
Int J Parallel Prog (2017) 45:595–611
DOI 10.1007/s10766-016-0434-5

Scalable Loop Self-Scheduling Schemes for Large-Scale
Clusters and Cloud Systems

Yiming Han1 · Anthony T. Chronopoulos1

Received: 28 June 2015 / Accepted: 26 April 2016 / Published online: 11 May 2016
© Springer Science+Business Media New York 2016

Abstract Cloud systems have demonstrated the powerful computation and storage
capability in many scientific applications. In this paper, we propose a class of scalable
distributed loop self-scheduling schemes to achieve good load balancing and scalabil-
ity. We implemented these schemes on a large-scale cluster and on a heterogeneous
cloud system. The schemes consider the distribution of the output data, which can help
reduce communication overhead and improve scalability. We evaluated the schemes
using four scientific computations: Mandelbrot set, adjoint convolution, matrix mul-
tiplication and quick sort. The results show that the new schemes achieve better load
balancing, better scalability and better overall performance than standard distributed
loop self-scheduling schemes.

Keywords Self-scheduling · Distributed · Hierarchical · Scalable · Cloud system

1 Introduction

Scientific loops are usually computation-intensive which may take a long execution
time. Distributed systems, such as cluster, grid and cloud, are widely used in many
scientific loops. Thus, scientific loop parallelization, which schedules and assigns
work to processors/workers, becomes an important issue. One of the difficult problems
is load balancing. Efficient loop scheduling schemes can improve the utilization of
resources and minimize the total execution time. Loop scheduling can be categorized
into static and dynamic. Static scheduling schemes determine the task allocation to
the processors prior to the execution of the application loop. It has lower scheduling

B Anthony T. Chronopoulos
Anthony.Chronopoulos@utsa.edu

1 Department of Computer Science, University of Texas at San Antonio, San Antonio, TX, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-016-0434-5&domain=pdf


596 Int J Parallel Prog (2017) 45:595–611

overhead, but suffers from load imbalance. Dynamic scheduling (or self-scheduling)
is an automatic loop scheduling method in which idle processors request new loop
iterations to be assigned to themduring run time (the execution of the application). This
approach has better load balancing with less scheduling overhead, which is popular
in work distribution on distributed systems.

Cloud computing is emerging as a powerful technology to meet the requirements
for high-performance computing and massive storage. It provides scalable, flexible,
reliable and on demand computing and storage resources over a network. Many scien-
tific computation-intensive and data-intensive applications are accomplished on cloud
systems [1,2].A cloud systemcould be considered as a dynamic heterogeneous distrib-
uted system.A cloud systemmay also provide a homogeneous computing environment
at the start. However, it may be upgraded and replaced to exhibit more heterogeneity
[3]. The availability and performance of virtual machines can change over time. Also a
cloud system is transparent to cloud users, whichmeans cloud users still perceive it as a
homogeneous environment. Thus, it is likely to create load imbalance if we ignore the
heterogeneity. Previous research reported some schemes on a heterogeneous cluster
and grid systems. Also, [4] tested a distributed scheme for cloud systems.

In general, three aspects must be considered in scientific loops self-scheduling
schemes on distributed systems: load imbalance, communication and synchronization
overhead. In distributed computing environments, the communication often becomes
the bottleneck. The reasons are: the computing nodes may be located on the same
rack, may be part of the same cluster sharing a common LAN, or may be on separate
clusters communicating through a slow network [5].

Many modern high performance computing platforms, such as clusters grids and
clouds, can be scaled to thousands of parallel processors, servers and workstations.
Thus, scalability becomes an important issuewhich should be taken into consideration.
In the static scheduling of high performance computing application programs extra
resources may be allocated which can cause load imbalance and low speedup. This is
especially true for some nested loops when executed on large-scale clusters. Previous
research, has developed some loop scheduling schemes to get good performance and
load balancing for small-scale clusters with multi-core processors. A scalable two
Masters model with small number of workers on a small size application is proposed
in [4].

In this paper, we propose a hierarchical distributed loop self-scheduling scheme.
We implemented this scheme on a homogeneous large-scale cluster and on a heteroge-
neous cloud system. The hierarchical scheme is based on a supermaster/master/worker
model which can reduce the communication overhead and synchronization overhead.
Preliminary results have been published in [6,7]. We implemented these schemes
on a large-scale cluster of Texas Advanced Computing Center, University of Texas
at Austin. We also implemented these schemes on a Joyent Cloud system [8]. Our
experiments validate the scalability and the better overall improved performance of
the proposed schemes.

The rest of the paper is organized as follows. In Sect. 2, we present the related work.
In Sect. 3, we review simple loop self-scheduling schemes. In Sect. 4, we describe
the hierarchical distributed schemes. In Sects. 5 and 6, experiments and results are
presented. Section 7 contains conclusions and future work.

123



Int J Parallel Prog (2017) 45:595–611 597

2 Related Work

Previous research [9–12] (and references therein) proposed some well-known loop
scheduling schemes to assign varying task chunks to each processor. These loop
scheduling schemes can be categorized into static and dynamic. Static scheduling
schemes determine the task allocation to the processors prior to the execution of the
application. Dynamic scheduling (or self-scheduling) is an automatic loop scheduling
method in which idle processors request new tasks to be assigned to them during run
time of the execution of the application. An adaptive chunk self-scheduling scheme
is proposed (in [13]) to reduce the scheduling overhead. In [14,15], the authors have
proposed new improved self-scheduling schemes named NGSS and ANGSS that are
well-suited for grids. A two-phase scheme is proposed to solve parallel regular loop
scheduling problem in heterogeneous grid computing environments in [16]. In [17–
19] new results are presented for loops with dependencies. Recent research results
[20,21] have been reported for designing loop self-scheduling methods for grids. In
[10,22,23], the heterogeneity of different cluster systems was considered, in order to
get better load balancing. Multi-dimensional loop scheduling schemes were studied
in [24,25].

Presently, cloud computing platforms are growing in popularity. They provide scal-
able, flexible, reliable and on-demand computing and storage resources over a network.
There are some commercial cloud providers, such as Amazon EC2, Microsoft Azure,
Salesforce Service Cloud and Google Cloud. Some open source cloud projects for
research and development also exist, for example, OpenStack, Eucalyptus, Cloud-
Stack and Ganeti [26] and references there in. There is also much ongoing research
for cloud systems. Energy consumption of large scale data centers cloud systems has
become a prominent problem and receives much attention. A hierarchical scheduling
algorithm for applications, to minimize the energy consumption of both servers and
network devices is proposed in [27]. Cloud computing can be used for solving some
computational intensive jobs in high performance computing research area. Clouds are
becoming an alternative to clusters, grids, and parallel production environments for
scientific computing applications [28–30]. However, virtualization and resource time-
sharingmay introduce performance overheads for the demanding scientific computing
workloads. The performance of cloud computing services for scientific computing
workloads is studied in [28]

For high performance computing applications, we can use cloud to virtualize clus-
ters on cloud systems. These virtual machines can share the same physical hardware or
different physical hardware with various system load and user load and cloud system
use a fair-share balancing algorithm that gives equal time to each virtual machine.
However, because of limited resources, the virtualized cluster is not private and the
resources are shared by many users, which means the virtualized cluster may act
as a heterogeneous computing environment at running time. Thus, the heterogeneity
should be taken into account to improve resource utilization and reduce load imbal-
ance.MapReduce [31] is a general concurrent programming framework for scheduling
job-tasks on cloud systems. Previous research [29,30] reported that the performance
on virtual machines is lower than the physical system. They analyzed message passing

123



598 Int J Parallel Prog (2017) 45:595–611

(MPI) parallel applications on different cloud systems and reported that communica-
tion overhead is a substantial slowdown factor for cloud systems.

3 Loop Self-Scheduling Schemes for Distributed Systems

Load balancing in distributed systems is a very important factor in achieving near
optimal execution time. To obtain load balancing, loop scheduling schemes must take
into account the processing speeds of the workers or processors forming the system.
The processors’ speeds are not precise, since memory, cache structure and even the
program type may affect the performance of processors. However, one could run
experiments to obtain estimates of the throughputs and one could show that these
schemes are quite effective in practice.

We present the distributed versions Distributed Factoring Self-Scheduling Scheme
(DFSS), Distributed Guided Self-Scheduling Scheme (DGSS) , Distributed Trapezoid
Self-Scheduling Scheme (DTSS) of the following well known scheduling schemes
Factoring (FSS), Guided (GSS) and Trapezoid (TSS) (see [10]). A distributed scheme
is obtained by modifying the chunk allocation mechanism of a standard scheme in
order to take into account the computing speed of each worker in the system. The
distributed algorithms work use the same allocation mechanism as the corresponding
simple schemes (i.e.FSS, GSS, TSS) but are designed to take into account the variable
computing speeds of the computers or nodes of the cluster system.At first we introduce
some notation and terminology that will be used in the rest of the paper.

3.1 Terminology

At first, we present the notation for the simple schemes (i.e.FSS, GSS,TSS).

• I is the total number of iterations or tasks of a parallel loop;
• p is the number of workers (i.e. processors) in the parallel or distributed system
which execute the computational tasks;

• P1, P2,…, Pp represent the p workers in the system;
• A few consecutive iterations are called a chunk. Ci is the chunk-size at the i-th
scheduling step (where: i = 1, 2, . . .);

• N is the number of scheduling steps;
• t j , j = 1, . . . , p, is the execution time of Pj to complete all its tasks assigned to
it by the scheduling scheme;

• Tp = max j=1,...,p (t j ), is the parallel execution time of the loop on all p workers;

In a generic self-scheduling scheme, at the i-th scheduling step, themaster computes
the chunk-size Ci and the remaining number of tasks Ri :

R0 = I, Ci = f (Ri−1, p), Ri = Ri−1 − Ci (1)

where f (., .) is a function possibly of more inputs than just Ri−1 and p. Then the
master assigns to a worker processor Ci tasks. For the simple schemes FSS, GSS,TSS
the function “f” can be found in [10]. The same function “f” is used in the distributed

123



Int J Parallel Prog (2017) 45:595–611 599

schemes DFSS, DGSS,DTSS but the workers variable computing speeds are used. We
next show how this is done.

• Vj = Speed(Pj )/min1≤i≤p{Speed(Pi )}, j = 1, . . . , p, is the virtual power of
Pj (computed by the master), where Speed(Pj ) is the processing speed of Pj . That
is a standardized computing power in the current cluster.

• V = ∑p
j=1 Vj is the total virtual computing power of the cluster.

• DC is the distributed chunk size for one worker request, in a single scheduling
step of distributed self-scheduling scheme.

3.2 Algorithm

We next present the distributed algorithm that takes into account the virtual computing
power of the workers.
Master:

(1) Compute Vj for each worker
(a) Receive Speed(Pj );
(b) Compute all Vj ;
(c) Send all Vj ;

(2) Assign work and get the results
(a) While there are unassigned tasks, if a request arrives, put it in the Request

Queue.
(b) Pick a request from the queue and get its virtual power Vj . If there are computed

results in this request, Result Collector receives themfirst. ThenTaskScheduler
compute the next chunk size DC to assign. The followings are theDTSS,DFSS
and DGSS algorithms to compute the next chunk DC :

DTSS:
Current is chunk size in the current step of TSS.

Initialization: F = ⌊ I
2V

⌋
, L = 1, N =

⌈
2∗I

(F+L)

⌉
,

D =
⌊

(F−L)
(N−1)

⌋
,Current = F

Algorithm 1 Calculate DC
DC = 0;
for k = 1 → Vj do

DC = DC + Current ;
Current = Current − D;

end for
return DC ;

DFSS:
DCsum is the assigned work in the current stage.
Initialization: R = I, α = 2.0, DCsum = 0

123



600 Int J Parallel Prog (2017) 45:595–611

Algorithm 2 Calculate DC
DC = �R/(αV )� ∗ Vj ;
DCsum = DCsum + DC ;
if (Master has assigned all the work in the current stage) then

{ Goto next stage and update the remaining work. }
R = R − DCsum ;
DCsum = 0;

end if
return DC ;

DGSS:
Initialization: R = I

Algorithm 3 Calculate DC
DC = �R/(A)� ∗ Vj ;
R = R − DC ;
return DC ;

Worker :

(1) Send Speed(Pj );
(2) Send a request;
(3) Wait for a reply;

IF (There is unassigned work)
{

Compute the new work;
Return the results and send another request;
Go back to (2);

}
ELSE

Terminate;

4 Hierarchical Distributed Self-Scheduling Schemes

Whenconsidering a scheduling schemeusing theMaster–Workermodel for concurrent
computing, several issues must be considered: the load balancing, the communication
and synchronization overhead.

All the policies, where a single node (the master) is in charge with the work distrib-
ution and collecting the results, may cause degradation in performance as the problem
size increases. This means that for a large size problem (and for a large number of
processors) the master could become a bottleneck. There are two major kinds of over-
heads in simple Master–Worker architectures. The first one is: if workers send back
the computed results, it may take a long time to gather the computed results. The
communication overhead is expensive in a distributed memory system, where long
communication latency can be encountered. Another kind of overhead occurs when

123



Int J Parallel Prog (2017) 45:595–611 601

Fig. 1 Hierarchical architecture

many workers send work requests at the same time and only one worker can be served
from the request queue and the others have to wait. This is time consuming, especially
in the case of a single request queue, when the task scheduler is slow or the scheduling
schemes are complicated.

It is known that distributed policies usually do not perform as well as the simple
Master-Worker policies (i.e. using a single master), for small problem sizes and small
number ofworkers. This is because the algorithmand the implementation of distributed
schemes usually add a non-trivial overhead.

We consider a logical hierarchical architecture as a goodmodel for scalable systems
and we propose a new hierarchical approach for addressing the bottleneck problems
in the Master-Worker schemes.

Instead of making one master process responsible for all the workload distribution,
several master processes are introduced. Thus, the hierarchical structure contains a
lower level, consisting of worker processes, and several superior levels, of master
processes. On top, the hierarchy has an overall supermaster. The workers’ role is
to perform the computations following a Master-Worker self-scheduling method for
the problem that is to be solved. This scheme is called a Hierarchical Distributed
Scheme.

Figure 1 shows this design for two levels of master processes, one supermaster and
twomaster nodes. The task scheduler resides in the supermaster and it uses distributed
scheduling schemes (DTSS/DFSS/DGSS) [4] to compute small scheduled chunks
for each master node and send to master nodes’ Task Pools. When the Task Pool
of a master node is empty, it asks for more work (from the supermaster) in order
to fill the Task Pool until there is no more work. The master node accepts a worker
request, places it into the request queue and gets a scheduled chunk from the Task
Pool and serves the top request from Request Queue. Also, the master node is in
charge of gathering the computed results from workers. There are multiple Request
Queues and Result Collectors distributed in different master nodes, which can share
the responsibilities.

123



602 Int J Parallel Prog (2017) 45:595–611

The hierarchical distributed scheduling scheme is described as follows:

• Vj = Speed(Pj )/min1≤i≤p{Speed(Pi )}, j = 1, . . . , p, is the virtual power of
Pj (computed by the master), where Speed(Pj ) is the processing speed of Pj . That
is a standardized computing power in the current cluster.

• V = ∑p
j=1 Vj is the total virtual computing power of the cluster.

Supermaster:

(1) Compute Vj for each Worker
(a) Receive Workers’ Speed(Pj ) from Masters;
(b) Compute all Vj ;

(2) Assign work to Masters
(a) While there are unassigned tasks, if aMaster request arrives, put it in the queue;
(b) Pick a request from the queue and get the Workers virtual power Vj under

the requesting Master. Using distributed self-scheduling schemes (i.e. DTSS,
DFSS and DGSS), compute small scheduled chunks for each Worker under
the requesting Master.

Master:

(1) Compute Vj for each Worker
(a) Receive Speed(Pj ) from its Workers;
(b) Send these Speed(Pj ) to Super Master;

(2) Send work request work to Super Master;
(3) Assign work to Workers;

(a) If there are unassigned tasks, if aWorker request arrives, put it into the Request
Queue. Pick a request from the Request Queue, Result Collector receives com-
puting results first. Then get a chunk from Task Pool and send this chunk to
requesting worker;

(b) If there are not unassigned tasks, request more work to Supermaster;
(c) If there is no work left, go back to (2);

Worker :

(1) Send Speed(Pj ) to its Master;
(2) Send a request to its Master.
(3) Wait for a reply;

IF (There is unassigned work)
{

Compute the new work;
Return the results and send another request;
Go back to (2);

}
ELSE

Terminate;

123



Int J Parallel Prog (2017) 45:595–611 603

5 Description of the Large-Scale Cluster and Cloud System platforms

5.1 Large Scale Cluster

We used as our platform the Ranger supercomputer cluster system located at TACC
(Texas Advanced Computing Center) in University of Texas at Austin. The cluster
nodes’ Operating System is Linux and the nodes are managed by Rocks 4.1 cluster
toolkit. Each node has four AMD Opteron Quad-Core 64-bit processors and 16 cores
total. The memory limit is 32GB per node. The nodes are interconnected by Infini-
Band technology in a full-CLOS topology which provides a 1GB/sec point to point
bandwidth.

5.2 Cloud Environment Platform

We used FlexCloud of Joyent corporation [8] located at Institute for Cyber Secu-
rity(ICS) at University of Texas at San Antonio. The ICS FlexCloud is one of the first
dedicated Cloud Computing academic research environments. It offers significant
capacity and similar design features found in Cloud Computing providers, includ-
ing robust compute capability and elastic infrastructure design. FlexCloud currently
includes the following hardware components:

• 5 Racks of Dell R410, R610, R710, and R910s consisting of 748 processing cores,
3.44TB of RAM, and 144TB of total storage.

• Redundant 10GBnetwork connectivity provides high performance access between
all nodes. TheNetwork Switch is aDell Switch and it is connected via aHigh Speed
(greater than 1GB/s) Fiber Optic link to the Main ICS Juniper (MX-80) Router.

• The FlexCloud is powered by Joyent SmartDataCenter [8], which provides the
highest performance virtualization and analytics. The Joyent SmartOS includes
the following features:
– Joyent uses theHPCmodel ofmanagement: one headnode PXE boots compute
nodes

– SmartOS is a RAM disk based image (nothing stored on disk) which makes it
very easy to upgrade head node and compute nodes

– SmartOS uses the disks on the local nodes to back the SmartMachines and
Virtual Machines using ZFS

– SmartOS has DTrace which allows for monitoring all VMswith little overhead
for maximum observability

– SmartOS has the best multitenant defenses to prevent one tenant from affecting
others on the box

We use five different physical machines on FlexCloud. We created 16 VMs on each
physicalmachine sharing the sameLAN. EachVMcorresponds to a separate core. The
purpose is to show the network heterogeneity in the experiment. The communication
overhead between VMs in the same physical machine (intra-node shared memory
communication) is lower than in different physical machines (inter-node distributed
memory communication). For 64 workers using 4 masters hierarchical distributed

123



604 Int J Parallel Prog (2017) 45:595–611

scheme, each master has 16 workers. Master VM and its 15 worker VMs are in the
same physical machine and the other worker VM is in another physical machine.
Most of the communication for the work distribution and the results collection is
intra-node shared memory communication, instead of communication across nodes.
The result collection communication work is distributed in masters, instead of in a
single master node by standard scheme. Each VM is loaded with Ubuntu Linux 12.04
image. Stress [32], a work generator, is used to create a heterogeneous computing
environment. Stress is a deliberately simple workload generator. Stress was developed
by University of Oklahoma. It imposes a configurable amount of CPU, memory, I/O,
and disk stress on the system.

Eachworker can get work proportional to its available computing power. The super-
master VM resides on the 6th physical machine from the masters and workers. This
machine has a largememory andwe used no ’Stress’ load becausewewant tominimize
the scheduling overhead.

6 Experimental Results

In this section, we compare the performance of the distributed loop self-scheduling
schemes using a single master versus the same schemes using the hierarchical model
approach. We present the results for the large scale cluster and the cloud system in
separate subsections.

6.1 Large Scale Cluster

In this section, we compare the performance of the various schemes, non-hierarchical
(single master) and hierarchical (2 masters, 4 masters, 8 masters, 16 masters) and with
a number of workers (processors) from 256 to 8,192.

We use the following two applications in this implementation [7]. The outer loops
in these applications are partitioned using scheduling and the tasks are assigned to
workers. The output results are collected by the masters and can be stored in the file
system.

(1) The Mandelbrot set: It is a doubly nested loop without dependencies. The com-
putation of one column of the Mandelbrot matrix is considered the smallest
schedulable unit. The Mandelbrot set loop is an irregular loop in terms of unpre-
dictable iteration task sizes. Thus this kind of loop causes load imbalance in the
parallel computation. The following loops are used for computing theMandelbrot
set. The Mandelbrot set computation domain is [−2.0, 2.0] × [−2.0, 2.0] and its
size is 200K × 200K.

(2) Adjoint convolution: This application involves computation of decreasing task
sizes. Thus, it can cause load imbalance in the parallel computation. The adjoint
convolution has a size of 800 × 800 and the arrays are generated randomly.

Unlike TSS, the FSS andGSS, are known to have a number of their (last) scheduling
steps of chunk size = 1 ([25]). This number of steps equals the number of workers,
which is considerable for massive number of workers. So, HDFSS and HDGSS are

123



Int J Parallel Prog (2017) 45:595–611 605

 0

 50

 100

 150

 200

 250

256 512 1024 2048 4096 8192

tim
e 

(s
ec

on
ds

)

processors

non hirerachical
2 Masters
4 Masters
8 Masters

16 Masters

 0

 50

 100

 150

 200

 250

256 512 1024 2048 4096 8192

tim
e 

(s
ec

on
ds

)

processors

non hirerachical
2 Masters
4 Masters
8 Masters

16 Masters

 0

 50

 100

 150

 200

 250

256 512 1024 2048 4096 8192

tim
e 

(s
ec

on
ds

)

processors

non hirerachical
2 Masters
4 Masters
8 Masters

16 Masters

(a) (b) (c)

Fig. 2 The performance of Mandelbrot set using hierarchical distributed schemes. a HDTSS, b HDFSS, c
HDGSS

 0
 100
 200
 300
 400
 500
 600
 700
 800

256 512 1024 2048 4096 8192

tim
e 

(s
ec

on
ds

)

processors

non hirerachical
2 Masters
4 Masters
8 Masters

16 Masters

 0
 100
 200
 300
 400
 500
 600
 700
 800

256 512 1024 2048 4096 8192

tim
e 

(s
ec

on
ds

)

processors

non hirerachical
2 Masters
4 Masters
8 Masters

16 Masters

 0
 100
 200
 300
 400
 500
 600
 700
 800

256 512 1024 2048 4096 8192

tim
e 

(s
ec

on
ds

)

processors

non hirerachical
2 Masters
4 Masters
8 Masters

16 Masters

(a) (b) (c)

Fig. 3 Theperformance of adjoint convolution using hierarchical distributed schemes.aHDTSS,bHDFSS,
c HDGSS

expected to have similar behavior. In order to avoid this unnecessary synchronization
overhead we chose a threshold (>1) for all the methods. We did not try to optimize
the selection of threshold. In our experiment, the threshold equals 5, which means the
master can not assign a chunk with size <5, except possibly the last chunk.

We test the HDTSS, HDFSS andHDGSS schemes discussed in Sect. 4. All workers
are treated (by the schemes) as having the same computing power. The execution time
is measured in seconds.

The performance plots presented in Figs. 2 and 3 are organized from left to right in
doubling numbers of workers using HDTSS, HDFSS, HDGSS schemes for Mandel-
brot set and adjoint convolution. It can be observed that the hierarchical distributed
scheme with more master nodes can achieve better performance improvement. The
2-Masters’ model scales well upto 512 workers, however past this point the execution
time does not decrease as the number of workers increases. The 16-Masters shows the
best scalability because when the number of workers doubles, the execution time is
halved. For small number of workers (e.g. 256, 512 in Fig. 2a–c) all the hierarchical
schemes (HDTSS, HDFSS, HDGSS) have a small discrepancy in the performance
between the 4,8 or 16 Masters. For example, one can observe that in the case of 256
workers (Fig. 2a–c) the 2 Masters is the best. This is expected due to the overhead
of the hierarchical schemes. The fact that the loop tasks have irregular computational
cost makes the discrepancy to appear sometimes. However, once the overhead is over-
come the hierarchical schemes show their potential. The load balancing issue can
be solved by the original self-scheduling schemes (TSS, FSS and GSS), which have
been demonstrated to be effective scheduling schemes in both shared memory systems
and distributed memory systems. In our experiments, the performance of HDFSS and

123



606 Int J Parallel Prog (2017) 45:595–611

 0

 50

 100

 150

 200

 250

256 512 1024 2048 4096 8192

tim
e 

(s
ec

on
ds

)

processors

non hirerachical
2 Masters
4 Masters
8 Masters

16 Masters

 0

 50

 100

 150

 200

 250

256 512 1024 2048 4096 8192

tim
e 

(s
ec

on
ds

)

processors

non hirerachical
2 Masters
4 Masters
8 Masters

16 Masters

 0

 50

 100

 150

 200

 250

256 512 1024 2048 4096 8192

tim
e 

(s
ec

on
ds

)

processors

non hirerachical
2 Masters
4 Masters
8 Masters

16 Masters

(a) (b) (c)

Fig. 4 The non-overlapped communication and synchronization overhead T
′
overhead of Mandelbrot set. a

HDTSS, b HDFSS, c HDGSS

 0
 100
 200
 300
 400
 500
 600
 700
 800

256 512 1024 2048 4096 8192

tim
e 

(s
ec

on
ds

)

processors

non hirerachical
2 Masters
4 Masters
8 Masters

16 Masters

 0
 100
 200
 300
 400
 500
 600
 700
 800

256 512 1024 2048 4096 8192

tim
e 

(s
ec

on
ds

)

processors

non hirerachical
2 Masters
4 Masters
8 Masters

16 Masters

 0
 100
 200
 300
 400
 500
 600
 700
 800

256 512 1024 2048 4096 8192

tim
e 

(s
ec

on
ds

)

processors

non hirerachical
2 Masters
4 Masters
8 Masters

16 Masters

(a) (b) (c)

Fig. 5 The non-overlapped communication and synchronization overhead T
′
overhead of adjoint convolu-

tion. a HDTSS, b HDFSS, c HDGSS

HDGSS are a little better than HDTSS because HDFSS and HDGSS may generate
more small chunks at the end to balance the workload across the computation. These
two schemes introduce more synchronization problems (i.e. more chunks and more
work requests). However, hierarchical distributed schemes have distributed queues
and these synchronization points take really little time, which can lead to good load
balancing.

In Figs. 4 and 5, we show the non-overlapped communication and synchroniza-
tion overhead (T

′
overhead ) with increasing number of workers, T

′
overhead = Ttotal −

Tcomputation . In our experiments, there are some overlapping between computation
and communication for efficient computing. The computation time can be measured
exactly but the total communicationoverhead is difficult to capture. SoweuseT

′
overhead

to represent the sum of non-overlapped communication and synchronization overhead.
In our results, when more masters are used, T

′
overhead are smaller. The 16-masters’

model has the best performance for our results, because it has more result collectors
and distributed task queues residing on master nodes. This helps to reduce the syn-
chronization overhead and especially the communication overhead, which may be the
slowest part for large problems in distributed memory systems.

Figures 6 and 7 shows the speedup of the three hierarchical distributed schemes for
Mandelbrot set and adjoint convolution. The x-axis represents log2(p). The speedup

is computed by Sp = T̂1
Tp
, T̂1 is the execution time for the non hierarchical distributed

scheme with 256 workers, where Tp is the execution time with p workers. It can
be observed that as the number of workers increases, the 16-masters’ hierarchical
distributed scheme scales well upto 8,192 workers. The non hierarchical distributed
scheme’s scalability is the worst.

123



Int J Parallel Prog (2017) 45:595–611 607

 0
 2
 4
 6
 8

 10
 12

sp
ee

du
p

non hirerachical
2 Masters
4 Masters
8 Masters

16 Masters

 0
 2
 4
 6
 8

 10
 12

sp
ee

du
p

non hirerachical
2 Masters
4 Masters
8 Masters

16 Masters

 0
 2
 4
 6
 8

 10
 12

sp
ee

du
p

non hirerachical
2 Masters
4 Masters
8 Masters

16 Masters

log
2 (256)

log
2 (512)

log
2 (1024)

log
2 (2048)

log
2 (4096)

log
2 (8192)

log2(processors)

log
2 (256)

log
2 (512)

log
2 (1024)

log
2 (2048)

log
2 (4096)

log
2 (8192)

log2(processors)

log
2 (256)

log
2 (512)

log
2 (1024)

log
2 (2048)

log
2 (4096)

log
2 (8192)

log2(processors)

(a) (b) (c)

Fig. 6 The speedup of Mandelbrot set using hierarchical distributed schemes. a HDTSS, b HDFSS, c
HDGSS

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

log
2 (256)

log
2 (512)

log
2 (1024)

log
2 (2048)

log
2 (4096)

log
2 (8192)

sp
ee

du
p

log2(processors)

log
2 (256)

log
2 (512)

log
2 (1024)

log
2 (2048)

log
2 (4096)

log
2 (8192)

log2(processors)

log
2 (256)

log
2 (512)

log
2 (1024)

log
2 (2048)

log
2 (4096)

log
2 (8192)

log2(processors)

non hirerachical
2 Masters
4 Masters
8 Masters

16 Masters

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

sp
ee

du
p

non hirerachical
2 Masters
4 Masters
8 Masters

16 Masters

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

sp
ee

du
p

non hirerachical
2 Masters
4 Masters
8 Masters

16 Masters

(a) (b) (c)

Fig. 7 The speedup of adjoint convolution using hierarchical distributed schemes. a HDTSS, b HDFSS, c
HDGSS

6.2 Cloud System

The following loop scheduling schemes are implemented. distributed schemes: DTSS,
DFSS, DGSS; hierarchical distributed schemes: HDTSS, HDFSS, HDGSS. All the
schemes are implemented by C++ and MPI. All timings are in seconds.

Two applications, quick sort and matrix multiplication are used to evaluate the
overall performance. The quick sort problem consists of sorting N = 20, 000 rows of
random arrays (each array is of size N = 20K). For the matrix multiplication problem
the dimension of the matrices are N = 15, 000. The computations serial complexity
is O(NlogN ) (on average)and O(N 3) respectively.

We next analyze the total execution time in terms of the master time, the com-
munication time and overhead time. Let Tmaster denote the total execution time of
a master, which means that the workers managed by this master have finished all
the work assigned to them and the results have been returned to the master. We note
that, Texec = max{Tmaster1, Tmaster2 , . . . , Tmasterm } + T

′
, where Texec denotes the

total execution time (measured by the supermaster) for m masters hierarchical dis-
tributed scheme and where T

′
is the time for scheduling, work distribution, start

up and termination overheads in the supermaster. We note that we measure directly
Texec and Tmasteri for i = 1, . . . ,m. Thus, Tmaster represents most of the work
execution time in the experiment, because the scheduling overhead in the super-
master is low. Thus, the load balancing depends on both computation in workers
and the communication time to return the results to the masters. We use the max-
imum master times difference, Tdi f f = max{Tmaster1, Tmaster2 , . . . , Tmasterm } −
min{Tmaster1, Tmaster2 , . . . , Tmasterm }, to measure the work load balancing in the
experiment. If Tdi f f is small, the major work is distributed evenly and the uti-

123



608 Int J Parallel Prog (2017) 45:595–611

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

16 32 64

tim
e 

(s
ec

on
ds

)

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

tim
e 

(s
ec

on
ds

)

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

tim
e 

(s
ec

on
ds

)

processors

DTSS
HDTSS with 2 Masters
HDTSS with 4 Masters

16 32 64
processors

DFSS
HDFSS with 2 Masters
HDFSS with 4 Masters

16 32 64
processors

DGSS
HDGSS with 2 Masters
HDGSS with 4 Masters

(a) (b) (c)

Fig. 8 Themaximum difference in masters execution time for quick sort using non-hierarchical distributed
and hierarchical distributed schemes. a DTSS and HDTSS, b DFSS and HDFSS, c DGSS and HDGSS

 0

 200

 400

 600

 800

 1000

 1200

16 32 64

tim
e 

(s
ec

on
ds

)

processors

DTSS
HDTSS with 2 Masters
HDTSS with 4 Masters

 0

 200

 400

 600

 800

 1000

 1200

16 32 64

tim
e 

(s
ec

on
ds

)

processors

DFSS
HDFSS with 2 Masters
HDFSS with 4 Masters

 0

 200

 400

 600

 800

 1000

 1200

16 32 64

tim
e 

(s
ec

on
ds

)

processors

DGSS
HDGSS with 2 Masters
HDGSS with 4 Masters

(a) (b) (c)

Fig. 9 Themaximum difference in masters execution time for matrix multiplication using non-hierarchical
distributed and hierarchical distributed schemes. a DTSS and HDTSS, b DFSS and HDFSS, c DGSS and
HDGSS

 0

 5

 10

 15

 20

1 16 32 64

sp
ee

du
p

processors

DTSS
HDTSS with 2 Masters
HDTSS with 4 Masters

 0

 5

 10

 15

 20

1 16 32 64

sp
ee

du
p

processors

DFSS
HDFSS with 2 Masters
HDFSS with 4 Masters

 0

 5

 10

 15

 20

1 16 32 64

sp
ee

du
p

processors

DGSS
HDGSS with 2 Masters
HDGSS with 4 Masters

(a) (b) (c)

Fig. 10 The speedup for quick sort using non-hierarchical distributed and hierarchical distributed schemes.
a DTSS and HDTSS, b DFSS and HDFSS, c DGSS and HDGSS

lization is better. Figures 8 and 9 present the Tdi f f for non-hierarchical distrib-
uted schemes (DTSS, DFSS, DGSS) and hierarchical distributed schemes(HDTSS,
HDFSS, HDGSS). For non-hierarchical distributed schemes, Tdi f f is the same as
Tmaster . It can be observed that the differences in the case of non-hierarchical distrib-
uted schemes are quite substantial. The work is centralized using the single master and
the communication and synchronization overhead is high. On the other hand, in the
case of hierarchical distributed schemes, the results collection is distributed among
several masters. Thus Tdi f f is small and the work load is more balanced.

Figures 10 and 11 present the speedup comparison between non-hierarchical dis-
tributed schemes schemes and hierarchical distributed schemes with 1, 16, 32 and

64 workers. The speedup is computed by Sp = T̂1
Tp
, T̂1 is the execution time for non-

hierarchical distributedDTSSwith 1worker. It can be observed that all the speedups of

123



Int J Parallel Prog (2017) 45:595–611 609

 0

 5

 10

 15

 20

1 16 32 64

sp
ee

du
p

processors

DTSS
HDTSS with 2 Masters
HDTSS with 4 Masters

 0

 5

 10

 15

 20

1 16 32 64

sp
ee

du
p

processors

DFSS
HDFSS with 2 Masters
HDFSS with 4 Masters

 0

 5

 10

 15

 20

1 16 32 64

sp
ee

du
p

processors

DGSS
HDGSS with 2 Masters
HDGSS with 4 Masters

(a) (b) (c)

Fig. 11 The speedup for matrix multiplication using non-hierarchical distributed and hierarchical distrib-
uted schemes. a DTSS and HDTSS, b DFSS and HDFSS, c DGSS and HDGSS

 0

 100

 200

 300

 400

 500

 600

 700

light medium heavy

tim
e 

(s
ec

on
ds

)

loads

DTSS
HDTSS with 2 Masters
HDTSS with 4 Masters

 0

 200

 400

 600

 800

 1000

 1200

light medium heavy

tim
e 

(s
ec

on
ds

)

loads

DTSS
HDTSS with 2 Masters
HDTSS with 4 Masters

(a) (b)

Fig. 12 The performance of hierarchical versus distributed schemes under varying loads. a QuickSort, b
MatrixMultiply

hierarchical distributed schemes are better than non-hierarchical distributed schemes’
with 1, 16, 32 and 64 workers for both applications. Also, as the number of workers
increases, the speedup of hierarchical distributed schemes improves which shows that
the schemes are scalable.

Figure 12 shows the results of testing the distributed versus the hiearchical schemes
under varying loads of theVMs on the cloud platform.We chose theDTSS andHDTSS
scheduling scheme for this test. We ran the Matrix multiply and the quick sort prob-
lems on 32 VMs. We tried three load factors representing (light, medium and heavy)
loads. This was implemented using the Stress software [32]. We observe that the time
measurements are significantly lower for HDTSS with 4 masters compared to DTSS
in both problems. We expect this difference to increase in favor of all the hierachical
schemes (vs the non-hierarchical) for larger number of VMs for all problems.

7 Conclusion and Future Work

In this paper, we proposed a hierarchical distributed model for self-scheduling
schemes. We implemented the new schemes on a homogeneous large-scale cluster
and on a heterogeneous cloud environment. Our experiments validate the scalability
and the better overall performance of the hierarchical schemes. MapReduce is a pro-
gramming model which offers an alternative to MPI implementation of many data

123



610 Int J Parallel Prog (2017) 45:595–611

parallel applications. In the future, we plan to implement our schemes in MapReduce
and compare toMPI for scientific loops. In the future,we plan to test ourmethodologies
using large scale benchmarks and also using loops with dependencies.

Acknowledgements Theauthors acknowledge: (1) support byNSFgrant (HRD-0932339) to theUniversity
of Texas at San Antonio; and (2) time grants to access the facilities of Institute for Cyber Security(ICS)
of University of Texas at San Antonio and FutureGrid at Indiana University, Bloomington; (3) the Texas
AdvancedComputingCenter (TACC) at TheUniversity of Texas at Austin for providingHPC, visualization,
database, or grid resources that have contributed to the research results reportedwithin this paper.URL:http://
www.tacc.utexas.edu.

References

1. Keahey, K: Cloud computing for science. In: Proceeding of 21st Scientific and Statistical Database
Management Conference. vol. 5566, pp. 478–478 (2009)

2. Wang, L., Tao, J., Kunze, M., Castellanos, A., Kramer, D., Karl, W.: Scientific cloud computing: early
definition and experience. In: 10th IEEE International Conference on High Performance Computing
and Communications, HPCC’08, pp. 825–830 (2008)

3. Yeo, S., Lee, H.-H.: Using mathematical modeling in provisioning a heterogeneous cloud computing
environment. Computer 44, 55–62 (2011)

4. Han, Y., Chronopoulos, A.: Distributed loop scheduling schemes for cloud systems. In: IEEE 27th
International Parallel and Distributed Processing Symposium Workshops PhD Forum (IPDPSW), pp.
955–962 (2013)

5. Sonnek, J., Greensky, J., Reutiman, R., Chandra, A.: Starling: minimizing communication overhead
in virtualized computing platforms using decentralized affinity-aware migration. In: 39th International
Conference on Parallel Processing, ICPP’10, pp. 228–237 (2010)

6. Han, Y., Chronopoulos, A.: A hierarchical distributed loop self-scheduling scheme for cloud systems.
In: 12th IEEE International Symposium on Network Computing and Applications (NCA), pp. 7–10
(2013)

7. Han,Y., Chronopoulos,A.: Scalable loop self-scheduling schemes implemented on large-scale clusters.
In: IEEE 27th International Parallel and Distributed Processing Symposium Workshops PhD Forum
(IPDPSW), pp. 1735–1742 (2013)

8. Joyent corporation. http://joyent.com/
9. Kejariwal, A., Nicolau, A., Polychronopoulos, C.: History-aware self-scheduling. In: International

Conference on Parallel Processing Parallel Processing, ICPP’06, pp. 185–192 (2006)
10. Chronopoulos, A.T., Penmatsa, S., Xu, J., Ali, S.: Distributed loop-scheduling schemes for heteroge-

neous computer systems. Concurr. Comput. Pract. Exp. 18, 771–785 (2006)
11. Banicescu, I., Velusamy, V., Devaprasad, J.: On the scalability of dynamic scheduling scientific appli-

cations with adaptive weighted factoring. Clust. Comput. 6, 215–226 (2003)
12. Chronopoulos, A.T., Penmatsa, S., Yu, N., Yu, D.: Scalable loop self-scheduling schemes for hetero-

geneous clusters. Int. J. Comput. Sci. Eng. 1, 110–117 (2005)
13. Li, P., Ji, Q., Zhang, Y., Zhu, Q.: An adaptive chunk self-scheduling scheme on service grid. In: IEEE

Asia-Pacific Services Computing Conference, APSCC’08, pp. 39–44 (2008)
14. Yang, K.-W.C., Chao-Tung, Li, K.-C.: An efficient parallel loop self-scheduling on grid environments.

In: Network and Parallel Computing, pp. 92–100 (2004)
15. Yang, C.-T., Chang, S.-C.: A parallel loop self-scheduling on extremely heterogeneous pc clusters. In:

Proceedings of International Conference on Computational, Science, pp. 1079–1088 (2003)
16. Cheng, K.-W., Yang, C.-T., Lai, C.-L., Chang, S.-C.: A parallel loop self-scheduling on grid com-

puting environments. In: Proceedings of the 2004 International Symposium on Parallel Architectures,
Algorithms and IEEE Networks, pp. 409–414 (2004)

17. Andronikos, T., Ciorba, F.M., Riakiotakis, I., Papakonstantinou, G., Chronopoulos, A.T.: Studying the
impact of synchronization frequency on scheduling tasks with dependencies in heterogeneous systems.
Perform. Eval. 67(12), 1324–1339 (2010)

123

http://www.tacc.utexas.edu
http://www.tacc.utexas.edu
http://joyent.com/


Int J Parallel Prog (2017) 45:595–611 611

18. Ciorba, F., Andronikos, T., Riakiotakis, I., Chronopoulos, A., Papakonstantinou, G.: Dynamic multi
phase scheduling for heterogeneous clusters. In: Proceedings of the 20th IEEE International Parallel
Distributed Processing Symposium, IPDPS06, p. 10 (2006)

19. Riakiotakis, I., Ciorba, F.M., Andronikos, T., Papakonstantinou, G., Chronopoulos, A.T.: Towards the
optimal synchronization granularity for dynamic scheduling of pipelined computations on heteroge-
neous computing systems. Concurr. Comput. Pract. Exp. 24, 2302–2327 (2012)

20. Diaz, J., Reyes, S., Nino, A., Munoz-Caro, C.: Derivation of self-scheduling algorithms for heteroge-
neous distributed computer systems: application to internet-based grids of computers. Future Gener.
Comput. Syst. 25, 617–626 (2009)

21. Wu, C.-C., Yang, C.-T., Lai, K.-C., Chiu, P.-H.: Designing parallel loop self-scheduling schemes using
the hybrid MPI and openMP programming model for multi-core grid systems. J. Supercomput. 59,
42–60 (2012)

22. He, Y., Liu, J., Sun, H.: Scheduling functionally heterogeneous systems with utilization balancing. In:
IEEE International Parallel Distributed Processing Symposium, IPDPS’11, pp. 1187–1198 (2011)

23. Penmatsa, S., Chronopoulos, A., Karonis, N., Toonen, B.: Implementation of distributed loop schedul-
ing schemes on the teragrid. IN: IEEE International Parallel and Distributed Processing Symposium,
IPDPS’07, pp. 1–8 (2007)

24. Kyriakopoulos, K., Chronopoulos, A., Ni, L.: An optimal scheduling scheme for tiling in distributed
systems. In: IEEE International Conference on Cluster Computing, pp. 267–274 (2007)

25. Chronopoulos, A., Ni, L., Penmatsa, S.: Multi-dimensional dynamic loop scheduling algorithms. In:
IEEE International Conference on Cluster Computing, pp. 241–248 (2007)

26. Hwang, K., Dongarra, J., Fox, G.C.: Distributed and cloud computing: from parallel processing to the
internet of things. Morgan Kaufmann, (2011)

27. Wen, G., Hong, J., Xu, C., Balaji, P., Feng, S., Jiang, P.: Energy-aware hierarchical scheduling of
applications in large scale data centers. In: International Conference on Cloud and Service Computing,
CSC’11, pp. 158–165 (2011)

28. Iosup, A., Ostermann, S., Yigitbasi, M., Prodan, R., Fahringer, T., Epema, D.: Performance analysis
of cloud computing services for many-tasks scientific computing. IEEE Trans. Parallel Distrib. Syst.
22, 931–945 (2011)

29. Ekanayake, J. Fox, G.: High performance parallel computing with clouds and cloud technologies. In:
Proceedings of the First International Conference on Cloud Computing, pp. 20–38 (2010)

30. Evangelinos, C., Hill, C.N.: Cloud computing for parallel scientific HPC applications: feasibility of
running coupled atmosphere–ocean climatemodels onAmazon’sEC2. In: 5th InternationalConference
on Computability and Complexity in Analysis, pp. 159–168 (2008)

31. Shih,W.-C. Tseng, S.-S., Yang, C.-T.: Performance study of parallel programming on cloud computing
environments using MapReduce. In: International Conference on Information Science and Applica-
tions, ICISA’10, pp. 1–8 (2010)

32. Stress. http://www.hecticgeek.com/2012/11/stress-test-your-ubuntu-computer-with-stress/

123

http://www.hecticgeek.com/2012/11/stress-test-your-ubuntu-computer-with-stress/

	Scalable Loop Self-Scheduling Schemes for Large-Scale Clusters and Cloud Systems
	Abstract
	1 Introduction
	2 Related Work
	3 Loop Self-Scheduling Schemes for Distributed Systems
	3.1 Terminology
	3.2 Algorithm

	4 Hierarchical Distributed Self-Scheduling Schemes
	5 Description of the Large-Scale Cluster and Cloud System platforms
	5.1 Large Scale Cluster
	5.2 Cloud Environment Platform

	6 Experimental Results
	6.1 Large Scale Cluster
	6.2 Cloud System

	7 Conclusion and Future Work
	Acknowledgements
	References




