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Abstract Applications in industry often have grown and improved over many years.
Since their performance demands increase, they also need to benefit from the avail-
ability of multi-core processors. However, a reimplementation from scratch and even
a restructuring of these industrial applications is very expensive, often due to high cer-
tification efforts. Therefore, a strategy for a systematic parallelization of legacy code
is needed. We present a parallelization approach for hard real-time systems, which
ensures a high reusage of legacy code and preserves timing analysability. To show
its applicability, we apply it on the core algorithm of an avionics application as well
as on the control program of a large construction machine. We create models of the
legacy programs showing the potential of parallelism, optimize them and change the
source codes accordingly. The parallelized applications are placed on a predictable
multi-core processor with up to 18 cores. For evaluation, we compare the worst case
execution times and their speedups. Furthermore, we analyse limitations coming up
at the parallelization process.
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1 Introduction

Industrial embedded applications often have code bases which have grown and
improved over many years. Of course, they should also benefit from the advantages
of multi-core processors. However, the parallelization of legacy single-core software
is challenging [38]. It is even harder for embedded hard real-time software because
timing constraints and other non-functional requirements have to be met. Therefore,
usually a timing analysis takes place before these applications can be employed. To
support timing analysis, it is necessary to follow implementation rules, e. g. no dynamic
memory allocation, no pointers, etc.; see details e. g. in [5,41]. Our focus is how to
parallelize legacy embedded hard real-time applications. Their sequential implemen-
tation is already built in a timing-analysable way and we want to get a parallel version
which is timing-analysable, too.

The common parallellization approaches like the PCAM approach by Foster [15]
or the pattern-based parallelization approach by Mattson et al. [37] do not respect
non-functional requirements, making a timing analysis almost impossible. Another
attempt is automatic parallelization as proposed by Cordes andMarwedel [11], Cordes
et al. [12] or Kempf et al. [32]. This also leads to parallel code not suitable for timing
analysis. Since these established approaches do not work for applications requiring a
timing analysis, our parallelization approach for hard real-time systems closes this
gap. It combines the benefits of the parallelization approaches of Foster [15] and
Mattson et al. [37] while introducing parallelism only in a way facilitating timing
analysis.

In this article, we first describe our parallelization approach for hard real-time
systems, then we show the complete process of parallelization of two industrial appli-
cations: one from the avionics domain and one from the automation domain. The
presented approach is not limited to these examples, but may be applied to other
industrial applications, too. Our process starts from the sequential legacy code and
results in a multi-core implementation and a static WCET analysis.

The structure of our article is as follows: we first give some backgrounds in the
following Sect. 1.1, then an overview over related work in Sect. 2. Afterwards, we
describe our parallelization approach for hard real-time systems in Sect. 3. An avionics
application and its parallelization are depicted in Sect. 4. In the Sects. 5, 6, 7, 8 and 9
the control program of a foundation crane is described (Sect. 5), parallelized following
our parallelization approach (Sects. 6, 7 and 8) and evaluated (Sect. 9). Finally, we
conclude with lessons learned in Sect. 10 and summarize the results in Sect. 11.

1.1 Background Information

Real-time means that the system has to provide results in due time, i. e. within a given
deadline [59]. We distinguish between firm and hard real-time systems: in firm real-
time systems the result of a computation looses its relevance when the deadline is
missed (e. g. a GPS position of a moving car), while in hard real-time systems the miss
may result in harm or damage (e. g. an airbag not responding properly). To guarantee
that the deadline holds, the worst case execution time (WCET) is estimated [59]. This
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means an upper bound of the longest path which may be taken during the execution
of the program has to be found and estimated to ensure execution is finished before
the deadline is over.

There are two families of approaches for performing theWCET analysis of applica-
tions: static WCET analysis and measurement-based WCET analysis. Each approach
is complementary to the other. Static WCET analysis techniques are based on a tim-
ing model of the hardware architecture and reach upper bounds of the real but not
computable WCET. Measurement-based approaches derive timings of small blocks
of code by direct observation of the execution of the program on the target platform.
Thus, they avoid the effort of building an exact timing model of the processor, but
there is no guarantee to catch the real WCET.

Our parallelization approach is an extension of a pattern-supported paralleliza-
tion approach for embedded real-time systems [27,28], which was developed in the
parMERASA project [56]. We describe how it works and apply it on the two industrial
applications. Its basic idea is to create a model of the application, optimize it for a
parallel execution and then change the source code accordingly. In the model, paral-
lelism can only be introduced with parallel design patterns (PDPs). Design Patterns
are a textual description of best practice solutions for recurring problems [37]. PDPs
focus on how to introduce parallelism in different situations.

Currently, our applications are build in a timing-analyzable way and we want them
to stay analyzable. Therefore, we collected PDPs respecting timing constraints in
the parMERASA Pattern Catalogue [18]. It contains the four PDPs Task Parallelism,
Periodic Task Parallelism, Data Parallelism and Pipeline Parallelism:

– Task Parallelism A number of tasks are executed concurrently and the further
execution of the program is suspended until they are all completed. The WCET
is mainly defined by the longest WCET of the subtasks. To be timing-analysable,
the tasks have to be scheduled and mapped statically.

– Periodic Task Parallelism Several tasks are executed periodically with equal or
different periods. When the parallel WCETs are determined, it has to be checked
if the periods and deadlines still hold or could be missed in the worst case.1 In the
latter case, additional cores might be utilized.

– Data Parallelism Computations on a data structure are performed, which can be
decomposed into concurrently computable chunks. Therefore, the same algorithm
can be applied simultaneously to several parts of the data structure. Since the same
computations take place for different input data, the WCET should be similar for
all computed chunks.

– Pipeline Parallelism The executed computations on input data can be divided into
several stages. After data has been processed in one stage, it is handed over to the
next one. Afterwards, the finished stage can process the next set of data. Hence,
the data is processed in a chain of producers and consumers. Ideally, the stages are
load-balanced, i. e. their workloads obtain similar WCETs. To achieve this, stages

1 Due to e. g. synchronization overheads, some parts of the program might take longer. Therefore, it is
important to keep an eye on periods and deadlines and to check if everything still works fine.
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might be joined or split, or further PDPs may be applied within single stages. For
the WCET analysis, each stage and the data exchange between stages have to be
analyzed.

Wemeasure the success of our parallel implementations by determining theWCET
speedup. It is defined by dividing theWCET of the sequential implementation through
the WCET of the parallel implementation.

Our case studies are the core algorithm of an avionics application and the control
program of a large construction machine:

The avionics application gets sensor inputs, processes them via fast Fourier trans-
formation (FFT), matrix multiplication, summarizing a set of matrices and computing
an inverse FFT as output. Unfortunately, we cannot go into further details what its
purpose is.

The construction machine is the BAUER foundation crane MC128 (engine power
709kW, max. boom length 54.4m, weight of the base unit 170 t, max. capacity
200 t [6]). It can be used for different drilling or milling techniques as well as BAUER
dynamic compaction (BDC), which is an improved “implementation” of dynamic soil
compaction (see e. g. [35]). This technique is performed in the control program we
analyze and parallelize. The job operated by the machine is to uplift a pounder with
a weight of around 20 t to a height of around 30m and afterwards drop it in free fall.
Then, the process is repeated until the ground is patted to be able to build a large
building on it.

Because themachine has to react in due time the application is hard real-time.When
the brakes are put on at the wrong moment (while the pounder is in free fall), it could
mean damage to themachine. The control program consists of amain control loopwith
additional interrupts interwoven in a complex way to meet the timing requirements.
It also has to do a lot of other work concurrently, like checking many sensors, setting
actuators, reacting on inputs from and informing the driver, etc.

Therefore and because its structure is widely used in automation domains, the
application is typical for industrial applications. Because of its structure and its future
performance needs (more features, especially for safety and security are expected), it
would be desireable to run it on a multi-core platform. However, changes to the soft-
ware require a lot of tests on the real machine to be sure that everythingworks properly.
This is a quite expensive task, especially when something unexpected happens. Thus,
a systematic parallelization approach should be applied.

2 Related Work

We give an overview on the parallelization approaches our approach is based on in
Sect. 2.1. Since we employ PDPs, related work about them is topic of Sect. 2.2, while
we deal with their representation on code level—algorithmic skeletons—in Sect. 2.3.
Finally, in Sect. 2.4 we deal with existing researches focussing on the parallelization
of hard real-time software.
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2.1 Parallelization Approaches

So far, there are mainly two well-known development approaches for the transfor-
mation of sequential software into parallel software, both are model-based and were
defined for the high-performance domain, i. e. the PCAM-Approach by Foster [15]
(divided into the four phases Partitioning, Communication, Agglomeration and Map-
ping) and the parallelization approach by Mattson, Sanders, and Massingill [37]
(which is utilizing PDPs). Both approaches do not target embedded systems and the
observance of timing constraints.

Inspired by above mentioned approaches, Jahr et al. introduced a new approach for
the embedded systems domain targeting multi-core processors and respecting timing
constraints [27,28]. To our knowledge, it is the only one focussing on embedded real-
time systems. It introduces parallelism only by PDPs. Our parallelization approach
for hard real-time systems presented in this article extends the approach by Jahr et al.
by a systematic WCET analyzable implementation of algorithmic skeletons as well
as a refinement loop, see details in Sects. 2.3 and 3.

All these parallelization approaches have to bedonemanually or semi-automatically
with tool-support. Instead, automatic parallelization could also be applied. Cordes
and Marwedel [11], Cordes et al. [12], for example, developed an approach with a
hierarchical task graph as model which can be optimized automatically, too. Another
approachwith automatic parallelization is followed byKempf et al. [32], who focusses
on industrial applications of a specific type and comes to similar speedups like us.How-
ever, automatic parallelization leads to unstructured parallelism making later timing
analysis much harder; structured parallelism is very beneficial for this (cf. [29,41]).

Moreover, the structure of an industrial control code with its timer-based interrupt
service routines and without loops over large data structures is not well suitable for
automatic parallelization.

2.2 Pattern Catalogues for Parallel Design Patterns

All PDPs to be used in the parallelization process are taken from a Pattern Catalogue,
which can be more general, but also domain or application specific. To describe a
pattern, a common structure calledmeta-pattern is used.2 Well-known design patterns
observed in parallel software have already been collected and described by Mattson et
al. [36,37] and arranged in the classification system our pattern language (OPL, [33])
consisting of multiple levels.3

In the parMERASA project [56], we developed our own pattern catalogue from the
existing ones and an analysis of industrial applications. It is called the parMERASA
pattern catalogue [18] and contains four PDPs and two synchronization idioms. These
synchronization idioms are, in contrast to the PDPs, platform dependent. They define

2 For example, the meta-pattern in OPL (see http://parlab.eecs.berkeley.edu/wiki/patterns/patterntemplate)
requires the specification of name, problem, context, forces, solution, invariants, an example, known uses,
related patterns, references, and author.
3 See online version: http://parlab.eecs.berkeley.edu/wiki/patterns/patterns.
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the timing-analyzable synchronization prototypes provided by a target platform. Also,
we extended the meta-patterns by real-time prerequisites, synchronization idioms, and
WCET hints denoting the requirements and consequences for WCET analysis.

The parMERASA pattern catalogue is utilized for the parallization both of the
avionics application and the control code of the foundation crane.

2.3 Algorithmic Skeletons

Algorithmic skeletons are software libraries providing parallelization concepts for
applications and can be understood as equivalent of PDPs on code level. Originally,
they were introduced by Murray Cole and the concepts were further improved [7,10].
Because algorithmic skeletons are code, they are platform and programming language
dependent. A detailed overview on existing skeleton libraries can be found in [21].

There are only a few algorithmic skeleton libraries which try to address real-time
requirements:AParallel Skeleton Library for EmbeddedMulticores [34], QUAFF [14]
and SkiPPER [53]. The first one is written for C++ and uses templates and inheritance.
Since our industrial applications are written in C and the target platform is also built
for C code, we cannot employ it. QUAFF and SkiPPER only focus on firm real-
time requirements just like image processing, not on hard real-time requirements
for embedded systems. Furthermore, SkiPPER is domain-specific and only provides
limited nesting capabilities.

To fill the gap, we developed the Timing-analysable Algorithmic skeletons
(TAS) [30,54] in the parMERASA project und utilize them in our parallelization
approach for the parallization of our industrial applications.

2.4 Parallelization of Hard Real-Time Software

This article presents a part of thework from the parMERASAproject [56]. There, three
other industrial hard real-time applications were parallelized by applying the original
pattern-supported parallelization approach by Jahr et al. [27,28]. These applications
are a 3D path planning algorithm and an algorithm for stereo navigation from the
avionics domain and a diesel engine motor injection algorithm from the automotive
domain. For results, see [55,57].

Hereby,Kehr et al. [31] focus on the parallelization of the diesel enginemanagement
system (EMS). Analysing their code with OTAWA [5], they reach WCET speedups
up to 4.5 on 12 cores (assuming no worst case buffer overhead). They describe their
application as an “an ideal use case” for parallelization—therefore, it might be a good
reference for comparison how big the parallelization potential is.

Gerdes et al. [20] modified the control application of a large drilling machine for
a timing-analyzable multi-core processor with two or four cores, which is a different
construction machinery series by BAUER. A WCET speedup of 1.93 was reached
on four cores; RapiTime [47] was used for the measurement-based WCET analy-
sis. However, the parallelization was based on knowledge of the application (i. e.
domain knowledge), whereas the approach followed here is more systematic and
model-based.
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Fig. 1 The three phases of the pattern- and skeleton-supported parallelization approach are I. Revealing
Parallelism, II. Optimizing Parallelism and III. Implementation. From the timing analysis of the parallel
code, the optimization may be refined iteratively to improve the results

3 Parallelization Approach for Hard Real-Time Systems

We enhance the model-based pattern-supported parallelization approach, which was
introduced by Jahr et al. [28]. Its applicability for embedded hard real-time systems
is discussed in [27]. In this section, we describe the concepts of the original approach
and our extensions.

The goals of the parallelization approach are to provide a way to parallelize legacy
single-core software of embedded systems, while keeping the development effort low
and the software timing-analysable. Its main idea is to introduce parallelism only
through PDPs in a model. They are taken from a pattern catalogue. On code level,
PDPs are represented by algorithmic skeletons. This way, analysis of timing behaviour
is eased since parallelism is applied only in a structured way (cf. [29,41]).

Throughout the parallelization process an extended version of the UML2 activity
diagram (AD) [40] called activity and pattern diagram (APD) is created and worked
on. This allows rapid definition and refinement of situations exhibiting chances for
parallelism. It is further described in Sect. 3.1.

Unfortunately, there is currently no tool to find situations in code where parallelism
could be applied. Hence, an experienced software developer or engineer has to find
them manually. However, there are lots of tools for UML diagrams and some to check
dependencies on code level, e. g. CScope.4

As illustrated in Fig. 1, the parallelization approach for hard real-time systems is
organized in three phases:

4 Homepage: www.cscope.sf.net.
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– Phase I: Revealing Parallelism
– Phase II: Optimizing Parallelism
– Phase III: Implementation

In the original approach [27,28] there are only the phases I and II, but we added a
Phase III, because of the platform specific implementation, which is further supported
by timing-analyzable algorithmic skeletons and code generation. Additionally, refine-
ment is added to iteratively improve the results. The phases are described in Sects. 3.2,
3.3 and 3.4.

3.1 Activity and Pattern Diagram (APD)

Modelling is done using a so-called activity and pattern diagram (APD), which gives a
formal model of the structure of the application and can be utilized for documentation
and maintainability. Each activity represents a code block of the original program,
e. g. a function, several functions or a part of a function.

In addition to the elements of the basic UML2AD, a second kind of activity node is
added to model the PDPs (cf. Fig. 2). It can be used and behaves exactly the same way
as the (sequential) activity nodes but can encapsulate not only a single but multiple
functionalities modeled as separate APDs. As can be seen in Fig. 3, the usage of the
bold “fork” and “join” bars existing in the basic AD to model creating and joining
threads is not allowed anymore.

It is important to model dependencies (e. g. shared variables) because they restrict
parallelism. Furthermore, dependencies have to be respected at scheduling. Therefore,
activities and patterns should be annotated with input (read global data), output (write

Fig. 2 New activity node representing a PDP: on the left side in compact shape, on the right side detailed.
The pins represent shared variables and data structures

Fig. 3 In the APD, the use of “fork” and “join” is not allowed anymore
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global data), and resource pins (read and write global data) exposing the usage of
data structures and shared resources like special devices or interfaces. Also, interrupts
can be annotated in a similar way. The APD may be further extended to model more
functional and non-functional aspects.

APDs can describe a program in a less or more detailed way and therefore form a
hierarchy, which is illustrated in Fig. 4: with more details, the activity Program can be
decomposed into the activities Initialization and Execution. The latter consists of one
sequential activity and a PDP, which contains a sequential activity and another PDP.
The APD resulting in Phase I and being optimized in Phase II comprises all hierarchy
levels and contains all details. Most APDs for the foundation crane only show few
details or a small part from the bottom of the hierarchy. Due to confidentiality reasons
and because it is too large, the foundation crane’s APD is never shown completely.5

3.2 Phase I: Revealing Parallelism

The goal of Phase I is to expose a high degree of parallelism in an APD, which can
be optimized in Phase II for the target multi-core architecture. Thus, not only an APD
has to be created, but also all dependencies have to be found and WCETs of the
sequential activities have to be determined. Following the suggestions of the PCAM-
Approach [15] “a high degree” means that there should be more possibilities for
parallelism than are feasible for the target platform. Hence, reordering of independent
parts and optimizing can be done in Phase II.

In the top of Fig. 4, the starting point can be seen: a sequential software represented
by a single activity. Two operations are to be applied to increase the degree of details
in the diagram:

1. Replacing an activity with a PDP. The PDP is composed of several activities,
which may be executed in parallel. This operation should always be preferred over
splitting because it increases parallelism.

2. Splitting an activity into several (sequential) activities to be executed one after
another. This does not increase parallelism, but more details are added for this
program part.

These operations should be repeated until it is clear that the degree of parallelism is
high enough. Throughout the process, the decomposition of an activity should have
the same semantic meaning as the activity itself.

Dependencies between the activities are to be determined by a dependency tool,
(e. g. CScope6 or the Rapita Dependency Tool7) and also entered into the diagram
using pins.8

5 However, theXMLexample input file of our speedup approximation and parameter optimization tool gives
a clue of the complete APD. It can be found at https://github.com/parmerasa-uau/parallelism-optimization/
tree/master/ParallelismAnalysisJMetal.
6 Open-source, Homepage: www.cscope.sf.net.
7 Part of the Rapita Verification Suite (RVS), Homepage: www.rapitasystems.com.
8 Besides Figs. 2 and 13 these pins are never shown to keep the diagrams compact.
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Fig. 4 APD of the program including several hierarchy levels: the analysis starts in the top with a single
activity, below there is one level more of details exposing two sequential activities. The second one of them
called Execution is composed of a sequential activity and a PDP. This PDP contains one sequential activity
and another PDP

Additionally, theWCET of all activities has to be determined to see howmuch each
activity contributes to the overall WCET. This allows better optimization in Phase II.
Furthermore, the analysis in Phase I should focus on computation intensive activities
and avoid making a highly detailed analysis of insignificant program parts.

The result of Phase I is a platform independent APD with a high degree of paral-
lelism, exposing dependencies and WCETs for the activities.

3.3 Phase II: Optimizing Parallelism

The goal of Phase II is to optimize the degree of parallelism for a goodWCET. Its result
is an optimized APD together with a list which variables have to be synchronized.

When implementing the APD resulting from Phase I directly, the cost for commu-
nication and synchronization would be very high. There would be several cores having
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only a little bit of work and being idle most of the time. Therefore, in Phase II, some
activities have to be joined to reduce the cost for communication and synchronization
and to get a higher workload for the different cores. But not too much has to be joined
as the overall result should still be a parallel program. Thus, a good trade-off between
distributing the program over several cores and keeping the communication overhead
low has to be found.

This can be seen as optimization problem. It has to take platform dependent para-
meters into account as well as the WCETs determined in Phase I and which global
variables have to be synchronized when executing activities in parallel. Some exam-
ples are access times to core-local or global shared memory or the clock frequency and
resulting execution time for program parts. We developed the speedup approximation
and parameter optimization tool, employing a genetic algorithm to find an optimal
configuration9 with a minimized amount of shared variables to be synchronized and
a good WCET10 [30].

At the end of Phase II, the mapping of the activities to threads and cores must
be tackled. Both mapping and placement are already well-researched, see e. g. [58]
for a machine learning based method, [51] for mapping in combination with fault
tolerance, and [42] for a mapping tool developed in the parMERASA project. On
the parMERASA platform, we always map one thread to one core for better timing
analyzability [44].

In the original pattern-supported parallelization approach [27,28], the result of
Phase II is the parallel source code, but in our parallelization approach for hard real-
time systems we decided to make the implementation in the new Phase III. Therefore,
the result of Phase II is an optimized APD together with information which activities
have to be mapped to which threads and cores and a list which shared variables have
to be synchronized.

3.4 Phase III: Implementation

Contrary to the original approach by Jahr et al. [27,28], we add an additional Phase III
for the implementation. In this phase, parallelism has to be implemented and synchro-
nization has to be realized. For the former, the location of the corresponding PDPs has
to be found in the source code and the sequential function calls must be rewritten to be
executed in parallel. This can be facilitated with algorithmic skeletons, as described
in the next paragraph. The synchronization of shared resources can be implemented
by placing locks or rewriting code e. g. to utilize nonblocking data structures [23,24].
WCETs of the activities only played a role in Phase II to find an ideal configuration.
NewWCETsmay be estimated after Phase III and refinement may be done to improve
them.

9 A configuration specifies which program parts should be executed in parallel, howmany cores are utilized
and which variables have to be synchronized.
10 The tool is open source and can be downloaded at https://github.com/parmerasa-uau/parallelism-
optimization.
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Algorithmic skeletons are representing the same concept as PDPs. Patterns work
on level of the model, while skeletons work on code level. An overview on existing
skeleton libraries is given in [21]. We implemented a new, timing-analyzable skeleton
library,11 which is presented in [54], while a manual can be found in [30]. The usage
of algorithmic skeleton libraries also enables reusing code for parallel code structures
leading to a reduction of development and debugging efforts.

Additionally,we suggest generating a kindof programscaffolding.There, all calls to
algorithmic skeletons are already placed in function bodies and the software engineer
only has to insert his code based on the sequential implementation and the APD.
Furthermore, code for the synchronization of global variables might be automatically
generated, i. e. mutator functions (get/set) with locks around the variable accesses.
The main remaining work would be to place mutator functions in the code when they
were not utilized until now. This can be done quite fast with search-and-replace, but
should be done carefully when e. g. a variable is used throughout a function and it is
assumed that it does not change meanwhile. Then, it should be loaded at the beginning
and stored at the end of the function.

With these methods, the implementation can be done semi-automatically. The final
result is parallel code that can be executed on the target platform. When the timing
analysis of the parallel program indicates that further refinement is necessary (e. g.
because of differing synchronization overheads), then the parameters may be adapted
and Phase II and III be done again like illustrated in Fig. 1.

4 Parallelization of a Signal Processing Application

In this section, we apply the parallelization approach for hard real-time systems on the
core algorithm of a signal processing application from the avionics domain. Thereby,
we want to make clear why WCET optimization is a complex issue and what the
encountering problems are.

This section is structured as follows: first, we present the signal processing applica-
tion in Sect. 4.1. Section 3.2, 3.3 and 3.4 correspond to the phases I to III, refinement
takes place in Sect. 4.5. Finally, we analyzse the results in Sect. 4.6.

4.1 The Signal Processing Application

Our first parallelization takes a signal processing application, which is a core algo-
rithm of an avionics application. We already presented some parallelization results
for this application in [54]. Algorithms like this can often be found in embedded real-
time systems for processing data which is captured with sensors. The structure of the
application is illustrated in Fig. 5. It takes two sets of matrices as input (subsequently
named a and B). They are characterized by the same size and number of included
matrices and used for calculation of one output matrix. The program is executed iter-
atively, processing ongoing input sets. The first step of the computation is a FFT of

11 Our Timing-analyzable Algorithmic Skeleton (TAS) library is open source (LGPLv3 licence) and can
be downloaded at https://github.com/parmerasa-uau/tas.
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Fig. 5 Signal processing application

Fig. 6 AD of the sequential signal processing application

eachmatrix of a. The result (named A) is multiplied with B element by element. After-
wards, the calculated set of matrices C is summarized to one matrix D by computing
the sum element by element. At last, the output matrix d is generated by calculating
the inverse FFT.

In concrete, the matrix sets are instantiated with 16 matrices, where each consists
of 128 rows and 128 columns.

4.2 Applying Phase I on the Signal Processing Application

The goal of the Phase I is to create an APD showing a high degree of parallelism,
estimating the WCETs of its activities and determining dependencies between them.

Figure 6 illustrates an APD of the sequential application. It is already annotated
where we see potential for parallel execution. Since the Initialization is only
run once we do not further investigate it. The activities create FFT input, a
to A and A*B to C process 16 matrices in an independent way. This may be done
in parallel with up to 16 threads, each processing one matrix. C to D is a SUM
operation over all matrices. It may be parallelized with a REDUCE operation.12 D
to d builds the inverse FFT of the resulting matrix of C to D, which cannot be
parallelized.

Dependencies are only found between the activities: a to A takes the results of
create FFT input, while A*B to C needs the results of a to A and so on.
Therefore, dependencies are not an issue here.

We determined theWCET of these activities utilizing the staticWCET analysis tool
OTAWA [5]. It does an analysis of the binary and source code of the program without
executing it. Thereby, it relies on a hardware model. In our case, the hardware is the

12 Utilizing our PDPs, this can be realized with the Data Parallelism PDP, e. g. two threads, each doing
SUM on half of the matrices. Finally, one thread would have to do the final SUM of the two resulting
matrices.
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Table 1 WCETs of the
sequential activities

Activity WCET (cycles)

Initialization 654,747,089

Create FFT input 4,187,336,815

a to A 47,853,059,229

A*B to C 109,620,927

C to D 98,621,517

D to d 2,983,266,489

Fig. 7 APD of the sequential signal processing application with high degree of parallelism

parMERASA platform [43], which is an experimental multicore processor developed
in the parMERASA project [56]. It is implemented in a cycle-accurate simulator based
on SoCLib13 [16]. The parMERASA platform is built in a way that facilitates WCET
analysability, e. g. by ensuring deterministic behaviour and avoiding speculative com-
ponents (since in the worst case it always has to be assumed that speculation fails). For
our experiments, we have one core at the sequential version and up to 18 cores in the
parallel versions. We assume the memory access latency to be 18 cycles.14 Instruction
cache works in a perfect way, while data caches are disabled for better analysability.

The WCETs from the sequential analysis are listed in Table 1: It can be seen that
the highest contribution comes from a to A. A*B to C and C to D are very
small—therefore, a parallelization will not bring any benefit.

From the sequential APD and following theWCET numbers, the APD in Fig. 7 was
created. It differs from the proposals in Fig. 6 in the way that A*B to C and C to
D are modeled as sequential activities and not as PDPs since they are only very small
activities. Furthermore, a Pipeline PDP is placed over the five processing activities
to increase the throughput. It enables parallel processing of data in five stages: while
one set of input data is being processed in a to A, the next set of input data is being
processed inCreate FFT input.When the stages are finished, data is handedover
to the next stage and processing of the next set of input data can start while the old
one is still being processed in the subsequent stages. With the Pipeline PDP, processed
results become available more often. Attention has to be paid on interferences: while

13 Original Homepage: http://www.soclib.fr parMERASA simulator (open source under BSD licence):
http://www.parmerasa.eu/files/open_source/soclib_parmerasa.zip.
14 Formore than 1 core, it always has to be assumed that all memory requests of all other cores are processed
by the memory controller before the own request is handled. This results in worst case memory access times
of 54 cycles for 4 cores, 96 cycles for 8 cores and 138 cycles for 12 cores.
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Fig. 8 APDof the optimized signal processing applicationwith five pipeline stages and one data parallelism
PDP at a to A

one stage is writing data, the next one might want to read it. Thus, double buffers
should be employed.

4.3 Applying Phase II on the Signal Processing Application

Taking the APD from Phase I, there are three PDPs and up to 35 threads may be
employed (16 in each of the stages create FFT input and a to A and three
more for each of the remaining pipeline stages). However, due to overhead for thread
creation, management and synchronization the best parallelization result will not be
achieved by just executing everything in parallel. For our first parallelization szenario,
we therefore only utilize the Pipeline PDP and the Data Parallelism PDP on a to
A. Since create FFT input is only around one third larger than the largest non-
divisible activity in the pipeline (D to d), we keep it sequential. Since we assume
a high overhead when a to A is executed by 16 threads, we only utilize 4 threads
here. The resulting APD is illustrated in Fig. 8.

Altogether, there are eight parallel threads which are placed on eight cores (we
always apply a 1:1 mapping). This parallelization scenario was already implemented
in [54]—however, there only observed execution times (OETs) and their speedups
were determined, no WCET analysis took place. The OET speedups were 4.6 for a
matrix set of 16×16×4 (rows× columns×matrices) and 5.2 for one with 32×32×8
matrices. They show that a high parallel performance is possible.

4.4 Applying Phase III on the Signal Processing Application

The implementation is a simple task due to the small program, simple dependencies
and the availability of skeletons.Details on the parallelization implementation utilizing
algorithmic skeletons can be found in Sect. 8 and in [30,54]. The results of the static
WCET analysis done with OTAWA can be seen in Table 2.

For easier comparison,we added theWCETsof the sequential program fromTable 1
as well as WCET speedups. Though, all speedups are slowdowns, even at those activ-
ities which are executed in a sequential way. This is caused by the worst case memory
access times which have to be assumed when several cores share one global memory.
At a memory intensive application like our signal processing application they lead to
a high overestimation (the WCET gets higher than what is realistic). It is a current
research field how to do and improve WCET estimation for parallel applications, see
e. g. [22,41,49].
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Table 2 WCETs of the different activities

Activity Par. WCET (cycles) Seq. WCET (cycles) WCET speedup

Initialization 2,752,714,141 654,747,089 0.23

Create FFT input 19,299,113,419 4,187,336,815 0.22

a to A 60,509,156,473 47,853,059,229 0.79

A*B to C 357,235,281 109,620,927 0.31

C to D 319,769,223 98,621,517 0.31

D to d 15,093,890,823 2,983,266,489 0.20

Fig. 9 APDof the optimized signal processing applicationwith three stage pipeline and one data parallelism

Since the first parallelization szenario brings no improvement at all, we have to do
some refinement.

4.5 Applying Refinement on the Signal Processing Application

Worst casememory access times depend on the number of utilized cores. Therefore,we
focus on reducing the number of cores in the second parallelization scenario: A*B to
C, C to D and D to d are grouped together to form one single activity A*B to
d, the pipeline now has three stages. Altogether, six cores are utilized: four for the data
parallelism a to A and two for the remaining pipeline stages. The corresponding
APD is illustrated in Fig. 9, the results of theWCET analysis can be seen in the second
column of Table 3.

Now it takes 47.9 billion cycles to get new results out of the pipeline,15 which is
a small improvement compared to the sequential version with 55.5 billion cycles.16

Since the pipeline is unbalanced and there ismore parallelization potential in its largest
activitya to A, we try to distribute this activity on 8 and 16 cores. TheWCET results
are also shown in Table 3.

Comparing these results, the 10 core version (8 cores for the data parallel execution
of a to A) reaches the best result with generating one resultmatrix every 37.0 billion
cycles (WCET speedup of 1.5). In the 18 core version, a to A’s WCET is even
lower, but the sequential activity Create FFT input slows down and dominates

15 At the pipeline PDP, data is moved to the next stage when all stages have finished their work. Therefore,
every time the largest stage is finished, one result matrix comes out of the pipeline.
16 In the sequential version, all activities have to be processed to get one result matrix. Then the next set
of input data can be processed.
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Table 3 WCETs of the parallel implementations with 3 stage pipeline

Activity WCET 6 cores WCET 10 cores WCET 18 cores

Initialization 2,214,774,261 3,344,455,009 5,550,036,165

Create FFT input 15,424,241,353 23,561,415,750 39,448,178,979

a to A 47,905,183,017 36,967,526,805 31,190,970,443

A*B to d 13,216,052,757 20,354,093,164 34,292,417,690

the pipeline’s WCET. Therefore, a new result matrix becomes available every 39.5
billion cycles (speedup of 1.4).

4.6 Analysis of the Results

A WCET speedup of 1.5 on 10 cores is low and we have to analyzse the reasons.
In [54], an OET speedup of up to 5.2 was reached with 8 cores. When only evaluating
the FFT computation a to A, an OET speedup of 3.9 (4 cores), 7.8 (8 cores) and
15.6 (16 cores) is possible, while the WCET speedup is only 1.0 (4 cores), 1.3 (8
cores) and 1.5 (16 cores).

But where is the problem of achievingWCET speedupswith staticWCET analysis?
It lies mainly at the worst case memory access times as well as synchronization. The
latter are already a challenge on single-core systems, e. g.when interrupts or scheduling
has to be respected. But on multi-core architectures everything is more complex with
several cores sharing resources like memory and having to assume that all other cores
will have access before the own access is processed. At the development of WCET
aware software, a lot of restrictions apply also, see e. g. [9,17].

At the sequential parts of our program, the OETs mostly stay the same, but the
WCETs rise when utilizing more cores. Figure 10 illustrates how the WCETs of
sequential and parallel program parts change with different core numbers.

Fig. 10 Relation of WCETs of sequential and parallel activities with rising core numbers. Sequential
WCETs go up linearly, the WCET of the parallel activity a to A goes down slowly (Color figure online)
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We draw three conclusions from the figure:

1. The WCET of sequential functions increases with the number of cores. This is a
specific problem of worst case estimations, not present in general-purpose paral-
lelizations. As long as memory interferences have to be assumed, this is a strongly
limiting factor for WCET-aware parallelization.

2. We added a curve Next result. It illustrates how long it takes until a new
result matrix becomes available. In the sequential version, sensor inputs have to
go through all activities before the next input set can be processed. Therefore,
a new result matrix is available after 55.5 billion cycles. In the parallel versions
applying a 3 stage pipeline PDP and the data parallel PDP for a to A activity (cf.
Fig. 9), the pipeline needs a few iterations to get running and then produces new
result matrices every time the data moves on in the pipeline. Since data is moved
on every time all stages are finished, this time is determined by the maximum of all
pipeline stages, i. e. new result matrices become available after 37,0 billion cycles
in the 10 core version and after 39.5 billion cycles in the 18 core version.

3. Although the parallelization of a to A leads to a better WCET speedup for this
activity when utilizing 18 instead of 10 cores, the 10 core version has a better
overall WCET speedup. This is due to the activity Create FFT input which
becomes the dominating activity in the pipeline at the 18 core version. It remains
sequential, but its WCET increases over that of a to A due to the worst case
memory access times.

In conclusion, a parallelization forWCET-aware real-time applications not only has
to estimate which program parts may get faster when executing them in parallel, but
also has to take into account that additional cores lead to a higher WCET in sequential
program parts. Therefore, a good trade-off between sequential and parallel program
parts has to be found. Parallelization is only reasonable when its effects are stronger
than the slowdown caused by synchronization and worst case memory access times
of additional cores.

5 Control Program of BAUER MC128

The second industrial application that we apply our parallelization approach for hard
real-time systemson is the control programof the foundation craneBAUERMC128. In
this section, we give a short overview on how the program is integrated in the machine:
first, Sect. 5.1 describes the hardware in the machine, then the software architecture of
the single-core implementation is explained in Sect. 5.2, while Sect. 5.3 characterizes
the execution behaviour of the application.

5.1 Hardware Overview

The driver of the machine controls it primarily through a screen, two joysticks and
some control keypads. In addition, there are several pedals for moving the machine.
Also, there are security devices, such as the so-called “armrest switch” that must be
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Fig. 11 The architecture of the ECUof theMC128: at the bottom there is the hardware (ESX-3XL) together
with the BIOS, which is the basic software provided by the ECU manufacturer. Hereon the middleware,
which is developed by BAUER, is placed. It contains generic functions for all machines from BAUER
together with periodic tasks e. g. for CAN communication. On top there is the application program specific
for the machine together with its periodic tasks

closed when the driver is sitting in the cab, thus indicating that the crane is to be
operated.17

In the MC Series, an embedded real-time-capable electronic control unit (ECU),
ESX-3XL by Sensor-Technik Wiedemann [52], is deployed. It features a single-core
Infineon TriCore processor, 4 CAN interfaces, and a high number of input and output
ports. Functions provided by the software running on this ECU are, e. g. the manual
and automatic control of winches, the ability to turn and move the machine, and also
control of multiple pumps since the foundation crane is operated hydraulically.

5.2 Single-Core Software Architecture

The software on the ECU comprises three layers, which can be seen in Fig. 11 and are
built on top of the hardware (ESX-3XL). APIs are defined between them:

At the lowest level is the so-called BIOS (closed-source by the ECUmanufacturer).
It is equipped with a real-time scheduler, which can execute periodic tasks at different
priorities and frequencies interrupting the application program. These tasks are imple-
mented in other layers of the software and e. g. send and receive CAN bus messages,
read input values from sensors and set output values to actuators.

The middleware by BAUER is re-used over all the companies’ machines and pro-
vides shared functionalities abstracting from the BIOS. This includes drivers for the
interfaces and sensors in the foundation crane (e. g. keyboards and joysticks, incli-
nometers for boom orientation). Also, the middleware implements multiple periodic
tasks, e. g. for the CAN busses.

The actual control of themachine takes place in theapplicationprogram. It iswritten
specifically for one type ofmachine (here: foundation cranes). In the source code of the
crane, all possible procedures (e. g. drilling, milling, BDC, etc.) are implemented, but
only unlocked upon acquisition of the necessary equipment. The application program

17 Many components check the armrest switch because for security reasons they are not allowed to run
when there is no driver sitting in the cab.
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consists of initialization code, a main control loop (in the remainder: main loop) and
a number of periodic tasks. There are two types of the latter: a part of the periodic
tasks is executed by the scheduler in the BIOS, which interrupts the main loop for
their execution. Some more periodic tasks are located directly in the main loop, where
they are polling how much time has passed since the last call and are executed only if
enough time has passed.

5.3 Execution Cycle

The control program is basically executed in two phases: (i) the initialization code is
executed once after power-up. All outputs are assigned valid values and the configu-
ration is loaded from the EEPROM. (ii) Then, the main loop is executed concurrently
to the scheduler invoking the periodic tasks. Hence, the scheduler interrupts the main
loop from time to time (in the single-core implementation).18 Of course this can be
prohibited for short periods for the sake of data consistency by disabling interrupts.

6 Phase I: Revealing Parallelism at the Foundation Crane

As described in Sect. 3.2, we start with the single-core legacy program and get an
APD showing a high degree of parallelism in this phase. Furthermore, we estimate
WCETs of the sequential activities and determine shared ressources, i. e. variables.
First, we describe the methodology how we analyze the legacy program (Sect. 6.1),
then the concepts found in the source code (Sect. 6.2). Section 6.3 shows the results
of the analysis together with a sample APD, while Sect. 6.4 handles periodic tasks.

6.1 Methodology of the Code Analysis

The foundation crane control application is analyzed top-down by a software engineer
without domain knowledge.

In the beginning, we start with the legacy program (main at code level), represented
by a single activity in the APD as can be seen in the top of Fig. 12. By increasing
the level of details at the activity Foundation Crane and applying the “Task
Parallelism” PDP at the main_loop, the bottom part of Fig. 12 can be constructed.
main_loop contains nine activities which are independent19 from each other since
each of them addresses a different part of the machine.

The search for situations where patterns could be applied had to be done manually
because there are currently no tools available. However, for collecting dependencies,
several tools can be employed: we used CScope,20 an open-source static code analysis

18 Interrupts take place every 1ms because this is the smallest period of periodic tasks.
19 They have a high degree of independence–however, the control application of the foundation crane
contains no components which are completely independent of all others since they all share the same data
structures, e. g. for accessing sensors and actuators.
20 Homepage: www.cscope.sf.net.
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Fig. 12 The first APD of the analysis: one activity with one level of more details. There is an initialization
and a main_loop which is executed forever. Pins are ommited to keep the diagram compact

tool and the Rapita Dependency Tool [48]. Additionally, we implemented a custom
tool to make lists of all shared variables used by a function and all functions called
by it. This enables us to see all shared variables used by an activity. In Phase II, we
employ this information to minimize the number of variables to be synchronized.

An activity with all of its shared variables can be seen in Fig. 13. Blue/italic
names denote shared variables that were directly found in the function called
vfahrwerk_links, while the black ones are found in its subfunctions, i. e. func-
tions called by vfahrwerk_links or their subfunctions. Beyond Fig. 13, pins
representing shared resources are always ommited to keep the APDs compact.

The analysis takes place in an iterative way: each time the level of details is rised or
patterns are applied, we get a new APD. For the new activites, a measurement-based
timing analysis is done with RapiTime [47], which is a commercial tool and part of
the Rapita Verification Suite (RVS).21 We use RapiTime on the original single-core
platform to estimate WCETs, because we did not have a detailed timing model of
the TriCore processor for a static timing analysis. Each WCET is noted down and
for the further analysis we focus on activities with a high WCET. Hence, we do
not waste time analysing insignificant parts of the program. The smallest resulting
activities have a size of around 20,000 cycles. For larger activities, we go on with
the analysis. We stop examining an activity, when it is small enough, we reach long
if-then-else branches, state machines, library calls or other code which seems
not to be apportionable anymore.

6.2 Concepts Found in the Source Code

The software of the foundation crane originates from another BAUERmachine. There-
fore, its oldest parts are almost 20 years old. It has grown over time just like most
industrial applications do.

The following main coding principles were discovered in the software during the
analysis of the source code:

21 Homepage: www.rapitasystems.com.
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Fig. 13 The activity
vfahrwerk_links together
with all shared variables found.
The blue ones are called directly
by the function
vfahrwerk_links, the black
ones by functions called by it.
On the input pin, all variables
which are only read are listed,
on the output pin all variables
which are only written to and on
the resource pin the variables
which are read from and written
to appear (Color figure online)

– Many options (e. g. special procedures of themachine like drilling, built-in sensors)
are switchedon/off by#define tags. Thus, already at compile time, a lot of source
code not relevant for the target machine is omitted reducing the binary size. On
the other hand, this makes it harder to understand the code and find parallelization
candidates.

– Functions typically control defined parts of the machine or provide functionality
of a certain scope.

– The code is control intensive and not data intensive; there are no large loops
but many conditions on parameters like the series of the machine, configuration
parameters, or sensor values.

– Software communicates via shared memory, e. g. sensor values are written by one
function to a shared global data structure and other functions read data from this
structure instead of directly accessing sensors. This is applied for sending/receiving
CAN bus messages, too.

– More recently added code parts employ mutator functions (like get/set) to
access shared global variables, older parts access them directly.

– State machines can be found, e. g. for the dynamic soil compaction application:
the weight can (a) be moved manually, it is (b) lifted automatically, or it is (c) in
free-fall.
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– Time slicing is sometimes used, i. e. time-consuming tasks are not processed in
‘one shot’ but with each call only a part is executed. This is done because all parts
together would delay other code parts for too long.

– Several periodic tasks are not invoked by the scheduler but are implemented in the
main loop and monitor system time waiting for a fixed time interval to have passed
since the last execution. Since the main loop is interrupted for the execution of
other tasks by the scheduler this might result in higher jitter for these “periodic”
tasks implemented in the main loop.

6.3 Results of the Code Analysis

After several iterations, we stopped the analysis. There were PDPs for Task Paral-
lelism, Periodic Task Parallelism, Data Parallelism and Pipelining available in the
parMERASA pattern catalogue (see Sect. 1.1 or [18]). In the control application of
the foundation crane, only the PDPs Task Parallelism and Periodic Task Parallelism
could be applied.

We found periodic tasks from the scheduler and some in themain loop. For them, the
parallelization approach is not applied. They are put on dedicated cores, see details in
Sect. 6.4. We also leave away the initialization in the parallelization approach because
it is only run one time for a few seconds, while the machine is then operating for
several hours.

Some parts of the control program seemed like candidates for data parallelism (e. g.
there are twowinches that are always steered the sameway), but their implementations
differ in some details and there are two control levers connected physically. Therefore,
it is better to leave these as separate activities and group them with a Task Parallelism
PDP.

In the remaining control program, the PDP Task Parallelism could be found 12
times and a maximum of 61 activities could be executed in parallel. The smallest ones
have a size of around 20,000 cycles, while the largest activity needs around 650,000
cycles. We analyzsed it, but breaking it into several activities seemed to be difficult,
because it contains a big state machine and there are lots of case distinctions. Also,
a lot of sensor values are evaluated and the machine reacts on them by regulating
actuators.

For execution on dedicated cores, activities should have a size of at least 150,000
cycles because of the arising overhead for organizing the execution on another core
and waiting at barriers etc. Therefore, the smallest activities may be grouped together
to be executed on another core as one large activity. To find an efficient trade-off
between runtime and size of activities and resulting overheads is task of Phase II.

Different parts of the code control different parts of the machine and are therefore
quite independent from each other. However, some resources are shared although
machine parts are independent from each other, e. g. the interface for sensors and
actuators. There are also some security features which check whether the machine
is allowed to operate and therefore result in shared variables and data structures.
Altogether, there were around 650 global variables. They limit parallelism since there
always remain dependencies. The potential will be investigated in Phase II.
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Fig. 14 APD of one part of the control program: there are a lot of functions that may be executed in parallel.
Each of them is controlling one component of the foundation crane

One of the APDs resulting in Phase I can be seen in Fig. 14. The activity
vLogo_mc contains an initialization activity and functions for machine control:
Funktionen_alle_MCs represents code for all machines of the MC series (foun-
dation cranes), Hintergrundbeleuchtung works for all machines (not only
foundation cranes, but also e. g. drilling rigs) and Funktionen_Oberwagen only
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for the MC128. The first and last ones contain activities that can also run in parallel.
Each of these activities is controlling one component of the machine. Most compo-
nents operate independently from each other. Therefore, it is possible to execute them
in parallel. TheWCETs are not shown, but most of these functions need around 40,000
to 120,000 cycles. Hence, it might not be efficient to run all of them in parallel, because
the arising overhead is too large. In Phase II, the parallelization result for employing
two cores to run vLogo_mc can be seen (see Fig. 16 there).

6.4 Scheduling of Periodic Tasks

In the single-core version of the control code, periodic tasks are executed by a scheduler
provided by the ECU supplier. The execution of periodic tasks interrupts the execution
of the main loop and can also interrupt periodic tasks of lower priority. This leads
to jitter in the execution times of periodic tasks and the execution time necessary
for an iteration of the main loop. To overcome this and to leverage timing analysis,
dedicated cores are reserved for the execution of periodic tasks in a simple static cyclic
schedule [4].

Table 4 shows an accumulated overview over 23 periodic tasks found in the soft-
ware; 8 were previously defined for the scheduler and 15 are carved out from the
main loop. Besides the period, which is between 1 and 1000ms, we measured the
maximumOETs of the tasks on the TriCore platform,22 which are the basis for further
considerations from a conservative point of view.23

The most extreme load will be every 3000ms, when all tasks have to be executed.
Executing all tasks together results in an accumulatedOETof 0.978ms to be completed
in a 1ms interval (then the next round of tasks with 1ms period has to be executed).
Because additional latencies should be foreseen for the scheduler itself and calling
tasks as well as synchronization costs, it seems appropriate to dedicate two cores for
the execution of periodic tasks: one core can execute tasks with 1ms period, the second
core executes all other tasks.

With amore sophisticated scheduling algorithm (see e. g. [50]), periodic tasks could
also comprise multi-threaded parallel code. Because this is not necessary for the eval-
uated software of the foundation crane we do not go into details here.

7 Phase II: Optimizing Parallelism at the Foundation Crane

The result of Phase I are APDs, together with WCETs and dependencies. Goal of
Phase II are optimized APDs, which are to be realized in code in Phase III. In Sect. 7.1,

22 Unfortunately, it was not possible to determine WCETs for tasks in the scheduler since RapiTime
supports only analyzing functions in the program flow and OTAWA did not work on the TriCore platform
because no detailed timing model is available.
23 Nevertheless, we are aware that the OETs may be different on the target platform. Our results show that
two cores are nearly filled by the periodic tasks now because of lower clock frequency and synchronization
overheads.
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Table 4 Accumulated list of
periodic tasks from the scheduler
and found in the main loop with
periods (ms) and OETs (ms)

Period (ms)
∑

OET (ms)

5 tasks 1 0.7170

2 tasks 2 0.1540

1 task 3 0.0083

7 tasks 10 0.0091

1 task 20 0.0590

6 tasks 100 0.0159

1 task 1000 0.0149

Overall OET sum every 3000 0.9782

the methodology how we optimize APDs is described and in Sect. 7.2 the results are
presented. Finally, we choose two scenarios to be implemented in Sect. 7.3.

7.1 Methodology to Optimize the APD

The activities should be placed on the cores in an “efficient” way. This means get-
ting a WCET speedup while trying to employ as few cores as necessary. Thus, the
synchronization overhead and idle times have to be kept low.

With a look on theAPD, it has to be decidedwhich activities should run sequentially
and which ones in parallel. Therefore, different configurations have to be evaluated.
A configuration specifies:

– which patterns should be enabled, i. e. program parts should run in parallel
– how many cores should be used for which pattern
– which and how many variables have to be synchronized

We developed a speedup approximation and parameter optimization tool24 to find
and evaluate different configurations, which is described in [30]. It takes the APD as
XML file and a list of shared variables, which was generated by our custom tool in
Phase I as input. Then, it applies a genetic algorithm to generate configurations with a
minimum number of used cores, shared variables and approximatedWCET. However,
the tool does not take slowdowns of sequential activities into account whenmore cores
are utilized, since it should also work for applications without real-time requirements.

7.2 Results of the Model-Based Optimization

The results of the optimization with our tool originally appeared in [26] and can
be seen in Fig. 15. As already stated in Sect. 6.3, the diagrams only show possible
configurations for the main loop and ignore periodic tasks. Figure 15a shows the
relation between the number of employed cores and the approximated execution time.
Every X represents one configuration, while ♦ denote the optimal configurations at

24 Download link: https://github.com/parmerasa-uau/parallelism-optimization/.
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(a) (b)

Fig. 15 Evaluation results from multi-objective optimization of the model of the main loop. They were
originally published in [26]. In the right figure, we added a curve With 20 % Slowdown following the
results of the parallelization of the avionics application, a optimization for minimal approximated execution
time and minimal number of cores (cut at 16). Times are all evaluated configurations, diamond are optimal
configurations representing the Pareto front, b Approximated optimal speedups for different numbers of
cores with/without parallelization overheads and with assuming a slowdown of 20% for each utilized core

the Pareto front. Configurations with more than ten cores do not reach an additional
speedup. This is due toAmdahl’s law [3]: themaximum improvement (here:maximum
speedup or minimum approximated execution time) is limited by the time needed for
the sequential part of the program (in our case: the largest activity).

Another limitation are the parallelization and synchronization overheads. We
assume them to be static 25%. The impact of these overheads can be seen in Fig. 15b:
it shows the approximated speedups for the configurations at the Pareto front with
and without latencies. While the speedup without latencies is above 8, it gets stuck at
around 5.5 when taking them into account.

Furthermore, we added a curve With 20 % Slowdown, which was not present
in [26]. It respects the worst case assumptions for memory interferences, which are
not respected in the latencies for synchronization. Following the results of the par-
allelization of the avionics application, we know that each additional core utilized
slows down the WCET even for sequential activities. Therefore, we assume a WCET
Slowdown Factor to increase theWCETs by 20% for each core which is utilized. This
means the estimated WCET is multiplied by 1.2 for 2 cores, 1.4 for 3 cores etc. At
the avionics application, the WCET slowdown factor was around 50–60%. Here, we
assume it to be lower since the application is control-intensive and not data-intensive.
But it illustrates that it might not be efficient to employ more than a few cores.

7.3 Choice of APDs to be Implemented

We chose to implement the configurations with 2 and 6 cores lying on the Pareto
front. The first one should provide a reasonable performance improvement while only
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Fig. 16 Optimized version of the APD from Fig. 14. It can be executed on two cores, the “small” activities
are grouped together

needing few cores. It should be kept in mind that two additional cores are utilized for
the periodic tasks. Thus, the 2 core implementation will need 4 cores altogether.

The 6 core implementation should show the scalability trend. When it reveals that
the 20% slowdown was too pessimistic, implementations with more cores might be
beneficial. Otherwise, the 2 core implementation might already be a configuration
with a good trade-off.

One part of the optimized APD for 2 cores is illustrated in Fig. 16. It shows
the same activity as in Fig. 14, vLogo_mc. The execution starts with the activ-
ity Funktionen_Oberwagen, which is executed by two cores (part0 by one
of them and part1 by the other one), then one of them executes the activity
Hintergrundbeleuchtung, while the other one is idle and finally both cores
execute the two parts of Funktionen_alle_MCs in parallel. The size of the activ-
ities in Funktionen_Oberwagen (part0 and part1) is quite similar and the
same holds for the parts of Funktionen_alle_MCs. This way, the best speedup
can be achieved, because both cores are working for most of the time.

8 Phase III: Implementation at the Foundation Crane

The result of Phase II is an optimized APD, which now has to be translated into
code. The employed time-predictable target platform [56] provides a programming
API, where two synchronization primitives as described by Gerdes et al. [18,19] are
suitable for process and progress coordination: F&I-barriers25 and ticket locks. Both

25 Fetch and increment barriers.
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are specifically designed for worst case performance by providing fairness between
hard real-time threads.

To realize parallelism as described and optimized in the model of the main loop in
Phase II it is necessary to implement the PDPs (Sect. 8.1) and to synchronize accesses
to shared resources (Sect. 8.2).

8.1 Implementation of Parallel Design Patterns

PDPs are, as mentioned already, abstract concepts textually describing best-practice
solutions for recurring situations of parallelism.Algorithmic skeletons are a concept on
source code level for the implementation of PDPs; they implement a parallel structure
and contain placeholders for problem-specific procedures and declarations (which
are inserted e. g. as function parameters). In general, Algorithmic skeletons reduce
the development and maintenance effort for typically error-prone parallel code by
reusability.

For the C programming language and with PThreads-like threading no Algorith-
mic Skeleton Library was available (cf. [21]). Therefore, we developed a new skeleton
library called Timing-analyzable Algorithmic skeletons (TAS), which implements pat-
terns from the parMERASA pattern catalogue [18]. It is described in [54], a manual
can be found in [30]. The skeleton implementation was done according to known
guidelines for timing analyzable code [9,17]. For example, the assignment of tasks is
done statically as well as the mapping of tasks to threads and cores with running one
thread on one core; there are no dynamic memory allocation, no work stealing [8] or
other kinds of dynamicity.

The main work effort here was to locate the position of PDPs in code and place
calls to the skeleton library. Furthermore, a mapping of the tasks to cores had to be
done, but this was an easy task since all cores share the same global memory with
equal access times and we apply a 1:1 mapping (one thread on one core).

8.2 Synchronization of Accesses to Shared Resources

To prohibit the parallel modification of shared resources, which could lead to unpre-
dictable states, the accesses to them have to be synchronized. This is done with ticket
locks. For each shared resource a ticket lock is added. Before accessing a resource,
the respective ticket lock is acquired and released after the access.

For each such shared resource, which can possibly be accessed by multiple con-
currently executed threads, all accesses in these threads have to be found and locks
have to be placed. This can be frustratingly complex due to the often big number of
“access sites”, the possibility of race conditions, and deadlocks if the locking order is
not kept consistent.

To ease the adaption of the source code with respect to synchronizing accesses to
shared variables the use of mutator methods (like get/set) is preferred wherever
possible. With a custom code generator the source code of the mutator functions
including synchronization aswell as other code fragments are produced for each shared
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variable. They can be placed where they are necessary or might be encapsulated as
dedicated header file.

It is obvious that mutator methods can only be used for atomic accesses to shared
variables. Ifmultiple variables should be updated only in one “transaction” because of a
kind of inherent relationship, e. g. a sensor value and the exact time of its measurement,
then (unchanged)mutatormethods cannot be employed.Also, if lots of operations have
to be done on a larger data structure, then atomic locks are also not the appropriate
way because of their impact on the performance. Instead, a lock should be acquired
before all the operations and released afterwards.26

The performance impact of mutator methods is considered to be low because they
provide good situations for function inlining by a compiler; in any case it is low enough
to justify the improved clearness of the source code.

In the middleware (see Sect. 5.2) of the foundation crane control code all synchro-
nization was done with directly placing locks into source code. This was appropriate
because most variables were only present in a single file, so only one file had to be
modified for each variable. If locks have to be nested then the order of locks has to be
consistent throughout all code files – else deadlocks can occur easily.

The application was completely instrumented with mutator methods for accessing
global shared variables. Situations as described above conflicting with mutator meth-
ods were not found. If a variable is read multiple times in a function then it has to
be decided whether a local copy should be kept or if always a new value is fetched.
Resolving this can be cumbersome and require domain knowledge; neglecting this
can lead to race conditions.

9 Evaluation of the Parallelized Foundation Crane Control Code

After following all three phases of the parallelization approach, we have a parallel
implementation which has to be evaluated by estimatingWCETs and comparing them.
In Sect. 9.1, we describe the setting of software and hardware for the evaluation, while
the methodology is topic of Sect. 9.2. Section 9.3 presents and analyzes results, which
are compared to results of other researches in Sect. 9.4.

9.1 Setup of Software and Hardware

Like in Sect. 4, the target platform is the parMERASA processor [43,56]. We utilize
4 or 8 cores, all cores are connected to a single global shared memory with a latency
of 18 cycles. Since it always has to be assumed that all cores interfere when accessing
sharedmemory,worst casememory access times have to be assumed: they are 54 cycles
for 4 cores and 96 cycles for 8 cores. Memory accesses are organized hierarchically
by utilizing a private first level cache for each core. Thereby, we assume a perfect

26 Alternatively a get method can return a copy of the structure which can be kept locally for reading
operations. However, if the structure is modified, consistency can be an issue when the local copy is written
back.
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Table 5 Configurations of the main loop

1core 4cores 8cores

Cores for main loop 1 2 6

Cores for periodic tasks 1 (same as above) 2 2

Active PDPs 0 5 4

Synchronized variables 0 82 104

Worst case memory access time (cycles) 18 54 96

instruction cache and a data cache with LRU replacement policy for non-shared data,
while shared data is not cached.

In the first parallelization scenario, 2 cores are reserved for the execution of periodic
tasks, another 2 cores are assigned to the execution of the main loop. Being a time-
predictable research processor, there is no dynamic scheduling of threads. Hence,
running the main loop with 2 threads means that 2 cores have to be reserved for it
(static thread mapping—1 thread is mapped to 1 core).

Additionally,we implemented a versionwith 8 cores to see if our slowdownassump-
tion from Sect. 7.2 is correct or if there is a better scalability. Again, 2 cores are utilized
for the periodic tasks. Here, for the main loop 6 cores are employed.

It does not make sense to compare the sequential version from the original platform
with the parallel versions on the parallel platform, because of different architectures
(cache sizes, memory latencies, etc.). Therefore, we also had to adapt the sequential
version to run on the parallel platform to be able to calculate a speedup.

An overview of the different versions can be seen in Table 5. It also shows how
many PDPs (of maximum 12) are enabled, howmany variables had to be synchronized
and which times have to be assumed for memory accesses.

9.2 Evaluation Methodology

To determine theWCET bounds, we use the static WCET analysis tool OTAWA27 [5],
which analyzes the binary file. The analysis is time consuming since part of it has
to be performed manually. Annotations in the source code can ease it by describing
interactions between different threads, e. g. which code parts require the same lock
or which threads are waiting at a barrier. For parallel parts that are realized with
our Timing-analyzable Algorithmic skeletons (TAS) [54], we have written a tool to
generate annotations for OTAWA.28 It is described in [30]. There comes no overhead
from the static WCET analysis, however, pessimistic assumptions e. g. for memory
accesses lead to a WCET estimation which is higher than the real WCET.29

27 Available as open-source software: http://www.otawa.fr.
28 Our tool can be downloaded at https://www.github.com/parmerasa-uau/tas2otawa.
29 The real WCET cannot be estimated, only a safe upper bound, see [59].
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(a) (b)

Fig. 17 Evaluation results: static WCETs and WCET speedup, aWCET for 1, 4 and 8 cores. At the 4 core
version, the WCET falls to around 40% of the sequential version, while it rises to a multiple at the 8 core
version, bWCET Speedup for 1, 4 und 8 cores. At 4 cores, the speedup reaches around 2.4, while at 8 cores
a slowdown to around 0.15 shows up

We were verifying the correctness of the parallel implementation by compar-
ing the outputs of the program, especially the sent CAN messages, and utilizing
RapiCheck [48]. This did not reveal any issues.

9.3 Results and Their Interpretation

Figure 17 shows the estimated WCETs in million cycles and the achieved WCET
speedups. As can be seen in Fig. 17a, a WCET of 4.1 million cycles was estimated
for the sequential version, while it was around 1.7 million cycles at the 4 core version
and 32.2 million cycles at the 8 core version. In Fig. 17b, the according speedups
can be seen. The 4 core version shows that our approach works: a WCET speedup of
2.39 is achieved. At the 8 core version, it gets clear that limits are reached: a WCET
slowdown of 0.15 occurs. Configurations with more cores lead to results even worse
than the 8 core version. Therefore, we analyzed the application to find reasons for the
bad scalability and found them in the structure of the application (Sect. 9.3.1) as well
as the arising contention (Sect. 9.3.2).

9.3.1 Limits Imposed by the Application Structure

The application structure revealed the following: first, there are several large non-
parallelizable parts which suffer from the worst case memory access time slowdown
and limit the overall parallelization potential due to Ahmdahl’s law [3].

Furthermore, 650 global shared variables in an application with a few 10,000 lines
of code are a signal for too many dependencies. Therefore, a refactoring may be
necessary to achieve better results. Kempf et al. [32] come to the same conclusionwhile
analyzing the limits of their automatic parallelization. During our parallelization of
the foundation crane application, we focused on changes following the parallelization
approach and did not do any further refactoring.
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The application is control-intensive, no possibilities for data parallelism could be
found. Therefore, it is not optimal for parallelization. In Sect. 9.4 we compare our
results with parallelization results of other researches, who come to similar results up
to four cores and mostly did not investigate more cores. Also, it is hard to get good
parallelization results with control-intensive code. It is even harder when parallel
performance has to outperform the slowdown caused by higher memory access times
when employing additional cores.

Finally, it should be noted that the foundation crane application is not a benchmark
or a small part of an application which is well suited for parallelization. It is the
complete control program of a construction machine. As such, it is the most complex
application we ever made a parallelization for and a WCET analysis of. We see the
limits thatmodules of the application are coupled very closely – there are no completely
independent parts. Therefore, synchronization is always needed and attention has to
be spent on race conditions and if control code of different machine parts can really
be executed at the same time.

9.3.2 Limits Imposed by Contention

This leads to analyzing reasons for contention: Several components of the machine
exist more than once and have similar, but not identical code to control them, e. g.
there are several hydraulical pumps or several rope winches. Since the machine parts
are different, these functions are parallelization candidates, but they share quite a lot
of global variables and therefore interfere with each other. Additionally, several data
structures are utilized almost everywhere in the application (e. g. those for sensors and
actuators) and thus each parallel access adds to the worst case waiting times.

Another issue is a periodic task updating sensor and actuator values. It has a very
short period and uses locks during each update. This task might be the central point to
reduce contention. However, making changes here requires domain knowledge since
data consistency is crucial.

With each additional core, the worst case memory access times increase because it
has to be assumed that all other cores access memory before the own request is being
processed. This is one of the critical points limiting the scalability. Additionally, the
number of shared variables to be synchronized increases with the number of cores.30

Each variable to be synchronized gets two additional memory accesses for the lock
and unlock functions protecting it. Therefore, a variable access taking one memory
access without synchronization takes three memory accesses with synchronization.
Furthermore, the accesses to non-shared data are cached, while those to shared data
are not cached. These effects add to the worst case memory access times.

We assume that an application like this cannot be distributed over many cores
without refactoring. For this, domain knowledge is needed again. However, even for
this very large and complex application, our approach is able to achieve a WCET
speedup for a few cores. This enables to start utilizing multi-core technology with low
effort.

30 Configurations with more cores usually have more parallel parts requiring more shared variables to be
synchronized.
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9.4 Comparision of the Results with Other Researches

Rochange et al. [49] already observed the slowdown of sequential code when utilizing
more cores at the parallel implementation and WCET estimation of a parallel 3D
multigrid solver: their implementation with a single thread has a WCET of 54 million
cycles with one core and 71 million cycles with 9 cores present (but still only 1 thread
being executed). For the WCET analysis, OTAWA was utilized. A WCET speedup
was only possible when achieving a high parallelism, otherwise it was devoured by
the high worst case memory access times.

Gerdes et al. [20] parallelized the control code of a drilling rig, which is most close
to our foundation crane since it is another construction machinery series by BAUER.
Their parallel implementation was based on domain knowledge, the WCET analysis
took place with RapiTime. They achieved a WCET speedup of 1.08 for 2 cores and
1.93 for 4 cores. More cores were not investigated.

Kehr et al. [31] parallelized a diesel engine management system (EMS) for 2, 4
and 8 cores. They applied the original pattern-supported parallelization approach by
Jahr et al. [27,28]. Their parallel EMS reaches a WCET speedup between 2.1 and 4.5
on 12 cores depending on the worst case overhead for data exchange. OTAWA was
used for theWCET analysis. The highest efficiency is achieved with aWCET speedup
between 1.2 and 2.7 on 4 cores. On two cores, only a WCET slowdown is realized.
The authors describe that communication follows a repetitive pattern and the EMS is
therefore “an ideal use case” for parallelization [31]. Their results might give a clue
what is possible when an application is structured in a way facilitating parallelization.

The research of Cordes andMarwedel [11], Cordes et al. [12] focusses on automatic
parallelization. As explained in the beginning, this makes timing analysis very hard.
However, we make a comparison with their results since this might be the preferred
way when parallelizing code without timing constraints. Cordes et al. [12] present
speedups of the automatic parallelization of several applications and reach speedups
of up to 3.7 with four cores. Their industrial application is part of the INTRACOM
TELECOM’s Wimax system. It reaches a speedup of 2.2 on four cores, more cores
are not investigated. A timing analysis does not take place because it is only a firm
real-time application. Therefore, these results are only observed times, not including
assumptions about worst case memory access times.

Another approach of automatic parallelization is presented by Kempf et al. [32].
They apply their parallelizing compiler on 44 real-world industrial applications and
reach speedups of up to 2.0.31 Again, these numbers are notWCETs, but only observed
execution times.

Up to four cores, the results of the foundation crane control code parallelization
are at the same level as other approaches—whereas our approach ensures timing
analysability. Given the reasons why the foundation crane application scales bad, a
comparison of the 8 core results does not make sense. Furthermore, there are only
very few researches providing parallelization results for more than four cores.

31 There is also one speedup of 5.0—Kempf et al. describe that this is a benchmark testing different com-
ponents of the system. The parallelized version tests all components simultanously instead of successively.
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10 Lessons Learned

While applying our parallelization approach on the two industrial applications, we got
an insight on the importance ofmulti-core platforms for industrial needs, but also on the
challenges occuring at the parallelization process. In Sect. 10.1, we summarize what
we have learned from the parallelization of the industrial applications, in Sect. 10.2 we
conclude what this means for legacy code parallelization in general and in Sect. 10.3
there are conclusions for the WCET analysis of parallel applications.

10.1 Lessons Learned from Parallelization of the Industrial Applications

Big opportunities for improvement arise from the move towards a multi-core plat-
form. The main chance could be the higher performance which such platforms can
provide. In the foundation crane example, this can help implementing more sophisti-
cated safety measures and better control algorithms (closed loop instead of open loop).
Also, because the system is not running at its performance limits anymore, the devel-
opment effort could be reduced a bit because of lower need to find the most efficient
algorithms at any price. At the signal processing application, more processing power
can help to get results more often and therefore lead to better reactions on changes of
the environment.

The most labor-intensive task was the analysis of the single-core source code. This
could be improved by novel tools to detect data and control dependencies. Because of
now better tool support the optimization towards a WCET speedup can be accelerated
for future projects. The implementation is easy if algorithmic skeletons are applied
for PDPs; for the synchronization the described code generator can assist. However,
this synchronization work can be error-prone. The division of the original source code
into already relatively independent function controlling defined parts of the machine
helped very much in the recognition of chances for parallelism. However, the code
parts are not as independent as it seemed at the first sight. Altogether, the foundation
crane application is sticked together very closely with a lot of dependencies. While
mutator functions for global shared variables are of minor importance in the single-
core software they ease the synchronization in the parallel software because locks can
be placed there instead of many different positions in the source code.

Currently, the critical issue is that suitable multi-core ECUs are available, e. g.
Infineon AURIX [25], but the system software would have to be adapted by the ECU
provider. Development tools would have to be changed to support changed debugging
needs in multi-core processors, e. g. to find deadlocks or race conditions.

10.2 Conclusions for Parallelization in General

Parallelization of sequential legacy applications is highly desired to keep the testing
and certification efforts low. However, systematic parallelization only seems to be a
starting point. It looks like current industrial applications need to be more restructured
to utilize more than a few cores. This is in accordance with the results of Kempf et

123



Int J Parallel Prog (2016) 44:1296–1336 1331

al. [32] and Gerdes et al. [20], who come to similar speedups and conclusions at the
parallelization of industrial applications.

Furthermore, the potential of multi-core architectures may not be exploited by just
parallelizing sequential legacy programs, but by utilizing the additional computational
power for additional or more complex algorithms. This may not be catched by compar-
ing speedups sincemulti-core architectures enable algorithmswhichwere not possible
on single-core architectures.

The further development of sequential legacy applications should respect the goal
to move to a parallel platform. Therefore, paying attention at several points may
increase the potential for parallelization. Developing functions in a way that they can
be executed in parallel seems to be most important. This means to give them a specific
region or scope where they work and to limit their side effects. The remaining side
effects should be documented in detail. Computational intensive features should be
implemented in a way that they could work on a dedicated core. Functions should get
their input via parameters and not via global variables. The latter should be utilized only
where necessary—ideally, they are only written in one function and read everywhere
else. Large data structures should be broken down into smaller ones to enable parallel
processing on independent parts.

Some developers already think “in a parallel way” because the execution of sequen-
tial program fragments—already on single-core platforms—is often interrupted by
periodic tasks.

10.3 Conclusions for WCET Analysis of Parallel Applications

When employing a static WCET analysis tool like OTAWA [5], often very pessimistic
assumptions have to bemade, e. g.maximumconflicts on eachglobalmemory access or
cache misses on almost every cache access. This leads to a high overestimation result-
ing in WCETs being far from what would be realistic. Measurement-based WCET
tools like RapiTime [47] typically give better estimations, because they respect the
real behaviour of the hardware. However, it is never sure if the worst case was catched
during the measurements or if a state may be reached which is worse than that what
was determined to be the “worst case”.

Since both methods have shortcomings, current research focusses on alternative
approaches. The first is probabilistic timing analysis [1,2,13], which assumes certain
probabilities when accessing a cache or the global memory. Therefore, not each access
is assumed as cache miss or a memory access with a very high latency, but realistic
probabilities help to estimate a tighter WCET. Another solution could be typical worst
case analysis [45,46], which basic idea is to ignore situations e. g. where the WCETs
of two seldom activities add to each other when they happen at the same time. Thus,
very unrealistic cases are not taken into account and theWCET estimation should also
be better.

For estimating WCETs of parallel applications, these new approaches may be
reasonable since assuming worst case access times everywhere seems to be too pes-
simistic.
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With view to many-core architectures, a single global shared memory may be a
bottleneck not only at the WCET, but also at the OET. Therefore, e. g. Metzlaff et
al. [39] propose to utilize distributed memory in many-core architectures to facilitate
better timing predictability.

11 Summary and Outlook

We presented a parallelization approach and applied it on two industrial applications.
Our parallelization approach for hard real-time systems is an extension of the pattern-
supported parallelization approach by Jahr et al., which was already applicable on
embedded real-time systems. We extended it by an additional Phase respecting the
needs of the implementation by employing timing-analyzable algorithmic skeletons
(TAS) and code generation. Thus, our parallelization approach for hard real-time
systems consists of three phases:

– Phase I: the legacy program is being analyzsed and represented in an APD. It
consists of activities and PDPs exposing the program parts that can potentially be
executed in parallel. Additionally, dependencies between the activities are repre-
sented in the diagram or in a list and the activities’WCETs are determined to show
how much processing time they contribute to the overall WCET.

– Phase II: with the APD from Phase I and the additional information, a speedup
approximation and parameter optimization tool can be utilized to optimize the
APD. The goal is to minimize the overall WCET, the number of shared variables
to be synchronized and the number of cores utilized.

– Phase III: while phases I and II worked on the model, in Phase III the source code
is changed. The implementation takes place by employing the TAS and a custom
code generator.

Finally, we added a refinement stage which means to repeat the phases II and III
iteratively based on the WCET analysis results of the parallel version.

In our opinion, the parallelization approach is not limited to hard real-time systems
and may be employed for any other program, too. The three phases were applied on
a signal processing application from the avionics domain as well as on the industrial
control code of a large construction machine—the foundation crane BAUERMC128.
Both are embedded hard real-time applications, having to fulfill timing constraints.
The implementation took place for the parMERASA predictable multi-core platform
with up to 18 cores. For evaluation, we estimated WCETs and WCET speedups for
the sequential and parallel implementations. At the foundation crane control code, we
compared the results with other researches.

We depicted not only the parallelization of these two industrial applications, but
also the problems arising and why it is hard to get a WCET speedup. For the latter
there is the problem of increasing WCETs at sequential program parts due to memory
interferences and worst case waiting times (all other cores may interfere before the
ownmemory request is processed). Therefore, the possibleWCET speedup is strongly
limited. At the signal processing application, we achieved a WCET speedup of 1.5
on 10 cores by utilizing the PDPs for data parallelism and pipelining. The control
application of the foundation crane has a WCET speedup of 2.39 on 4 cores. These
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results show that our parallelization approach works and it is possible to parallelize
an embedded hard real-time application.

However, the control program of the foundation crane is sticked together very
closely and therefore, with 8 cores a WCET slowdown of 0.15 occurs. This shows the
lack of scalability of the foundation crane control code—a high contention caused by
the software structure breaks the timing guarantees. Furthermore, the more cores are
utilized, the stronger the effect of worst case memory access times is—alternatives at
timing analysis techniques and/or to global shared memory may have to be employed.
It should also be mentioned that the foundation crane control code is not a small
example which can be parallelized easily, but the complete control application which
controls everything on the machine and is a representative example for code from the
automation domain. We assume that better results will be achieved by combining our
parallelization approachwith domain knowledge and a restructuring of the application.

Finally, we concluded what can be learned from the parallelizations: sequential
software development can already prepare the way to increase the parallelization
potential. Furthermore, alternative WCET estimation methods might be beneficial for
the WCET analysis of parallel applications.

What we had to realize was that the tool support is low. Therefore, we developed
some tools and also the TAS.Most of our developments are open source, the links have
been provided throughout the article. As there is still lack of tool support for detecting
situations where parallelism could be realized, we see this as our future work.
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