
vertices. Each step is to find the shortest path from each i to each j using vertices 1 to
k + 1 with increasing k. The shortest path for k + 1 is either a path that uses vertices
in the set 1, 2,…, k or a path that goes from i to k + 1 and then from k + 1 to j [2].
This operation is summarized as:

shortestPath ( i , j ,k+1) = min ( shortestPath ( i , j ,k) ,
shortestPath ( i ,k+1,k)

+ shortestPath (k+1,j ,k))

In our implementation, a 2-D distance array is used to keep track of the shortest
distances from all possible sources to all possible destinations. Floyd–Warshall uses
twomajor BelRed operations. The first is an outer sum on theGPU calculating an n×n
matrix with two n-wide vectors as inputs. The second is a parallel element-wise min
operation on the GPU applied on each pair of elements from two 2-Dmatrices M1 and
M2. Each element in the result matrix is calculated with min(M1(i, j),M2(i, j)),
(i, j ∈ [1, n]). We use FloydWarshal as an example to show the overhead of launching
GPU kernels. We also implemented APSP using the R-Kleen algorithm [34] which
uses the min.+ semiring, but we found that it is slower than the version using outer
sum.
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6 Experimental Setup

In this paper, the experimental results are measured on real hardware using an AMD
Radeon HD 7950 discrete GPU. The AMD Radeon HD 7950 features 28 GCN CUs
with 1792 processing elements running at 800 MHz with 3 GB of device memory. We
compare the results to those obtained from four CPU cores on an AMDA8-5500 with
a 3.2-GHz clock rate and 2 MB L2 cache. We use AMD APP SDK 2.8 with OpenCL
2.1 support. AMD APP Profiler v2.5 is used to collect profiling results. In addition,
this study is restricted to cases when the working sets of applications do not exceed
the capacity of the GPU device memory. We leave graph partitioning for multi-node
processing for future work.

7 Results

In this section, we discuss performance benefits of using BelRed. We also discuss
issues related to the choice of data layouts, kernel launch overhead and impacts of
device-specific parameters.

7.1 Performance Improvement

Performance is evaluated on five graph algorithms constructed with BelRed (see
Sect. 5). We calculate performance speedups by running applications on a AMD
Radeon HD 7950 discrete GPU, and comparing them to running applications on four
CPU cores of an AMDA8-5500. We focus on the main computation part, and exclude
file I/Os and graph parsing. For the AMD Radeon HD 7950, we include the PCI-
E data-transfer overhead when calculating speedups. We choose the inputs used in
Che et al. [2] for comparison. Figure 5 shows the performance speedups for all the
applications and inputs. The arithmetic mean of speedups for all program-input pairs
is approximately 4×. Application performance is also input-dependent (i.e., graph
structures). For example, for Bellman–Ford, road-NW achieves a 6× speedup, while
road-CAL achieves a 10× speedup. This is similar to Coloring with shell (8×) and
ecology (4.5×). Maximal Independent Set achieves only 10% performance improve-
ment due to in-loop CPU computation and kernel-call overhead. Figure 6 shows the
execution-time breakdown due to CPU computation, GPU computation and PCI-E
transfer for the main computation part across different applications. The portion of
GPU computation is up to 99%. For Coloring and Floyd–Warshall, a small portion of
execution time is spent on the initial setup and data preprocessing. Maximal Indepen-
dent Set has some opportunity for additional GPU offloads, which we leave for future
work.

We also compare performance between BelRed and Pannotia [2]. BelRed shows a
comparable performance to Pannotia (see Table 3) which provides algorithm-specific
implementations. For fair comparison, we use the same data structure when com-
paring the same algorithm; however, BelRed supports more diverse data structures,
which may yield better performance for certain inputs (see Sect. 7.2). Specifically,
Bellman–Ford with BelRed is on average 30% faster than Pannotia. For PageRank,
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Fig. 5 Performance speedups of running graph applications on the GPU compared to the CPU

Fig. 6 Application execution time breakdown in CPU execution, GPU kernel execution, and PCI-E transfer

the performance is similar. For instance, for the coAuthor data set, the BelRed version
is 12% slower than Pannotia, while for the 2k dataset, BelRed is 22% faster than Pan-
notia. Similar behaviors are present in Graph Coloring as well. The Pannotia version
is 2× faster than BelRed for Floyd–Warshall, due to that BelRed breaks the problem
into smaller kernels. We did not compare Maximal Independent Set, because they use
two different algorithms, which is not a fare comparison ( though each will generate
a different, though valid result for Maximal Independent Set. For a graph, there can
be multiple “maximal” independent sets). In general, applications programmed with
BelRed achieve competitive performance and show good programmability.
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Table 3 BelRed versus
Pannotia runtime comparison
(ms)

App (input) Pannotia BelRed

PageRank (2k) 61.98 48.24

PageRank (coAuthor) 77.06 86.30

Bellman–Ford (road-NW) 14,025.65 10,847.84

Bellman–Ford (road-CAL) 14,545.29 9178.32

Coloring (ecology) 70.84 79.08

Coloring (shell) 777.82 775.23

Floyd–Warshall (GTGraph256) 42.57 141.40

Floyd–Warshall (GTGraph512) 90.62 269.07

7.1.1 Kernel Launching

Terminating a kernel call is essentially forcing all the threads to synchronize. An
efficient implementation of an application uses a small number of kernel calls. Our
BelRed API encapsulates common functionally into well-defined functions for reuse,
productivity and maintainability. However, the cost of maintaining modularity is the
possibly resultant overhead of GPU kernel call invocation and extra device-memory
accesses. Therefore, an application using BelRed may launch more kernels than a
version otherwise implemented with cross-function optimizations and fewer kernels.
For Floyd–Warshall, calculation of each individual element is independent of others.
Therefore the two BelRed kernels actually can be merged into a big kernel if not
using the BelRed API. This leads to about 2× slowdown for the BelRed version.
Thus, GPU vendors may focus on reducing the cost associated with kernel launching.
Recently AMD proposes Heterogeneous System Architecture (HSA) [35], supporting
low-overhead user-space queuing on theGPUside;HSAmayhelp address this concern
benefiting library designers. In addition, because of dividing kernels, extra global
memory writes and reads may be needed between kernels to pass the intermediate
results from one kernel to another.

7.2 Data Layouts and Accesses

Efficient memory accesses are important for GPUs to achieve high performance. This
study examines the performance impact of using different data structures.We consider
three popular data layouts for sparse graphs—COO, CSR, and ELL. Each structure has
their unique advantage when solving different problems. COO and CSR are more gen-
eral and flexible formats than ELL. Compared to ELL, they also require less memory
capacity to store graphs and sparse matrices. On the other hand, for GPU processing,
the ELL format (similar to the diagonal format) generally is more efficient, espe-
cially for structured or semi-structured graphs. For unstructured graphs, sometimes
COO or CSR is preferable given the limited GPU memory capacity. Discussions of
different data structures and their implications to GPU performance can be found
in prior research [20,22]. Figure 7 shows degree distributions of two sample graphs
for G3-Circuit and coAuthor; they represent typical characteristics of structured and
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Fig. 7 Degree distribution of two graph inputs G3-Circuit and coAuthor. The y-axis shows vertex counts
while the x-axis shows degrees. The ranges of y axes are [0, 1.2 × 106] and [0, 6 × 104] for the left and
right figures, respectively. The long tail of the coAuthor dataset is only shown up to 50 for demonstration
purpose. The largest degree is 240

unstructured graphs respectively. For G3-Circuit, most non-zero points are distrib-
uted along the diagonal of the 2-D adjacency matrix. The degree of vertices ranges
from two to five. On the other hand, for coAuthor, a majority of vertices have small
degrees, while there is a long tail with small number of vertices of large degrees. Many
real-world graphs (e.g., power-law graphs) present similar characteristics.

We develop multiple versions of GPU kernels for SpMV, min.+ and other oper-
ations to process graphs that are stored in different data structures. For example, we
apply some techniques from prior work [20,22] to improve performance of sparse-
matrix operations. Also, for min.+ and row reduction, we optimize them to take
advantage of the per-SIMD scratchpad memory (local data share in AMD GPUs) to
performparallel addition andmin operations.We also organize ELL in a column-major
layout with padding to remove memory divergence. This organization allows better
memory coalescing without load imbalance but at the cost of redundant computation.

We use min.+ as an example for result demonstration. Figure 8 reports execution
times of min.+ in CSR, COO, and ELL over a variety of graph inputs. As shown in
the figure, performance depends on different layout-input pairs. In general, the ELL
format is more SIMD-friendly than CSR and COO for GPU computation, especially
for many structured graphs (e.g., fem-3D-thermal and denaunay). For unstructured
graphs (e.g., email-eron and wiki-vote), the COO or CSR format achieves the best
performance. For coAuthor andWikipedia, the points for the ELL format are missing;
the available OpenCL buffer is not big enough to hold the working sets for these
two problems, because ELL requires much padding capacity for unstructured graphs.
This can be shown in Fig. 9 that unstructured graphs with ELL are not very efficient,
showing more DRAM reads and writes. The results are measured with the AMD
APP Profiler using hardware counters. For many problems, program execution time is
directly related to the amount of off-chipmemory traffic (the applications arememory-
bound).
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Fig. 8 Performance of the min.+ operation over different inputs and graph formats

Fig. 9 The total kilobytes read from and written to the GPU device memory for the min.+ operation

We also measure SIMD utilization (i.e., the percentage of active threads in a wave-
front) for all the layout-input combinations (see Fig. 10). In general, the ELL format
achieves 100% utilization for all the cases. All the SIMD lanes are active with cer-
tain redundant computation for the padding data. The average utilization for COO
is approximately 60%. This is due to underutilized SIMD lanes when doing parallel
reductions in the GPU local data share. The CSR format achieves an average of 43%
of SIMD utilization. The data presents large variance depending on irregularity of
graphs, ranging from 7% for Wiki-Vote to 90% for fem-3D-thermal.
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Fig. 10 SIMD utilization of different inputs and graph formats

In another experiment, wemeasure the L2 cache behavior and the three data formats
also show different characteristics. The average L2 cache hit rates are 36, 40 and 53%
for CSR, COO and ELL, respectively. For the CSR format, since threads in awavefront
may touch different lines depending on the sizes (i.e., number of nonzeros) of matrix
rows and a line may be partially used in the cache, this format tends to require more
cache misses than other formats. ELL achieves better average hit rates because it
presents better data locality for threads in a wavefront.

7.3 Impact of GPU Parameters

Though support for some primitives (e.g., vector operations) seems to be straightfor-
ward for the GPU, the performance would be suboptimal without careful implemen-
tation and performance tuning. In this study, we evaluate typical vector operations,
+ and &. The workgroup size is varied from 64 (the wavefront size for the AMD
GPU) to 256 and the amount of work done per thread is varied by performing vec-
tor operations on different data types (int, int2, int4 and int8). The total amount of
work (a 256k matrix) is fixed for different experiments. We found that the differences
between the best and worst performance points can be quite significant, with 25% for
+ and 20% for &, respectively. For example, the best-performing configurations for
these two operations are (workgroup_size, data_type) = (256, int2) and (64, int4) on an
AMDRadeon 7950. The best choice of combination is highly-architecture dependent;
therefore, functions have to be tuned for a specific GPU device [36]. However, this
is a one-time cost for library designers per implementation and per GPU. This is a
benefit of BelRed’s high-level abstraction, which relieves programmers from dealing
with hand-optimized codes.
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7.4 Convergence

A typical pattern in many graph algorithms is that it takes multiple iterations to solve a
problem. The program needs to determine when to converge using the loop condition.
For instance, Coloring and Maximal Independent Set finish processing when all the
vertices are evaluated. This is achieved by updating a global variable shared by multi-
ple GPU threads. This variable is also shared by both the CPU and theGPU and used to
determine loop termination at the end of each iteration. For Bellman–Ford, a conver-
gence kernel is added after the min.+ kernel to determine if there are newer shortest
paths updated. Algorithmically, Bellman–Ford requires N (i.e. N = no.vertices)
iterations to converge. However, many real-world graphs do not require N iterations.

8 Related Work

Combinatorial BLAS [3] is graph library offering a powerful set of linear algebra
primitives for graph analytics. Graph BLAS [5] is a recent effort of defining standard
linear-algebra building blocks for graph processing. The area of research on graph
algorithms in linear algebra is documented in the work by Kepner and Gilbert [4].
Our work is unique in that we target a practical implementation for the GPU and also
include several workloads as case studies.

Prior benchmarking efforts (e.g. the Rodinia [37], Parboil [38], and SHOC [39]
frameworks) included and evaluated only a few graph or tree-based algorithms.
Burtscher et al. [1] performed a quantitative study of irregular programs on GPUs.
Pannotia [2] is a recent work on developing and characterizing graph algorithms on
theGPU. Other works studied how to accelerate graph algorithms efficiently onGPUs.
Harish et al. [11] parallelized several graph algorithms on the GPU. Merrill et al. [12]
proposed an optimized breadth-first search implementation with scan on both single
and multiple GPU nodes. Burtscher et al. [10] presented an efficient CUDA imple-
mentation of a tree-based Barnes-Hut n-body algorithm. Other works studied GPU
acceleration for connected component labelling [40], minimum-spanning tree [13],
B+tree searches [41] and so on. All these works are problem-specific solutions. In
contrast, we propose an API and library for GPGPU graph processing.

Several researchers built libraries of parallel graph algorithms for CPUs. These
include the Parallel Boost Graph Library [42], the SNAP library [43], and the Multi-
threaded Graph Library [44]. Other works studied graph algorithms on big machine
clusters. For instance, Pregel [27] is a system to process large graphs. GraphLab
[6] uses a gather-apply-scatter model and scale graph problems to multiple nodes.
GraphChi [45] is a disk-based system for processing large graphs by breaking graphs
into small chunks and using a parallel-sliding window method. In contrast, our work
targets sparse-matrix building blocks for SIMD architectures.

9 Conclusion and Future Work

Graph applications are a set of emergingworkloads in data processing. It is important to
understand and improve their performance onGPUs and othermanycore architectures.
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Programming irregular graph algorithms tends to be a challenge for GPU program-
mers. This paper presents a library, BelRed which includes GPU implementation of
common software building blocks useful for programming graph applications. We
show that diverse graph algorithms can be constructed with these modularized func-
tions and achieve performance speedups on a GPU. We also discuss approaches to
optimize these building blocks and study performance issues and impacts related to
uses of different data structures and device-specific parameters. In addition, applica-
tions that use BelRed present good code portability across platforms. Programmers
are relieved from writing error-prone, device-specific GPU kernels. Instead, program-
mers can focus on high-level algorithm design and describe the problem with BelRed
functions.

BelRed can be integrated into existing GPU sparse-matrix libraries to enhance
their support for graph processing. It can also be treated as an intermediate interface,
translated from higher level languages and APIs. Besides taking ad-hoc approaches to
solve individual problems, research and efforts are needed for a common programming
abstraction and interface for GPU graph processing. One thing to note is that linear
algebra is a useful framework for expressing some graph algorithms, but not all. For
example, a heavy-weight maximal matching is simple to compute in parallel using
greedy methods but resists expression through sparse-matrix products. Users may
need to choose the best solution appropriate for their problems.

General sparse matrix-sparse matrix multiplication SpGEMM [46] is another
important building block we plan to include. Tomake sparse-matrix and sparse-matrix
multiplication performwell on theGPU requires significant effort of optimizations and
is a hot topic of research. This routine is useful for building various graph applications
such as triangle counting and enumeration [47], K-Truss, and Jaccard coefficient [48]
which can be used for social-network analysis. In the meantime, these applications
can take advantage of the existing routines (e.g., element-wise and vector operations)
we developed.

Future directions include adding support formore functions (e.g., sub-matrix extrac-
tion and assignment), evaluating them using more graph applications (e.g., social
network), supporting more graph formats and data structures, optimizing BelRed for
different platforms (e.g., APUs, GPUs and other types of architectures) and studying
its extension to multiple machine nodes.
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