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Abstract l1-minimization (l1-min) algorithms for the l1-min problem have been
widely developed. For most l1-min algorithms, their main components include dense
matrix-vector multiplications such as Ax and AT x , and vector operations.We propose
a novel warp-based implementation of the matrix-vector multiplication (Ax) on the
graphics processing unit (GPU), called the GEMV kernel, and a novel thread-based
implementation of the matrix-vector multiplication (AT x) on the GPU, called the
GEMV-T kernel. For the GEMV kernel, a self-adaptive warp allocation strategy is
used to assign the optimal warp number for each matrix row. Similar to the GEMV
kernel, we design a self-adaptive thread allocation strategy to assign the optimal thread
number to each matrix row for the GEMV-T kernel. Two popular l1-min algorithms,
fast iterative shrinkage-thresholding algorithm and augmented Lagrangian multiplier
method, are taken for example. Based on the GEMV and GEMV-T kernels, we present
two highly parallel l1-min solvers on the GPU utilizing the technique of merging ker-
nels and the sparsity of the solution of the l1-min algorithms. Furthermore, we design
a concurrent multiple l1-min solver on the GPU, and optimize its performance by
using new features of GPU such as the shuffle instruction and read-only data cache.
The experimental results have validated high efficiency and good performance of our
methods.
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1 Introduction

The l1-minimization (l1-min) problem can be written as:

min ||x ||1 s.t. Ax = b, (1)

where A ∈ R
m×n (m � n) is a full-rank dense matrix, b ∈ R

m is a pre-specified
vector, and x ∈ R

n is an unknown solution. The l1-min solution, called the sparse
representation, has proven to be sparse. Due to the sparsity of the solution, the
l1-min optimization has been successfully applied in various fields such as signal
processing [1–8], machine learning [9–11] and statistical inference [12,13] and so
on.

To solve the l1-min problem (1), researchers have developed many efficient algo-
rithms. E.g., the gradient projection method [14], truncation Newton interior-point
method [15], homotopy methods [16], class of iterative shrinkage-thresholding meth-
ods [17,18], augmented Lagrange multiplier method (ALM) [19,20], and alternating
direction method of multipliers [21] and so on. A survey by Yang et al. [22] has
compared and benchmarked these representative algorithms.

With the increasing scale of the problem, the execution efficiency of existing l1-min
algorithms decreases to a large degree. An efficient way is to shift these algorithms to
the distributed or multi-core architecture such as graphics processing units (GPUs).
Big data processing using GPUs has drawn a lot of attention in recent years. Following
the introduction of the compute unified device architecture (CUDA), a program-
ming model that is designed to support joint CPU/GPU execution of applications,
by NVIDIA in 2007 [23], GPUs have become increasingly strong competitors among
the general-purpose parallel programming systems.

For most l1-min algorithms, their main components include dense matrix-vector
multiplications such as Ax and AT x , and vector operations. There have been
highly efficient implementations for Ax , AT x , and vector operations on the GPU
in the CUBLAS library [24]. Therefore, the existing GPU-accelerated l1-min algo-
rithms [25,26] are mostly based on CUBLAS. On the NVIDIA GTX980 GPU, for the
test matrices withm varying from 50 to 5000 and n being fixed at 100,000, the perfor-
mance curves of the Ax and AT x implementations in CUBLAS are shown in Figs. 1a
and 2a, respectively. For the test matrices with n varying from 4000 to 520,000 and
m being fixed at 1000, the performance curves of the Ax and AT x implementations
in CUBLAS are shown in Figs. 1b and 2b, respectively. Obviously, for the Ax and
AT x implementations in CUBLAS, the performance value fluctuates as m increases
or n increases, and the difference between the maximum and minimum performance
values is distinct. In addition, we observe that when parallelizing the l1-min algorithms
on the GPU, the number of kernels can be reduced by merging some operations into
a single kernel, which can save time between kernel calls and avoid double loads of
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Fig. 1 The implementation of Ax in CUBLAS. a The performance curve with m (n = 100, 000), b the
performance curve with n (m = 1000)
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Fig. 2 The implementation of AT x in CUBLAS. a The performance curve with m (n = 100, 000), b the
performance curve with n (m = 1000)

vectors. However, CUBLAS does not allow merging several operations into a single
kernel. At present, some new features for the NVIDIA GPU with compute capability
3.2 or higher, such as the shuffle instruction and read-only data cache, can be uti-
lized to improve the performance of GPU-accelerated methods but not yet utilized in
CUBLAS.

Therefore, these observations motivate us to further investigate the design of robust
and highly parallel l1-min solvers on the GPU. In this study, we propose a novel
warp-based implementation of Ax on the GPU, called the GEMV kernel, and a
novel thread-based implementation of AT x on the GPU, called the GEMV-T ker-
nel. For the GEMV kernel, a self-adaptive warp allocation strategy is used to assign
the optimal warp number for each matrix row. Similar to the GEMV kernel, we
design a self-adaptive thread allocation strategy to assign the optimal thread num-
ber to each matrix row for the GEMV-T kernel. Experimental results show that
our proposed two kernels are more robust than CUBLAS, and always have high
performance. In addition, two popular l1-min algorithms, fast iterative shrinkage-
thresholding algorithm (FISTA) and augmentedLagrangianmultipliermethod (ALM),
are taken for example. Utilizing the technique of merging kernels and the sparsity
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of the solution of the l1-min algorithms, we propose two highly parallel l1-min
solvers on the GPU. Furthermore, we design a concurrent multiple l1-min solver
and optimize its performance by using the shuffle instruction and read-only data
cache.

In summary, our work makes the following contributions:

– Two novel adaptive optimization GPU-accelerated implementations of the matrix-
vector multiplication are proposed. The two methods are more robust than
CUBLAS, and always have high performance.

– Based on the above implementations of the matrix-vector multiplication on the
GPU, we present two highly parallel l1-min solvers on the GPU by utilizing the
technique of merging kernels and the sparsity of the solution of the l1-min algo-
rithms.

– Utilizing new features of GPU, we design an optimal concurrent multiple l1-min
solver on the GPU.

The remainder of this paper is organized as follows. In Sect. 2, we describe two
l1-min algorithms, FISTA and ALM. In Sect. 3, we introduce the CUDA architecture.
Two adaptive optimization implementations of the matrix-vector multiplication on the
GPU, GPU-accelerated FISTA and ALM solvers, a concurrent multiple l1-min solver
on the GPU and some optimization strategies are proposed in Sect. 4. Experimental
results are presented in Sect. 5. Section 6 contains our conclusions and points to our
future research directions.

2 Two l1-min Algorithms

2.1 Fast Iterative Shrinkage-Thresholding Algorithm

The problem in Eq. (1) is known as the basis pursuit (BP) problem [7]. In practice,
a measurement data b often contains noise (such as the measurement error ε), which
is called the BPDN problem. A variant of this problem is also well known as the
unconstrained BPDN problem with a scalar weight λ or the Lasso problem [27] in the
statistics perspective:

min
1

2
||Ax − b||22 + λ||x ||1. (2)

The fast iterative shrinkage-thresholding algorithm (FISTA) is a kind of acceler-
ations, and achieves an accelerated non-asymptotic convergence rate of O(k2) by
combining Nesterovs optimal gradient method [17,18]. For FISTA, it adds a new
sequence {yk, k = 1, 2, . . .} as follows.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk+1 = so f t
(
yk − 1

L f
� f (yk),

λ
L f

)

tk+1 = 1+
√

1+4t2k
2

yk+1 = xk + tk−1
tk+1

(xk − xk−1),

(3)
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where so f t (u, a) = sign(u)max{|u|−a, 0} is the soft-thresholding operator, y1 =
x0, t1 = 1 and the associated Lipschitz constant L f of � f (·) is given by the spectral
norm of AT A, denoted by ||AT A||2. Algorithm 1 summarizes the generic FISTA
algorithm.

2.2 Augmented Lagrangian Multiplier Method

The augmented Lagrangian multiplier method (ALM) [19,20] combines penalty
methods and the Lagrange multiplier algorithm, and its corresponding augmented
Lagrangian function is

Lρ(x∗, λ) = ||x ||1 + λT (Ax − b) + ρ

2
||Ax − b||22, (4)

where x∗ is the optimal solution for the problem in Eq. (1), λ is a vector of Lagrange
multipliers, ρ

2 ||Ax − b||22 is the quadratic penalty function, ρ > 0 is a constant that
determines the penalty for the infeasibility.

Equation (4) can be solved by the following iterative procedure called the method
of multipliers [28].

{
xk+1 = min Lρ(x, λk),

λk+1 = λk + ρk(Axk+1 − b),
(5)

where {ρk} is a monotonically increasing positive sequence and is sufficiently large
after a certain index. By the procedure shown in Eq. (5), we can simultaneously
calculate the optimal solutions x∗ and λ∗.

The first step of the procedure in Eq. (5), called x-min which is also a convex
optimization problem, can be solved by FISTA. The generic ALM algorithm is sum-
marized in Algorithm 2.
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3 CUDA Architecture

The compute unified device architecture (CUDA) is a general purpose parallel com-
puting platform and programming model. The developers can use provided CUDA
C/C++ to define the function, called kernel, which is executed in parallel by each
CUDA thread. All threads are organized into the thread blocks, then these thread
blocks are organized into a grid. Both the thread block and the grid can have up to
three dimensions.

A CUDA-enabled GPU has many computing cores called CUDA cores, which
can collectively run thousands of threads. These CUDA cores are organized into a
scalable array of streaming multiprocessors (SMs). A SM is designed to concurrently
execute hundreds of threads by employing a unique architecture called SIMT (Single
Instruction, Multiple-Thread). When a thread block is given to a SM, it is split in
warps, each composed of 32 threads. In the best case, all 32 threads have the same
execution path and the instruction is executed concurrently.

The GPU memory includes the on-chip memory, e.g., the shared memory and L1
cache, and the on-board memory, e.g., the global memory. For GPUs with different
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Fig. 3 The way of accessing data for threads

compute capabilities, the way of accessing data from thememory has some difference.
In this study, we only consider GPUs with compute capability 3.2 or more in order
to utilize new features such as the read-only data cache. Figure 3 shows the possible
way of accessing data from the memory for threads. The global memory has large size
and is shared by all SMs. However, since it resides on the off-chip DRAM (Dynamic
Random Access Memory), the low bandwidth and large latency result in the slow
access. The shared memory is used by all threads in a thread block, and provides the
high bandwidth and low latency, but its size is small. Both the L1 cache and the read-
only data cache are shared by all the threads within a SM, and can be accessed fast
like the shared memory. Compared with the uncontrollable L1 cache, the read-only
data cache is controllable and can be easily used by programmers.

Therefore, major challenges in optimizing an application on GPUs are: global
memory access latency, the on-chip memory access efficiency, different execution
paths in each warp, communication and synchronization between threads in different
blocks and resource utilization.

4 GPU Implementation

4.1 Data Layout

We use a row major and 0-based indexing array a to store the matrix A, and utilize
the padding scheme to optimize the global memory access performance, as shown in
Fig. 4.

For devices with compute capability 2.0 or higher, global memory accesses by
threads within a warp can be coalesced into the minimum number of L2-cache-line-
sized (i.e., 32bytes) aligned transactions. We assume that each matrix row is assigned
to a warp with 32-byte memory transaction. From Fig. 4, we observe that each row of
the matrix A includes 15 float-precision elements and is misaligned before padding.
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Fig. 4 Padding scheme for the array a

The misaligned case results in requiring 11 memory transactions for the first four
rows of A. Padding the array a can decrease the number of memory transactions to
8. Therefore, the padding scheme can result in about 30% improvement of the global
memory-access performance for this case in Fig. 4.

4.2 Robust Matrix-Vector Multiplications

The matrix-vector multiplications include Ax (GEMV) and AT x (GEMV-T), where
A ∈ Rm×n . In the following subsections, we propose two robust matrix-vector multi-
plication kernels. For the two kernels, we take full advantage of the multi-level cache
hierarchy to cache vector x , thus improve the access efficiency. And they are robust
and extensible for different GPU devices. The gird of our kernels is organized as a
1D array of thread blocks, and the thread block is also organized as a 1D array of
threads.

4.2.1 GEMV Kernel

The GEMV Ax is composed ofm dot products of x with each row of A, and these dot
products can be independently computed. Thus, for our proposed GEMV kernel, we
can assign one warp or multiple warps to a product dot. To optimize the GEMV kernel
performance, we use the following self-adaptive warp allocation strategy to select the
number of warps k for a product dot:

minw = sm × 2048/k/32, s.t. m � w, (6)

where sm is the number of streaming multiprocessors and m is the number of the
matrix rows.
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Figure 5 shows the main procedure of the GEMV kernel. It is composed of two
stages. The first stage includes three steps: x-load step, partial-reduction step and
warp-reduction step.
x-load step The step is used to make threads per block parallel read elements of x
into the shared memory x P . Because the size of x is large, x is segmentally read into
the shared memory, and each time the size is blockDim.x (size of thread blocks). By
this way, the accesses to x are coalesced, and the access number is reduced by letting
warps in the same thread block to share the section of elements of x .
partial-reduction step Each time after a section of elements of x is read into the shared
memory, the threads in each warp group (k warps are grouped into a warp group)
perform in parallel a partial-style reduction (see lines 12–5 in Fig. 5). Obviously, each
thread in a warp group at most performs �n/wgSize� times of reductions and the
accesses to the global memory A are coalesced.
warp-reduction step After the threads in each warp group have completed the partial-
style reductions, the fast shuffle instructions are utilized to perform a warp-style

Fig. 5 The GEMV kernel
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reduction for each warp in these warp groups. The warp-style reduction values are
stored in the shared memory.

In the second stage, the warp-style reduction values in the shared memory for each
warp group are reduced to an output value in parallel.

For k = 1, a warp group only includes a warp. From Fig. 5, we observe that it
only needs the first stage and the output vector b can be obtained. Thus, we specially
design a GEMV kernel for k = 1 in order to optimize the GEMV kernel performance
(omitted here). Similarly, a GEMV kernel for k = 32 is also redesigned (omitted here)
because it is not necessary to read x into the shared memory for this case. We can
directly load x into registers.

4.2.2 GEMV-T Kernel

The GEMV-T, AT x , is composed of n dot products of x with each columns of A, and
these dot products can be independently computed. Comparing with the GEMV, the
size of the vector x in the GEMV-T is small. Thus we assign one thread or multiple
threads to a dot product in our proposed GEMV-T kernel. To optimize the GEMV-T
kernel performance, we use the following self-adaptive thread allocation strategy to
select the number of threads k for a product dot:

min t = sm × 2048/k, s.t. n � t, (7)

where sm is the number of streaming multiprocessors and n is the number of the
matrix columns.

Figure 6 shows the main procedure of the GEMV-T kernel. Like the GEMV kernel,
it also needs two stages. In the first stage, it is only composed of x-load step and
partial-reduction step. The x-load step has the same function as in the GEMV kernel.
In the partial-reduction step, since a row major and 0-based index format is used to
store the matrix A, the accesses to A will not be coalesced if the thread groups (k
threads are grouped into a thread group) are constructed in an inappropriate way. For
example, we assume that A is a 4× 8 matrix as shown in Fig. 7, 16 threads in a thread
block are launched, and two threads are assigned to a dot product in the GEMV-T. If
we use the following thread groups {0, 1}, {2, 3}, {4, 5}, . . ., {14, 15}, the accesses to
A will not be coalesced (see Fig. 7a). However, when the thread groups {0, 8}, {1, 9},
{2, 10}, . . ., {7, 15} are utilized, the accesses to A are coalesced, as shown in Fig. 7b.
Therefore, in the partial-reduction step, the thread groups are created according to
Definition 1 below in order to ensure that the accesses to A are coalesced.

Definition 1 Assume that the size of the thread block is s, h threads are assigned
to a dot product in AT x , and z = s/h. The thread groups are created as follows:
{0, z, , (h−1)∗z}, {1, z+1, . . . , (h−1)∗z+1},. . .,{z−1, 2∗z−1, , 2∗(h−1)∗z−1}.

For these elements of x read into the shared memory each time, the threads in each
thread group perform in parallel a partial-style reduction similar to that in the GEMV
kernel.

Since these threads in a thread group are usually not in the same warp, we can not
use the shuffle instruction to reduce their partial-style reduction values. Therefore, in
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Fig. 6 The GEMV-T kernel

(a)

(b)

Fig. 7 Accesses to A
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the second stage, we store the partial-style reduction values obtained by threads in
each thread group to the shared memory, and then reduce them in the shared memory
to an output value in parallel.

4.3 Parallel l1-min Slovers

4.3.1 FISTA and ALM Solvers

When parallelizing FISTA in Algorithm 1 on the GPU, 6 kernels, as shown in Fig. 8a,
are needed. To minimize the number of kernels, save time between kernel calls, and
avoid double loads of vectors, we merge these kernels by two steps. The first step
merges the kernel 1 and the kernel 2 into a single kernel. In the second step, three
vector operation kernels are merged into a single kernel. Thus, the total number of
kernels is reduced from 6 to 3 (see Fig. 8b).

For kernels in Fig. 8b, it is easy to implement the first two kernels based on
our proposed GEMV and GEMV-T implementation methods on the GPU. Although
CUBLAS has shown high performance for the vector operations, CUBLAS does not
allow merging several operations into a single kernel. Therefore, for the third kernel,
we adopt the implementation method in [29], which supports merging several vector
operations into a single kernel. The parallel FISTA on the GPU is called the FISTA
solver.

For ALM in Algorithm 2, x-min can be solved by FISTA. Therefore, to par-
allelize ALM on the GPU, we need to design a kernel to finish the dual update,
λk+1 = λk + ρk(Axk+1 − b), besides utilizing three kernels in FISTA. Obviously,
based on our proposed GEMV implementation method on the GPU, the dual update
kernel is easy to be designed. The parallel ALM on the GPU is called the ALM
solver.

4.3.2 Concurrent Multiple l1-min Solvers

In some real applications, we usually need to solve multiple l1-min problems concur-
rently. To accommodate the real requirements, here we take FISTA for example and
thus design a GPU-accelerated implementation, as shown in Fig. 9, to solve multiple

(a) (b)

Fig. 8 Kernels in FISTA
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l1-min problems concurrently. In this method, we assign one thread block to a l1-min
problem, and for each thread block, the idea of constructing the parallel FISTA to
solve the l1-min problem is similar to that of implementing FISTA on the GPU in
Sect. 4.3.1. We call the concurrent multiple l1-min solver MFISTASOL.

In MFISTASOL, each thread block needs to access the global memory a, so we let
a be cached in the read-only data cache in order to reduce the number of accesses to
a. With the read-only data cache, a is shared by all thread blocks and can be accessed
fast.

4.4 Optimization

When using FISTA or ALM to solve the l1-min problem, with the increasing number
of iterations, the output vector x becomes sparser and sparser through the soft-
thresholding operator as shown in Algorithms 1 and 2. Therefore, we can utilize

Fig. 9 Concurrent multiple l1-min solver
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the sparsity to reduce the accesses to the global memory a for the GEMV kernel in
the FISTA solver, the ALM solver and MFISTASOL.

When the i th element of x is equal to zero, all elements in the i th column of A do
not need to be accessed because they do not have any contribution to the output vector.
With the increasing iteration in FISTA and ALM, x becomes sparser and sparser,
and thus a number of columns of A are not accessed. By this way, we can improve
the performance of the FISTA solver, the ALM solver and MFISTASOL by reducing
accesses to the global memory a. However, since we use the row major and 0-based
indexing array a to store the matrix A, the accesses to a in the above case are not
coalesced. In this study, we alleviate the overhead deriving from the non-coalescence
through L2 cache with 32-byte memory transactions.

5 Experimental Results

In this section, we test our proposed l1-min solvers on the GPU from the following
four aspects : (1) analyzing the validity of using the vector sparsity to optimize the
GEMV kernel performance and the read-only data cache to improve theMFISTASOL
performance, (2) comparing GEMV and GEMV-T kernels with the implementation
in the CUBLAS library, (3) testing the performance of our proposed parallel l1-min
solvers, and (4) testing the performance of our proposed concurrent multiple l1-min
solver.

The experimental environments include one machine which is equipped with an
Intel Xeon Quad-Core CPU and an NVIDIAGTX980 GPU and another machine with
an Intel Xeon Quad-Core CPU and an NVIDIA GTX760 GPU. Our source codes are
compiled and executed using the CUDA toolkit 6.5.

The measured GPU performance for all experiments does not include the data
transfer (from the GPU to the CPU or from the CPU to the GPU). The test matrices
are shown in Table 1. The element values of each test matrix are randomly generated
according to the normal distribution.

5.1 Experimental Analysis

First, we take Mat05 in Table 1 for example to test the performance influence of uti-
lizing the sparsity of the vector x to optimize the GEMV (Ax) kernel. The GTX980
is used in this experiment. The ratio of the number of zero elements to the total
number of elements in x , represented with δ, is set to 0.05, 0.10, 0.15, . . ., 0.90
and 0.95, respectively. Figure 10 shows the execution time ratios of the GEMV
kernel without the sparsity to the GEMV kernel with the sparsity for all δ values.
We observe that the execution time ratio increases as δ increases. Therefore, we
affirm that by utilizing the vector sparsity, the performance of the GEMV kernel is
improved.

Second, we take the GTX980 for example to verify the validity of using the read-
only data cache to improve the performance of the concurrent multiple l1-min solver
(MFISTASOL). The test matrices are used in Table 1. 128 l1-min problems are con-
currently calculated. In MFISTASOL, the total number of iterations is set to 10, the
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Table 1 Test matrices
Seq Matrix Rows (m) Columns (n)

1 Mat01 32 8,388,608

2 Mat02 50 5,368,709

3 Mat03 64 4,194,304

4 Mat04 100 2,684,350

5 Mat05 128 2,097,152

6 Mat06 200 1,342,200

7 Mat07 256 1,048,576

8 Mat08 400 671,100

9 Mat09 512 524,288

10 Mat10 800 335,850

11 Mat11 1024 262,144

12 Mat12 1600 166,900

Fig. 10 The execution time
ratios for all δ values
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Fig. 11 The execution time ratios for all test cases

initial x0 is randomly generated according to the normal distribution, and b = Ax0.
The execution time ratios of MFISTASOL without the read-only data cache to MFIS-
TASOL with the read-only data cache are shown in Fig. 11 for all test cases. We see
that for all test cases, the execution time ratios have been sustained at around 1.2. Thus
the MFISTASOL performance is improved by using the read-only data cache.
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5.2 Performance Comparison of Matrix-Vector Multiplications

We compare GEMV and GEMV-T kernels with the implementation in CUBLAS. The
performance ismeasured in terms ofGflop/s, which is obtained by 2×m×n/thematrix-
vector multiplication kernel execution time (the time unit is second) [30]. Figures 12
and 13 respectively show the comparison of the GEMV and GEMV-T kernels with
CUBLAS. From Fig. 12, we see that on the GTX760 and GTX980, the GEMV kernel
outperformsCUBLAS, and respectively obtains average speedups of 4.42× and 2.74×
compared to CUBLAS. For the GEMV kernel, on the GTX760 and GTX980, the
average performance values are respectively 57.69 GFlops/s and 83.81 GFlops/s, and
the standard deviations are respectively 9.27 and 5.48. However, on the GTX760 and
GTX980, CUBLAS only obtains the average performance values of 21.80 GFlops/s
and 39.88GFlops/s and the standard deviations of 18.73 and 20.47, respectively. This
verifies that for matrices with different scales, our proposed GEMV kernel always has
high performance, but CUBLAS does not. For the GEMV-T kernel, we can obtain the
same conclusion as the GEMV kernel from Fig. 13.

Next, we take theGTX980 for example to further verify the above observations. The
test setup is as same as in the introduction. Figure 14 shows the performance curves of
the GEMV kernel and CUBLAS. Obviously, for all cases, our proposed GEMV kernel
always obtains around 80 GFlops/s. However, CUBLAS has lower performance than
our proposed GEMV kernel, and the difference between the maximum and minimum

Fig. 12 The performance comparison of the GEMV kernel and CUBLAS

Fig. 13 The performance comparison of the GEMV-T kernel and CUBLAS
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Fig. 14 GEMV. a The performance curves with m (n = 100, 000), b the performance curves with n
(m = 1000)

0 1000 2000 3000 4000 5000 
0

15

30

45

60

75

90

G
Fl

op
s/

s

 CUBLAS
 GEMV-T Kernel

0 100000 200000 300000 400000 500000 
0

15

30

45

60

75

90

G
Fl

op
s/

s

 CUBLAS
 GEMV-T Kernel

(a) (b)

Fig. 15 GEMV-T. a The performance curves with m (n = 100, 000), b the performance curves with n
(m = 1000)

performance values is distinct. For the test matrices with n being set to a fixed value
100, 000, the performance of our proposed GEMV-T kernel has been maintained at
around 80 GFlops/s as m increases, as shown in Fig. 15a. The CUBLAS performance
in general increases as m increases, and is maintained at around 80 GFlops/s only
after m is more than 200. From Fig. 15b, for the test matrices with m being fixed at
1000, when n increases, we obtain the same conclusion as in Fig. 15a for the GEMV-T
kernel and CUBLAS.

Therefore, we can conclude that our proposed matrix-vector multiplication imple-
mentations on the GPU are more robust than CUBLAS, and usually have high
performance.

5.3 Performance of Parallel l1-min Solvers

We test the parallel performance of our proposed FISTA and ALM solvers by com-
paring them with the corresponding implementations using the CUBLAS library.
The FISTA solver and corresponding implementation using the CUBLAS library are
denoted as GFISTA and BFISTA, respectively. The ALM solver and corresponding
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Table 2 Execution time of all algorithms

Prob CFISTA CALM BFISTA BALM GFISTA GALM

1 31.61 243.94 2.834 28.758 0.589 4.646

2 24.86 216.61 1.925 19.528 0.582 4.653

3 26.23 217.12 1.495 15.183 0.533 4.336

4 25.61 217.12 1.164 11.798 0.525 4.479

5 25.37 212.18 0.986 10.744 0.501 4.251

6 26.20 196.35 1.062 11.997 0.485 4.503

7 24.86 200.57 1.158 12.018 0.470 4.465

8 23.34 179.49 1.192 12.056 0.492 4.989

9 24.48 188.36 0.630 6.386 0.460 4.922

10 21.91 165.87 0.652 6.596 0.483 4.380

11 19.68 152.67 0.612 6.191 0.457 3.611

12 17.75 149.43 0.611 6.185 0.471 3.977

implementation using the CUBLAS library are denoted as GALM and BALM, respec-
tively. CFISTA is the sequential CPU implementation corresponding to GFISTA, and
CALM is the sequential CPU implementation corresponding to GALM. All experi-
ments are conducted on the GTX980. For each l1-min problem, the matrix A comes
fromTable 1, the initial x0 with 1024 non-zero elements is randomly generated accord-
ing to the normal distribution, and b = Ax0. CFISTA, BFISTA, andGFISTA stop after
the number of iterations is more than 50 for all test cases. In the CALM, BALM, and
GALM, the total number of iterations for the inner iteration and the outer iteration has
been set to 50 and 10, respectively. Table 2 lists the execution time of all algorithms for
all test cases. The speedups of BFISTA, GFISTA, BALM, and GALM are shown in
Fig. 16. The time unit is second (denoted by s). From Table 2 and Fig. 16, we observe
that compared to CFISTA, GFISTA obtains speedups ranging from 37.68 to 53.66
for all test cases, and the average speedup is 48.22. However, BFISTA only achieves
speedups ranging from 11.15 to 38.82 for all test cases, and the average speedup is
24.05. For GALM, comparing with CALM, the maximum, minimum and average
speedups are 51.21, 35.98 and 44.0, respectively, which are 2.04, 4.24, and 2.36 times
faster than those that are obtained by BALM. All these results show that our proposed
FISTA and ALM solvers have high parallelism, and outperform the corresponding
implementations using the CUBLAS library.

In addition, we also take Mat07 and Mat12 for example to show the execution
time of Kernel 1, Kernel 2, and Kernel 3 in the selected iteration steps for BFISTA
and GFISTA in Fig. 17. The time unit is millisecond (denoted by ms). For each one
of the two test matrices, the execution time of Kernel 2 of GFISTA and Kernel 2
of BFISTA nearly remains invariable for all selected iteration steps, and Kernel 2 of
GFISTA almost has the same execution time as that of BFISTA. This observation is
in accordance with that in Fig. 13. The execution time of Kernel 3 of GFISTA and
Kernel 3 of BFISTA is almost invariable for all selected iteration steps, but Kernel 3 of
GFISTA is nearly 2.08 times faster than that of BFISTA due to the merging of kernels.

123



526 Int J Parallel Prog (2017) 45:508–529

Fig. 16 Speedups of all algorithms

(a)

(b)

Fig. 17 Execution time of Kernel 1, Kernel 2, and Kernel 3 in the selected iteration steps for BFISTA and
GFISTA. aMat07, b Mat12

The execution time of Kernel 1 of BFISTA is nearly invariable for all selected iteration
steps. However, the execution time of Kernel 1 of GFISTA decreases as the iteration
step increases because of the sparsity of solutions, and is greatly advantageous over
that of Kernel 1 of BFISTA in each iteration step. These results further verify the
efficiency of our proposed FISTA and ALM solvers.
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Table 3 Execution time of
MFISTASOL

Prob GFISTA MFISTASOL Speedup

1 0.589 × 128 24.033 3.137

2 0.582 × 128 27.805 2.679

3 0.533 × 128 21.282 3.205

4 0.525 × 128 26.240 2.561

5 0.501 × 128 19.708 3.252

6 0.485 × 128 25.479 2.441

7 0.470 × 128 19.219 3.132

8 0.492 × 128 25.454 2.476

9 0.460 × 128 19.276 3.058

10 0.483 × 128 21.458 2.881

11 0.457 × 128 19.051 3.075

12 0.471 × 128 20.720 2.912

5.4 Performance of the Concurrent Multiple l1-min Solver

We test the performance of our proposed concurrent multiple l1-min solver, MFISTA-
SOL. The test setup is as same as in Sect. 5.3. For each test case, 128 l1-min problems
are concurrently calculated. All experimental results on the GTX980 are shown in
Table 3. The time unit is second (denoted by s). We observe that compared to the
sequential execution of the FISTA solver, our proposed concurrent multiple l1-min
solver, MFISTASOL, can obtain the average speedup of around 3.0.

6 Conclusion

This paper proposes two robust implementations of the matrix-vector multiplication
on the GPU.Moreover, based on the two proposedmatrix-vector multiplication imple-
mentations on the GPU, we presents two highly parallel l1-min solvers, the FISTA
solver and the ALM solver, utilizing the technique of merging kernels and the sparsity
of the solution of l1-min problems. To accommodate the real requirements of solv-
ing multiple l1-min problems concurrently, we design a concurrent multiple l1-min
solver. Experimental results show that our proposed methods are efficient, and have
high performance.

Next, we will further do research in this field, and apply the proposed solvers to the
real problems.
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