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Abstract Memory stalls are a significant source of performance degradation in mod-
ern processors. Data prefetching is a widely adopted and well studied technique used
to alleviate this problem. Prefetching can be performed by the hardware, or be ini-
tiated and controlled by software. Among software controlled prefetching we find a
wide variety of schemes, including runtime-directed prefetching and more specifi-
cally runtime-directed block prefetching. This paper proposes a hybrid prefetching
mechanism that integrates a software driven block prefetcher with existing hardware
prefetching techniques. Our runtime-assisted software prefetcher brings large blocks
of data on-chip with the support of a low cost hardware engine, and synergizes with
existing hardware prefetchers that manage locality at a finer granularity. The runtime
system that drives the prefetch engine dynamically selects which cache to prefetch to.
Our evaluation on a set of scientific benchmarks obtains amaximum speed up of 32 and
10% on average compared to a baseline with hardware prefetching only. As a result,
we also achieve a reduction of up to 18 and 3% on average in energy-to-solution.
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1 Introduction

Modern high-performance processors incur large latencies in accessing off-chip mem-
ory, causing CPU stalls and reducing performance [23,36]. Many processors include
latency hiding mechanisms to reduce the number of stall cycles; examples include
non-blocking caches, out-of-order execution and data prefetching. Although the size
of on-chip memories keeps increasing, current memory hierarchies continue working
at the granularity of a cache line. This is problematic for software-based prefetch-
ing mechanisms because one prefetch instruction must be executed per cache line
requested, adding significant instruction overhead [7].

Block prefetching is a good solution to this problem. Some proposals rely on com-
piler analysis [18], others onmanual insertion of prefetch directives in the code [1] and
others use a runtime system to guide the prefetch engine [26]. While all approaches
are valid, compiler analysis is still limited, and manually inserting prefetch instruc-
tions in the code is difficult and time-consuming. Using a runtime system to guide
prefetching, on the other hand, is a simple and efficient way of performing block
prefetching. A runtime system can see further into the future than current compilers
are able to, has dynamic information of the application and requires minimal user
intervention.

In particular, the runtime systems of task-based programming models provide a
perfect opportunity for dynamic block prefetching. On these programming models
computation is divided into tasks that can be executed concurrently. The runtime
system knows exactly when a task is going to execute, the data that it is going to access
(as specified by the user, see Sect. 2.3) and the CPU on which it will be scheduled. The
runtime system is therefore able to perform data prefetching while minimizing (if not
completely avoiding) commonly associated problems such as prefetch mispredictions
and cache pollution.

This paper presents a hybrid prefetching scheme that integrates a runtime-assisted
block prefetcher with existing prefetching mechanisms. The runtime system guides
a prefetch engine in bringing on-chip large blocks of data. Once the data is on-chip,
other prefetching mechanisms are used to manage locality at cache line granularity by
bringing data closer to the CPU.

The runtime system leverages its information about application schedule to decide
when to start prefetching. In addition, it compares the task input data and cache sizes
to dynamically select the best prefetch destination for each task.

The main contributions of this work are:

– A new block prefetcher guided by the runtime system that integrates with existing
hardware prefetchers to effectively reduce memory access time.

– A mechanism that uses runtime schedule and cache information to dynamically
decide when to prefetch and which cache to prefetch to.

– An implementation of a hardware block prefetch engine called Multi-core Data
Transfer Engine (MDTE).
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2 Background and Motivation

This section discusses the motivation for block prefetching and explains why it is best
performed by a runtime system.

2.1 Block Prefetching

Traditional software and hardware prefetching techniques work at a cache line gran-
ularity. This is especially problematic for software-based prefetchers, where an
additional instruction must be executed per cache line requested. The effect on the
instruction cache and the resulting overhead caused by these prefetch instructions can
be significant [7]. In order to maximize memory bandwidth and avoid unnecessary
overheads, it is more beneficial to use block transfers than to work at a cache line
basis [18]. Transfering larger blocks of data allows also for better overlapping of data
transfer and computation.

Previous block prefetching proposals have relied either on the compiler or on the
programmer to insert prefetch instructions in the code. Manually inserting prefetch
instructions is time consuming and error prone, while compilers require complex
program analysis and lack any form of dynamic feedback. We argue that in contrast,
runtime-assisted prefetching is the simplest and most effective way of performing
block prefetching.

2.2 Runtime-Directed Prefetching

Using a runtime system to guide the prefetch engine hasmultiple advantages, specially
those found on task-based programming models (see Sect. 2.3).

First, it requires minimal user intervention and does not rely on complex compiler
analysis. Second, if the runtime system has knowledge ofwhat data is accessed by each
task, it can prefetch only that data without speculation, decreasing cache pollution.
Third, the runtime system is in charge of scheduling work. Having knowledge of the
execution flow simplifies the timeliness considerations of prefetching, since it is known
when and where the data is required. Fourth, if the runtime system has knowledge of
the data used by each task and it is provided a map of the cache hierarchy, it can
dynamically choose which cache level to use as a destination for the prefetched data.
The advantage of this approach is two-fold: it brings the data as close to the processing
elements as possible, and it also guarantees that no data of the current task will be
evicted by the prefetched data.

2.3 Task-Based Programming Models

In a task-based programming model the programmer divides the work into multiple
tasks that can be executed concurrently. These task are enqueued into a task queue
fromwhere they are pulled by the runtime system and scheduled based on the available
resources. In this manner, the runtime system can see the future simply by looking at

123



Int J Parallel Prog (2017) 45:530–550 533

Fig. 1 Example code for a task-based

the task queue, and hence can effectively perform block prefetching for the upcoming
tasks.

Cilk [17], OpenMP [9], Sequoia [15], OmpSs [13], StarPU [2], X10 [6], Chapel [5]
and Intel TBB [27] are examples of task-based programming models. Some of these
allow the programmer to specify additional information for each task, such as the
device where it can run or the input and output data used [2,9,13]. Figure 1 shows a
code snippet of a Cholesky factorization programmed in a task-based programming
model. Pragma annotations are used to identify and declare tasks. The keywords in,
out and inout are used to specify input and output dependencies, corresponding to the
read-only, write-only and read-write task data respectively. This information allows
the runtime system to prefetch only data that is known to be needed. In addition, data
locality can be better exploited by taking informed scheduling decisions.

3 Related Work

Hardware and software prefetching techniques have been studied extensively [4,10,
11,24,25,31,33]. Hardware-controlled prefetchers are highly effective for applica-
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tions with regular data access patterns [4]; they have been integrated into all modern
high-performance processors, including Intel Core i3/i5/i7, AMD Opteron and IBM
POWER, and many embedded and mobile processors, such as ARM’s Cortex-A9 and
Cortex-A15.

Most software-based prefetchers require executing one prefetch instruction per
cache line prefetched, adding a non-negligible overhead and straining the instruction
cache [7]. The benefit of prefetching large blocks of data instead of individual cache
lines was first noted by Gornish et al. [18]. In their approach, the compiler performs
static program dependence analysis on array references in nested loops, inserting a
block prefetch command before the data is referenced. Our proposal, in contrast,
exploits the runtime system’s knowledge of the upcoming task schedule to control the
block prefetcher, and it is not restricted to nested loops.

Wall [35] presented a study on the effect of different code optimizations on the
memory subsystem, including software block prefetching using the MOV instruction.
This approach requires the programmer to insertMOV instructions by hand, and, as the
author found, in some cases it may not work well with other compiler optimizations.

ARM includes a block prefetcher in their Cortex-A8 and Cortex-A9 processors [1].
Their PreloadEngine, as it is named, allows the user to load selected regions ofmemory
into the L2 cache. The Preload Engine expects the programmer to add load directives
by hand, requiring a good understanding of the code and some knowledge of the
underlying architecture. ARM’s Preload Engine is attached to the cores, and is only
able to direct the data transfers to the last level L2 cache. By targeting a task-based
programming model we simplify this process, leaving the decisions to the runtime
system that is able to dynamically decide when to initiate the prefetch and where to
prefetch into.

Lu [21] propose a dynamic optimization system that uses hardware profile infor-
mation gathered at run-time to dynamically insert software prefetch instructions in
the code. They take into account the variability and impact of micro-architectural
constraints and memory behavior on the performance and effectiveness of software
prefetching. Even with this dynamic behavior, their proposal relies on data access
pattern detection. The speculative nature of this approach can be more error-prone, as
the runtime system may incorrectly insert prefetch directives for data that will not be
used, with all the negative effects it can cause such as additional contention in the inter-
connect and cache pollution. In addition, the performance monitoring and dynamic
recompilation adds significant overhead. In our approach, the runtime system only
prefetches data that is declared to be an input of a task, and so it will never fetch data
that is not needed.

Papaefstathiou et al. [26] also propose a software prefetching and cache man-
agement mechanism for task-based programming models. However there are several
differences with our approach. First, whereas their proposal is an alternative to tra-
ditional hardware prefetchers, we propose a hybrid hardware-software prefetching
scheme, where software prefetching brings data on-chip to hide the large DRAM
latencies, and hardware prefetching moves the data closer to the processing units.
We evaluate multiple hardware prefetching configurations and perform an extensive
design space exploration of parameters such as prefetch degree and distance, and
evaluate the best configuration on each case running in conjunction with our proposed
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software prefetching technique. Second, whereas Papaefstathiou et al. evaluate their
approach using a simple in-order processor, our evaluation uses an advanced out-of-
order processor that can hide on itself some memory latency. We therefore establish
that the approach is also applicable to high-performance processors implementing
aggressive instruction-level parallelism techniques where there is lower benefit from
additional prefetching. Third, they propose a prefetch engine per core, while our pro-
posed hardware engine (MDTE) may be shared by multiple cores, reducing chip area
and power consumption. Additionally, grouping prefetch commands in a common
engine allows for the coordination of priorities among the cores, and also allows us
to introduce effective throttling mechanisms. Finally, while their approach prefetches
only to the Last Level Cache, we believe a key aspect of runtime-assisted prefetching is
leveraging all the information the runtime system has by letting it dynamically choose
the prefetch destination.

4 Runtime-Assisted Block Prefetching

This section describes the implementation details of the runtime-assisted block
prefetcher, as well as the accompanying hardware support, the Multi-core Data Trans-
fer Engine (MDTE). We also introduce the multi-core architecture targeted in this
work.

4.1 Target Architecture

Previous runtime-assistedblockprefetchingproposals target simple in-order cores [26].
In contrast, we aim to validate that this technique is also effective reducing memory
access time when using out-of-order cores.

Figure 2 shows a high-level overview of the architecture targeted in this work. The
cores have private L1 and L2 caches. All the cores are connected through a crossbar

Fig. 2 Targeted multi-core architecture
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to a shared Last Level Cache/L3 (LLC), itself connected to off-chip main memory.
The MDTE can be placed next to a core’s L2 or the shared LLC. If placed next to a
private cache it will only process prefetch commands from that core. If placed next to
the LLC it can receive and process prefetch commands from every core. Our proposed
technique would work with only the shared MDTE, but ideally we also want private
MDTEs to let the runtime system decide which one to use in every case.

4.2 Prefetch Commands

Prefetch commands are simple instructions that reference a contiguous block of mem-
ory. They contain a starting address and data size. They are generated by the runtime
system based on a task’s input data and have unrestricted length. These commands
initially contain logical addresses, but since the physical pages they map to may not
be contiguous in memory, the need to be split at page boundaries. Splitting prefetch
commands and address translation is performed in theMDTE (see Sect. 4.4 for details).

4.3 ISA Extensions

In order to enable the runtime system to issue prefetch commands we extend the ISA
with the following user mode instruction:

prefetchX r1, r2

r1 is the register holding the base address of the block to be prefetched, r2 is the register
holding the size of the block in bytes, and X takes the value of the cache level to which
the prefetch command is to be sent. In this manner, the instruction prefetch2 r1, r2
would send a prefetch command with the address in r1 and the size in r2 to the MDTE
corresponding to the core’s L2 cache. In order to send a prefetch command to the
LLC’s, i.e., L3 in Fig. 2, the runtime system would issue the instruction prefetch3 r1,
r2. If the runtime system has not been provided with a cache hierarchy map and there
is no L3 cache in the system, the instruction is ignored. In the targeted architecture
(Fig. 2), one bit in the instruction word is enough to specify whether the prefetch
instruction targets the L2 or the L3.

4.4 MDTE Architecture

The MDTE is a programmable DMA-like controller that receives and processes the
prefetch commands generated by the runtime system. It does not require any modifi-
cation to existing caches. Figure 3 shows its design. The main components are:

– An input buffer to store the received prefetch commands until they are queued.
– A prefetch command queue where commands are inserted in FIFO order. Each
command in the queue can prefetch up to one memory page. Each entry in the
queue holds the starting address, size, address space identifier (ASID), a translated
bit and a translation requested bit.
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Fig. 3 Multi-core data transfer engine components

– A Translation Lookaside Buffer (TLB) to speed up address translation.
– An output buffer to store translated commands until they are sent to memory.

The MDTE reads the input buffer for new commands. When a new command is
received, it is split into page aligned commands and enqueued in the prefetch command
queue. New commands are discarded when the queue is full. The commands received
contain logical addresses that need to be translated. There are two main advantages
to delaying the translation until the command arrives at the MDTE: First, if address
translation were to be done at the core’s MMU, a prefetch command for a big block of
data (e.g. a few megabytes) would be split into a large number of page-sized prefetch
commands. These would have to travel to the corresponding MDTE, increasing traffic
on the interconnect and reducing available bandwidth. Second, address translation
at the MMU’s is in the critical path. The additional translations would delay the
translation of demand requests, further degrading performance.

The MDTE contains a TLB to speed up address translation and reduce the traffic
caused by the translation requests. The impact of adding these TLBs is not significant
since they need not be very large (seeTable 1).We also use aTLBdirectory tominimize
the overhead of TLB shootdowns [34].

Once a translation response is received, the prefetch command is updated and
moved to the output buffer. Interrupts and exceptions canmodify the logical to physical
addressmapping, rendering the prefetches useless. In these situationsweflush the TLB
and the entries in the prefetch command queue whose translation has been requested,
as well as the translated commands from the output buffer.

On every cycle at most one request will be issued, either a prefetch command or
a translation request. Commands from the output buffer are sent to their target cache
where they are issued one cache line at a time in round robin fashion. These prefetches
coexist with hardware-based prefetch requests but are much less time sensitive, hence
the need for some form of coordination. See Sect. 4.7 for more details.
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Table 1 Memory hierarchy configuration parameters

Parameter Value Parameter Value

Cache (L1/L2/L3) DRAM DIMM

Size (KB) 32/256/2048 per core Autoprecharge Disabled

Latency (cycles) 2/12/45 Data rate (MT/s) 1600

Associativity 2/8/16 Bursts per access 8

MSHR entries 8/32/8 per core tRCD,tRP,CL,tRC,tWR,tWTR –a

MDTE (L2/L3) Memory controller

TLB size 16/16 Access queue size 128

Prefetch queue size 256/1024 Number of DIMMs 4

a DRAM timing parameter values match the Micron DDR3-1600 specification

4.5 Prefetch Consideration: Timeliness

An important aspect of any prefetch mechanism is deciding when to issue a prefetch
request. In our implementation, prefetching for a task is triggered right before the
execution of the preceding task begins, in the following manner: when task A com-
pletes, the core executes the runtime scheduler to obtain the next two ready tasks B
and C. The core then executes the instruction to prefetch the inputs of task C, an oper-
ation that represents an overhead in the order of tens of assembly instructions and is
negligible compared to the cost of running the scheduler algorithm. After executing
the prefetch instruction, the core begins executing task B while the data for task C
is being prefetched, successfully overlapping data movement with computation. At
that point task C is pinned to the hardware thread executing task B, disabling work
stealing and guaranteeing that task C will be scheduled to execute on the core whose
caches hold the prefetched data. By doing so the runtime system implicitly applies an
affinity-based scheduling policy, allowing for simpler scheduler algorithms.

4.6 Prefetch Consideration: Destination

The private MDTEs will always forward the translated commands to the private cache
they are attached to, and the sharedMDTE to the LLC. Thus, another important aspect
to determine is where to send the prefetch commands to, i.e., the prefetch destination.

It is always desirable to allocate the prefetched data as close to the processor as
possible without affecting the performance of the current task. Although the runtime
system does not know exactly the content of each cache, it has knowledge of the input
data used by each task. Using that information it is able to approximate where the
prefetched data can be placed without evicting the working set of the current task.
The runtime system can then dynamically decide the best prefetch destination before
issuing the prefetch command.

We initially attempt to prefetch data into the private L2 cache (L1 caches are too
small for block prefetching). Once the runtime system estimates the L2 cache cannot
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Fig. 4 Algorithm used by the runtime system to decide the prefetch destination

Fig. 5 Prefetch destination of the input data for each task for two runs with different L2 configurations.
Input data size: 160KB

holdmore data without evicting the current task’s working set, we direct the remaining
prefetch commands to the shared MDTE.

Figure 4 summarizes the algorithm used by the runtime system to decide the
prefetch destination. The amount of data that can be placed in the L2 is calculated
as: capacity = si zeL2 − inputcurr − pre f Datanext, where si zeL2 is the size of
the L2 cache, inputcurr the size of the input data from the task currently executing
and inputnext from the task that will be executed next. pre f Datanext represents the
amount of data already prefetched from the next task.

Figure 5 shows the destination of the prefetched data for two executions of the same
benchmark with two different cache configurations. In this example, for simplicity, all
tasks have 160 KB of input data.

The caches are initially assumed to hold old data, so the data for task 1 is always
placed in the L2. On a system with a 128 KB L2 cache, only 128 KB of data fit; the
remaining 32 KB are then prefetched into the L3 cache. When the runtime system
begins prefetching for task 2, the L2 is filled with tasks’ 1 working set, therefore the
160 KB of data are prefetched into the L3. This behavior repeats until the end of
execution.

On a system with a 256 KB L2 cache, the 160 KB of input data from task 1 are
initially placed on the L2. When the runtime system begins prefetching for task 2,
96 KB of it’s input data are prefetched into the L2 and the remaining 64 KB into the
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Table 2 Benchmarks evaluated, average task input size, average task creation overhead and average exe-
cution time per task

Benchmark Input size (KB) T. creation (µs) T. duration (µs)

Histogram 256 18 546

Matmul 128 14 631

Reduction 256 17 145

LU 128 16 1000

PBPI 200 13 114

Jacobi 258 15 245

MD5 512 14 2021

L3. On this configuration the working set of the currently executing task co-exists with
a portion of the following tasks input data.

The L3 cache is assumed to be large enough to hold the working set of each of the
executing tasks plus the prefetched data. As it will be further discussed in Sect. 5.2,
it is usually desirable to divide computation into small enough tasks to improve load
balancing. Table 2 shows the average task input data size for our workloads, and
Table 1 the configuration parameters of the simulated architecture. This shows that
even for tasks with the largest input data size, the L3 cache is large enough to fit all
the required data.

Since the runtime system can be informed of the characteristics of the memory
hierarchy, if the ratio of task input data to last-level cache size were to change, it
would be trivial to modify the runtime system to stop prefetching when necessary.

4.7 Coordinating Hardware, Software Prefetch and Demand Loads

The main goal of our mechanism compared to previous prefetching work is to bring
data on-chip at a coarser granularity (blocks vs cache line) with the help of the runtime
system, and combine it with other traditional hardware and/or software prefetching
mechanism to move data closer to the core, i.e. the L1 or L2 caches.

Unfortunately, prefetching has potentially a high cost in terms of bandwidth usage
and network contention, specially ifmultiple and simultaneous prefetchingmechanism
are used. Throttling policies [14] can be used to coordinate them, slowing or even
stopping completely one of the prefetch engines in order to maintain fairness or avoid
contention on shared resources.

We take into account some priority considerations to ensure that requests in the
critical path are always processed first. The first such consideration is that demand
requests generated by the CPU are always prioritized over prefetch requests. This
ensures no prefetch instruction will delay a CPU request. Also, software prefetches
are not as time sensitive as hardware prefetches, since the data prefetched is only
required for the next task which is usually hundreds of thousands or millions of cycles
in the future (see Table 2). Hardware prefetch engines predict future accesses and
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generate requests for data that will be needed in the near future, and therefore are
prioritized over the runtime-generated prefetches.

In addition, while demand requests are always prioritized, in-flight prefetches may
still stall the memory subsystem if any of the hardware structures becomes full (input
buffers, MSHR queues, etc). We apply a simple throttling policy to deal with this
issue. Any time that a cache level is unable to process a new request, prefetch issue is
stopped in that cache until demand requests can again be successfully processed. By
doing so we give time to the in-flight requests to complete and we avoid getting the
hardware structures filled with new prefetch requests that would further stall demand
requests.

5 Evaluation Methodology

In this section we describe the simulation infrastructure and the benchmarks used to
evaluate our proposed mechanism.

5.1 Simulation Infrastructure

We use a trace-driven cycle-accurate simulator that models an x86 multi-core
processor [28]. We model the timing of an out-of-order processor, cache hierarchy,
interconnection network and the off-chip memory. Our simulation framework uses the
dynamic binary instrumentation tool Pin [22] to obtain the traces. The out-of-order
cores are configured with a reorder buffer of 128 entries. The configuration parame-
ters of the cache hierarchy are shown in Table 1. The cache line size is 128 bytes
divided into 16 sub-blocks of 8-bytes each for all cache levels. All caches are inclu-
sive, non-blocking and implement an LRU replacement policy. The bandwidth of all
on-chip network links is 8 bytes per cycle with a latency of 3 cycles. The MDTEs are
implemented as described in Sect. 4.4 and configured using the parameters shown in
Table 1. For energy estimations we use CACTI version 6.5 with the memory parame-
ters specified in Table 1, and technology parameters based on ITRS predictions for a
32nm technology.

5.2 Workloads

We evaluate our proposal using a set of scientific benchmarks including PBPI, a par-
allel implementation of Bayesian phylogenetic inference method for DNA sequence
data [16], an implementation of the MD5 hashing algorithm, and a set of kernels rep-
resenting algorithms commonly found on scientific applications. The full list can be
found on Table 2. All applications were compiled for x86-64 with the GCC compiler
version 4.6.3 using the −O3 optimization flag.

In this work we target scientific codes such as those used in high performance
computing (HPC). HPC applications usually operate on regular data structures and
can therefore benefit both from our runtime directed software prefetching and from
hardware-based prefetching techniques. Our runtime directed prefetching scheme also
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works on applications with less regular data structures as long as the tasks’ input and
output data is specified as described in Sect. 2.3.

An important aspect to consider in high performance computing is the granularity at
which the work is divided. In order to fully utilize all the system’s processing elements
and maximize the benefits of the cache hierarchy, the programmer must choose an
appropriate block or task size to work with. This decision is usually taken considering
the size of the cache memories and the number of processing elements. To improve
load balancing, it is usually desirable to split computation into small tasks, allowing
the scheduler to keep the processing elements busy at all times. On the other hand,
working at a too small granularity adds non-negligible overheads in the form of thread
or task creation. There is plenty of literature on the topic of how to best choose this
parameter and the impact it has on the overall system performance [8,20,29,30,32].
We create tasks as small as possible to obtain good load balancing and exploit L1
cache locality, but keeping the overhead of task creation relatively small over the total
execution time.

Table 2 shows the average size of the inputs for each task, the average overhead of
task creation and the average execution time per task. These numbers were obtained
on a 16-core, dual-socket AMD Opteron 6128 machine running at a frequency of 2.4
GHz.

6 Experimental Evaluation

We evaluated the MDTE using the seven scientific benchmarks shown in Table 2 and
three different configurations of 4, 8 and 16 cores. Each core has a private L1 and a
private L2 cache, and all the cores share the L3 LLC. The LLC is multi-banked, with
an 8 MB bank per each 4 cores. We also add an additional memory controller per each
additional LLC bank to sustain the traffic generated by the out-of-order cores.

6.1 Hardware Prefetchers

We first explored the effectiveness of the standalone hardware prefetchers for each
of the benchmarks. Table 3 shows which hardware prefetching mechanisms works

Table 3 Best standalone
hardware prefetch configuration

Benchmark Best HW pref.

Histogram L1 nextline + L2 stride

Matmul L1 stride

Reduction L1 nextline

LU L2 nextline

PBPI L1 nextline + L2 stride

Jacobi L1 nextline + L2 stride

MD5 L1 nextline + L2 stride
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better in each case. The Next-line configuration prefetches the next N lines after
a cache miss. The Stride configuration is a reference prediction table based stride
prefetcher [3]. We evaluated a range of values for the prefetch degree and found N=2
to be optimal for both configurations. We then executed the benchmarks with all the
hardware prefetching configurations combined with our software prefetching mech-
anism. For all benchmarks but one, the hardware prefetch configuration that obtains
better results standalone is also the best configuration in our hybrid hardware + soft-
ware approach. The exception is LU, where every hardware + software configuration
degrades performance by at least 5% over no prefetching. For the rest of this sec-
tion, we use the best standalone hardware prefetch configuration shown in Table 3
as the baseline for each benchmark. This configuration is labelled as “HW” on the
figures.

6.2 Compiler Based Software Prefetching

We evaluate our proposal against other traditional software prefetching techniques
by compiling every benchmark with the GCC flag -fprefetch-loop-arrays. With this
optimization the compiler attempts to insert ISA specific prefetch instructions in loops
that traverse large data arrays.

As stated before, our hybrid approach combines runtime-assisted block prefetch-
ing with other traditional prefetching mechanisms that move data closer to the cores
once it is brought on-chip by the MDTE. Therefore we not only use this configura-
tion to compare our proposal against, but we also evaluate the impact of combining
both. We first execute the benchmarks compiled with the prefetch flag in conjunc-
tion with every hardware prefetcher and select the best performing; this configuration
is labelled on the figures as “HW+SW”. Then we take this configuration and run
it with the proposed runtime-assisted block prefetcher (labelled as “HW+SW+
MDTE”).

6.3 Performance Analysis

6.3.1 Average Memory Access Time

Figure 6 shows how for six of the seven benchmarks the MDTE is able to reduce
the Average Memory Access Time (AMAT). As expected, applications that display a
high AMAT (even with hardware prefetching) benefit more from our software block
prefetcher. In particular, jacobi, MD5, reduction and histogram obtain on the 8 cores
configuration an AMAT reduction of 18, 28, 48 and 49% respectively over execu-
tions with the best hardware prefetching configuration only. On the other hand, the
benefit obtained by our hybrid scheme is limited to a 5% AMAT reduction for PBPI.
The reason is that the AMAT for this application is already very low (20 cycles)
with no prefetching mechanism, and it is even further reduced to 14 cycles by the
hardware prefetcher. Since the latency of our L2 caches is 12 cycles and we model
out-of-order cores that can hide some of that latency, the benefit attainable is very
limited.
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Fig. 6 Average memory access time for 4, 8 and 16 cores and multiple prefetch configurations

6.3.2 Cache Hit Rates

The cache hit rates shown in Fig. 7 explain why matmul barely obtains any AMAT
reduction and LU slightly increases it. Our implementation of matrix multiply uses
blocking and the BLAS library. These commonly used optimizations fully exploit
the size of the L1 cache, obtaining 99.9% L1 hit rate. LU factorization also uses
blocking, with a block size of 128KB that fits comfortably in the L2 cache. Prefetching
provides no additional benefit after the initial cold state of the caches, and can even
hurt performance by causing additional contention on the interconnection network
and on the memory controllers, as is the case for LU. Nevertheless, L3 cache hit rate
is significantly increased in all benchmarks with our hybrid approach compared to the
execution with only the baseline hardware prefetcher, reducing memory access time
whenever an application does not display such high L1 or L2 hit rates.

6.3.3 GCC-Based Software Prefetching

Executing the benchmarks compiled with the GCC prefetch flag has mixed results,
including a large degradation in performance of up to 50% on LU. reduction, PBPI,
jacobi and MD5 obtain the best results with the software + hardware configuration,
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Fig. 7 Cache hit rates for the execution with multiple prefetch configurations. a L1 hit rate, b L2 hit rate,
c L3 hit rate

while histogram barely improves and matmul sees no benefit. As explained in GCC’s
documentation [12], compilingwith theprefetchflagmaygenerate better orworse code
and is highly dependent on the structure of loops, hence it is an unreliablemechanism to
consistently improve performance. Nevertheless, our proposed technique is designed
to work in conjunction with any other fine-grained prefetching mechanism, so it is at
the discretion of the user whether to use GCC-based software prefetching or not.

6.3.4 Performance Evaluation

Figure 8 shows the speed up over the execution with the best hardware prefetch config-
uration standalone. On the 4 core system, our hybrid hardware +MDTE configuration
obtains a 19% speed up over execution with the best hardware prefetcher standalone
for histogram and reduction, and over 2× compared to execution with no prefetch.
jacobi achieves a 7% speed up while PBPI does not improve over hardware prefetch-
ing only. matmul and LU do not obtain any benefit out of software block prefetching,
with a slight performance degradation onLU. reduction obtains an even larger speed up
when the compiler inserts prefetch instructions, reaching almost an 80% increase on
the configurationwith the best hardware prefetcher, compiler-inserted prefetch instruc-
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Fig. 8 Application speed up normalized to the execution with the best hardware prefetcher standalone

tions and our proposed block prefetcher working together. This is due to the large L1
hit rate increase caused by the compiler-inserted prefetches. On average, the hybrid
hardware + MDTE configuration obtains an 8% speed up over the baseline. Although
the configuration including compiler-inserted prefetch instructions may perform best
in some benchmarks, in others such as LU the performance drop is considerable, and
overall the best results are obtained with hardware prefetching + MDTE.

On a system with eight cores we double the number of L3 banks and memory
controllers. In this context our hybrid prefetching scheme shines obtaining a 30 and
25% speed up in histogram and reduction respectively, with an average of 10% for
all benchmarks. The configurationwith compiler-inserted prefetch instructions experi-
ences a large drop on the speed up observed on reductionwith the 4 core configuration.
The additional traffic caused by these prefetch instructions saturates the interconnect
network and memory controllers, diminishing the benefits obtained. PBPI suffers a
small performance degradation because, as explained before, block prefetching does
not provide any benefit over an already low AMAT, and because, as in the case of LU,
the overhead caused by the prefetch requests travelling through thememory subsystem
is non-negligible.

These results aremaintained on the 16 core configurationwith one exception: reduc-
tion loses about 10% performance gain with our hybrid HW + MDTE configuration.
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The reason is that the LLC saturates with the increased number of requests and our
throttling mechanism stops all prefetching. More complex throttling policies could be
applied to lessen the impact of the increased traffic, and are left for future work.

The performance results acknowledge the hypothesis of this work: the runtime-
assisted MDTE brings data on-chip in advance (as confirmed by the increased L3 hit
rates), and the hardware prefetcher brings the data closer to the cores (hit rates in
L1 and L2 are kept). The synergy between the MDTE and the stock hardware and
software prefetchers translates into the increased performance shown in Fig. 8.

6.4 Energy Consumption

Prefetching is usually considered a trade-off between performance and energy
consumption, especially on speculative hardware based prefetchers [19]. Runtime-
directed prefetching however brings only data known to be needed, and the additional
hardware required to support our software block prefetcher has an almost negligible
cost in area and power.

Fig. 9 Energy consumption normalized to the execution with the best hardware prefetcher standalone.
From left to right for each benchmark: no prefetch, hardware + MDTE prefetch, hardware + software
prefetch, hardware + software + MDTE prefetch
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Figure 9 shows energy-to-solution for every benchmark. We see how energy con-
sumption is dictated primarily by static power, and therefore by execution time. The
increase in power caused by theMDTEs has been included in the dynamic power of the
cache level they are attached to, i.e., L2 for the private MDTEs and L3 for the shared.
The speed ups obtained using our hybrid prefetching scheme translate into energy-to-
solution gains of 3% on average for all benchmarks. On all but two benchmarks we
consume less energy by using our hybrid scheme compared to hardware prefetching
only. On the best performing benchmark, reduction with an 8 core configuration, we
obtain an 18% decrease in energy-to-solution compared to the best hardware prefetch
configuration standalone. PBPI and LU see an slight increase in energy consumption
of 4 and 2% respectively due to an increase in execution time.

7 Conclusions

In this paper we propose a hybrid hardware and software block prefetching scheme.
We have demonstrated that by using a runtime system to guide a block prefetch engine
we increase L3 cache hit rates and therefore reduce large off-chip access latencies.
This approach is simpler and more robust than manually inserting prefetch instruction
in the code or relying on complex compiler analysis. For best results, we combine
our runtime-guided block prefetcher with other traditional hardware and software
prefetching techniques that manage locality at cache line granularity, moving the data
closer to the CPU and increasing L1 and L2 cache hit rates. We apply throttling
mechanisms to coordinate the prefetchers and reduce the overhead caused by the
prefetch engines.

By using a runtime system with knowledge of the upcoming task schedule and
accessed data, we prefetch only data that will be used, avoiding cache pollution. In
addition we let the runtime system leverage this information to dynamically make
decisions such as prefetch destination and timeliness. Our proposal benefits memory-
sensitive applications and does not harm compute-bound applications.

The evaluation on a set of scientific workloads shows that our hybrid prefetching
scheme is able to obtain up to 32% performance improvement with an average of 10%
compared to the execution with hardware prefetching only. The performance benefits
offset the increased power from the extra hardware and the increase in dynamic power
caused by prefetch activity, leading to a reduction of up to 18% with an average of
3% in energy-to-solution.
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