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Abstract There are billions of lines of sequential code inside nowadays’ software
which do not benefit from the parallelism available in modern multicore architectures.
Automatically parallelizing sequential code, to promote an efficient use of the avail-
able parallelism, has been a research goal for some time now. This work proposes a
new approach for achieving such goal. We created a new parallelizing compiler that
analyses the read and write instructions, and control-flow modifications in programs
to identify a set of dependencies between the instructions in the program. Afterwards,
the compiler, based on the generated dependencies graph, rewrites and organizes the
program in a task-oriented structure. Parallel tasks are composed by instructions that
cannot be executed in parallel. A work-stealing-based parallel runtime is responsible
for scheduling and managing the granularity of the generated tasks. Furthermore, a
compile-time granularity control mechanism also avoids creating unnecessary data-
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structures. This work focuses on the Java language, but the techniques are general
enough to be applied to other programming languages.Wehave evaluated our approach
on 8 benchmark programs againstOoOJava, achieving higher speedups. In some cases,
values were close to those of a manual parallelization. The resulting parallel code also
has the advantage of being readable and easily configured to improve further its per-
formance manually.

Keywords Automatic parallelization · Task-based runtime · Symbolic analysis

1 Introduction

Nowadays, in order to achieve the best performance on multicore machines, pro-
grammers have to write parallel programs. This is typically done using threads, either
directly or indirectly through other high-level constructs of the language. Tradition-
ally, manually defining threads and synchronizing them is the only way to achieve
the best results. However this process is often cumbersome and error-prone, often
leading to the occurrence of problems such as deadlocks and race conditions. Further-
more, as the code base increases it becomes increasingly harder to detect interferences
between executing threads. Writing, debugging and tuning multi-threaded code is
very time-consuming, as there are multiple combinations of executions that make
the performance and visibility of errors non-deterministic. Furthermore, there are
billions of lines of source code inside existent software that are not able to benefit
from today’s multicore architectures. Parallelizing these programs is a daunting and
extremely costly task, one that hardly someone is eager to initiate.

The automatic parallelization of existing software has been a long running objective
and prominent research subject [4]. Existing research has been mainly focused on the
analysis and transformation of loops, since these have always been perceived as the
main source of potential parallelism in sequential programs [16]. Nonetheless, other
models have also been studied, such as the parallelization of recursive methods [5],
and of sub-expressions in functional languages. Focusing only on the parallelization of
loops is not enough in most cases and, other approaches have not revealed significant
performance improvements.

In this paper we introduce a new approach for performing a fine-grained automatic
parallelization of programs. This approach is distinct from others, since it parallelizes
all the instructions that can, effectively, be executed in parallel. To identify which
instructions can be parallelized, we infer instruction signatures from the source code
of the program. These signatures include dependency and control flow information,
which allows us to organize instructions into a task-oriented structure. The result is
a program that exhibits the maximum possible parallelism at the finest granularity
level (e.g. one task can equal one instruction). However, in order to achieve good
performance and decrease the overhead in run-time task management, the granularity
of tasks is coarsened during compilation and also during run-time. At run-time, the
system load influences granularity control. Furthermore, a work-stealing scheduler is
used to efficiently manage execution and control dependencies.

Our approach can parallelize irregular recursive programs with a low runtime over-
head, resulting on up to 20× of speedup, on a 24 thread machine and an average of 5×
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of speedup. Because of dependency tracking and transformations during compilation,
we are able to avoid harsh runtime overheads from which existing solutions suffered.
This paper contributes with an hybrid methodology for analyzing procedural source
code and translating it to a parallel version with a broad level of parallelism and granu-
larity, that is fine-tuned during execution by runtime granularity control mechanisms.
The parallelization approach was tested with popular benchmark tests for task-based
parallelism, and compared with another two approaches.

We have applied this approach to the Java language, one of the most popular pro-
gramming languages, since it has a large code base of legacy sequential software.
Nonetheless, our approach can be applied to any procedural or object-oriented lan-
guage.

The framework presented includes two language front-ends, theÆminium language
compiler [30], the JPar compiler for Java, theÆminiumRuntime, and aÆminiumGPU
[18] compiler and runtime, to enable GPU execution of data-parallel programs.

This paper is organized as follows: This section introduced the Æminium frame-
work; In Sect. 2 we present the related work in automatic parallelization; In Sect. 3 we
describe in further detail the architecture of the framework, mainly from the dynamic
perspective; In Sect. 4 we explain the parallelization technique applied; In Sect. 5 we
present the Runtime support for executing parallel programs. Finally in Sect. 6 we
evaluate the platform in different programs; and in Sect. 7 we lay the conclusions.

2 Related Work

Given the wide availability of multicore processors, GPUs and other accelerators
such as FPGAs and the Xeon Phi, research on concurrent programming has increased
in the last decade. New programming models, languages and runtime systems have
been developed to improve the expression and execution of parallel programs. Much
of this work has culminated in new languages, such as X10 [9], Fortress [29] and
Chapel [7], in which most language constructs are default by parallel (such as for
cycles, for instance). These languages also provide constructs to explicitly inform
the compiler that certain memory regions are independent and, therefore, accesses
to them can be executed in parallel. Unlike these languages, which mostly target
scientific computing, the Æminium language [30] has focused on dependable systems
programming. By annotating variables with access permissions, programs could be
automatically parallelized with guarantees that the execution would not break the
defined contracts.

Another approach for writing parallel programs is semi-automatic parallelization.
In this approach, programmers annotate existing sequential programs with enough
information for the compiler to automatically parallelize parts of the code. Cilk [19]
and OpenMP [11] are the two most common examples of such approach and work on
top of the C language. Cilk focus on divide-and-conquer recursive algorithms, while
OpenMP has focus mostly on symmetrical parallelism in for cycles. OpenMP 3.0 has
introduced unstructured parallelism via the concept of Tasks [2,3]. More recently,
OpenMP has also started to generate code for GPUs [23].

The third approach is to translate unmodified sequential programs automatically to
a parallel version of themselves. Functional Languages, like LISP [20] and Haskell
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[25], can be easily parallelized since sub-expressions do not interferes with each other.
Imperative languages such as C and Java make this task more difficult, since different
parts of the code can access the samememory location. In order to be able to parallelize
code, there are some verifications that have to be made. The main focus of research
has been the parallelization of for loops. Different techniques can be used, depending
on the type of loop, such asDO-ALL,DO-ACROSS orDO-PIPE.DO-ALL parallelism
does not contain any interference between loop iterations, and each iteration (or sets
of iterations, called slices), can be executed in parallel and they must synchronize
at the end of the for-cycle. DO-ACROSS has a part of the cycle (usually minimal
compared to the rest) that interferes with other iterations. For these cases, variable
privatizing can be done to aggregate values per thread, and then another for-cycle is
sequentially executed in the end to aggregate the private variables. DO-PIPE can be
parallelized by using different threads for different parts of the for cycle, in which
dependencies between different threads are minimized. In order to verify if the loops
can be parallelized or not, the Polyhedral Model is frequently used [6]. Cetus [12]
and Par4All [1] are compilers that perform this kind of transformation, which can also
target GPGPUs. Loop parallelization has been done during runtime [34], but without
any relevant speedups.

Automatic non-loop parallelization has been less studied, but it is still a popu-
lar way of expression parallelism, specially in divide-and-conquer algorithms. This
analysis has been implemented in zJava [8] by analyzing data writes and reads at a
local level. In order to allow a correct parallelization, zJava uses a runtime registry
of regions, to which threads can be assigned. This allows threads to access shared
data with a synchronization overhead. OoOJava [21] also performs static analysis
to retrieve read and write information on annotated tasks. Then it compiles the pro-
gram to a speculative C program, that has runtime checks to resolve conflicts between
threads. Because of such speculation, OoOJava does not support I/O instructions. MP-
Tomasulo [33] also usesOut-of-Order instructions for automatically parallelizing code
for FPGAs but removes write-after-read and read-after-write by renaming parameters,
keep control flow separate. This approach is not compatible with regular multicore
processors, however. Jrpm [10] also performs thread-level speculation at runtime,
operating over Java bytecode instead of Java code, revealing a worse speedup than
compiler-time strategies. FJComp [28] also focus on Divide-and-Conquer algorithms
using the Fork–Join framework. However, the compiler requires the programmer to
annotate tasks and optionally define the cut-off mechanism, making FJComp more
of a Translator from recursive calls to FJ-style calls, than an automatic parallelizing
compiler.

3 Architecture

The software architecture of the Æminium framework is heavily based on the Java
stack, making use of the Java Compiler to generate bytecode and a JVM for executing
such bytecode. The framework includes two compilers:the JPar compiler and the
ÆminiumGPU compiler. The later two make use of the Spoon library [26] to operate
on the Java Abstract Syntax Tree (AST). Figure 1 shows the information flow between
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Fig. 1 Information flow in the Æminium framework

the framework components. The ÆminiumGPU components are optional, as not all
programs can take advantage of the GPU.

The JPar Compiler is a Source-to-Source Compiler for the Java language. It parses
the original Java code into an AST, performs static analysis to infer access permissions
of each node, and generates Java code that wraps some of the operations in calls to
the Æminium Runtime.

The Æminium Runtime is a Java library that provides an API for expressing task-
parallelism. These APIs can be targeted by compilers, or directly by programmers.
The API allows the definition of tasks and dependencies between tasks. Tasks are
wrappers around a set of Java statements that can execute asynchronously, and can
have any number of instructions. Internally, the most important components are the
Scheduler, Decider and Profiler. The Runtime includes a Work-Sharing scheduler, but
defaults to a Work-Stealing scheduler, in which the programmer can configure the
stealing policy. The Decider is a component that determines in real-time whether a
new task should be created or if it should be inlined in the caller site. Finally, the
Profiler records information during execution, such as number of tasks created, steals
and dependencies unfulfilled.

TheÆminiumGPUCompiler is a Source-to-Source Compiler for the Java language
that identifies data-parallel operations, such as map and reduce, and translates them
to OpenCL. The ÆminiumGPU Runtime is a library that executes data-parallel oper-
ations on the GPU. During execution, if the operation is heavy and/or operates on a
large dataset, the runtime decides whether to use the GPU or not. If it does, the JavaCL
binding library [13] is used to schedule OpenCL code and copy memory between the
host and the GPU.

4 Compilation

This section details the compilation process, starting from access permission analysis
to code generation. The JPar is based upon the J2JPar Compiler [27], but simplifies
the access permission analysis, and performs parallelization during code-generation,
reducing compilation times. An overview of the compilation phase can be seen in
Fig. 2.
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4.1 Signature Extraction

In order to automatically parallelize the program, it is necessary to analyze thememory
is accessed to understand dependencies between parts of the program. If two program
parts read and write to the same variable, then they cannot be parallelized without
guaranteeing determinism. Thus, the first step of the compiler is to understand what
each AST node reads and modifies. Datagroups [24] are used to represent different
memory sections and if two method calls share no datagroup, it means that they can be
executed in parallel. After this phase, each AST node will have a signature, composed
of one or more datagroups permissions. An example of signatures in code can be seen
in Listing 1. Datagroup permissions can be one of the following:

– read(dg) - the AST subtree reads the variables represented by datagroup dg;
– write(dg)- the subtree writes to the objects in datagroup dg;
– control(dg) - the control flow of other operations in datagroup dg may be altered.
This is the case with return statements, breaks, continues, ifs and whiles.

In the previous approach, a full analysis of the AST was possible due to a two-
pass verification. In the first pass, invocations produced a call(dg) permission, and
aliasing effects produced merge(dg1, dg2) permissions. On the second pass, these
permissions were replaced with the true permissions, that could be looked up in the
rest of the program. The new approach converts the two passes into one. Aliasing is
handled in-place, using HashMaps to find the right permission of the aliased element.
When finding a method invocation, the current element being processed is saved, and
the compiler processes the method declaration first. When it is complete, it returns to
the method invocation and the method data-group is already available. The only place
in which this is not possible is in recursive (direct or indirect) calls. In this case, the
stack detects loops in the recursion, uses the partial permissions, to fill in the recursive
invocation for the full permission. This process is now a two-step process only for
recursive calls, reducing the analysis time in all other operations.

int f(int n) {
if (n < 2) { // read(n), control(f)

return n; // write(return), control(f)
}
int a = f(n - 1); // call(f), read(n), write(a)
int b = f(n - 2); // call(f), read(n), write(b)
return a + b; // read(a), read(b), control(f), write(return)

}

Listing 1 Examples of Signatures in Fibonacci Program

123



Int J Parallel Prog (2016) 44:1337–1358 1343

In this phase, whenever some operations can have different results, such as the
case of an if statement, a conservative approach is take, leaving the union of the
two possible branches, as the signature for that node. This approach does not perform
thread-level speculation, guaranteeing instead the same semantics of the original pro-
gramming and supporting I/O and other operations that cannot be transactional. One
such example is that all accesses to external objects, such as the System.out object,
are inside a single global datagroup. This bottleneck can be removed by explicitly
expressing the signatures for those methods in a special signatures file.

4.2 Method Cloning

Executing a method in parallel may not always be worthwhile. For instance, in the
Fibonacci example, the cost of creating a new task is higher than the cost of execut-
ing the method for a low input number. Thus, creating a task is only useful when
another thread can execute it. As such, the alternative is to execute the original method
sequentially after a certain point.

In this compiler phase,methods are cloned. The originalmethodwill be parallelized,
while the clone will serve as a backup sequential version of the method. The decision
when to change to the sequential method is introduced on the beginning of the parallel
version. The decision itself is a call to the Runtime API.

For recursive calls, using anonymous inner classes revealed to be a very big over-
head, which is not noticeable with regular parallel tasks. As such, in this phase, for
each recursive call in the code, a static class is created to represent the asynchronous
call to that method.

4.3 Parallelization

This is the phase, JPar also deviates from its predecessor. While the previous compiler
would take two passes, one for generating dependencies between operations, and
other for generating the tasks, the new version generates the dependencies when it is
creating a task. This change allows to avoid creating tasks that would only be used for
dependency purposes.

Firstly, this approach identifies parallelism with the finest granularity possible.
Parallelizing all possible paths is not useful, as the overhead in scheduling may be
significant. As such, the compiler decides to create tasks around parts of the code
considered large enough. By default, only invocations and loops can be parallelized.
In order to be parallelized, methods have to contain loops, at least 10 instructions,
calls to other expensive methods, or recursive calls. The 10 instruction is a heuristic
limit that can be configured.

The compiler performs three types of parallelization: Parallel Invocations, DO-ALL
and DO-ACROSS. All of the three types can be nested inside each other.

4.3.1 Parallel Invocation

Every method invocation node is considered for parallelization if the target function is
considered large enough. Invocations are converted into a Future call [31], with a set
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of dependency tasks. Using Futures has then advantage of producing readable parallel
Java, which the developer can use to learn, debug or to manually fine-tune.

The invocation is replaced by a call to the get()method of the future. The original
invocation is moved to a lambda that represents the computation (task body). That
lambda is wrapped around a typed Future object that represents the asynchronous
execution of the task. An example is shown in Listing 2, which shows a translation of
code in Listing 1, disregarding the fact that it is a recursive method. Recursive methods
have the lambda converted into a static class, to avoid task creation overheads.

int f(int n) {
if (RuntimeManager.shouldSeq())

return jpar_sequential_version_of_f(n);

if (n < 2) {
return n;

}
Future<Integer> b_tmp = new Future<Integer>(task -> f(n-2));
Future<Integer> a_tmp = new Future<Integer>(task -> f(n-1));
int a = a_tmp.get();
int b = b_tmp.get();
return a + b;

}

Listing 2 The Fibonacci program translated with futures, without considering the special case.

When the Future object is instantiated, the task is marked for execution and an
available thread may start to execute it. When the get()method is called, the current
task awaits for the execution of the task and reads its result.

The main decision to make is where to introduce the Future creation, maximizing
parallelism while keeping the same semantics of the original program. The main
requirements for the position of the Future creation are:

– Must not be declared before the declaration of all used variables;
– Must not be declared before an expression which may return inside that method;
– Must not be declared before an expression which may change the control flow
inside that block (break, continue);

– Must not be executed before an expression that may write to a variable accessed
inside the lambda;

– Must not be executed before an expression that may reads a variable that is written
inside the lambda;

– Must be before the Future get() call.

Considering these requirements, Algorithm 1 is used to find the best position to
create the future, considering θ as the function that for an AST node returns its access
permission set,meth the method in which the invocation is found, node the invocation
being processed and stmt the statement being analyzed. block is the current block
being analyzed. This block starts with the most outer scope (the method body) and
moves deeper until it is the scope block in which the invocation is defined. This order
tries to maximize how soon can the invocation start to execute. Finally, this algorithm
outputs the Hard Dependency, which is the instruction after which the Future can be
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safely introduced, and the Soft Dependencies, a set of already defined tasks which the
current future will have to wait to execute.

Algorithm 1 Algorithm to find the Hard Dependency and Soft dependencies for a
Future for the current node
harddep ← None
sof tdeps ← ∅
for stmt ∈ block do

if control(meth) ∈ θ(stmt) ∨ control(block) ∈ θ(stmt) then
harddep ← stmt
continue

end if
if ∃a, [read(a) ∈ θ(stmt) ∧ wri te(a) ∈ θ(node)] ∨ [wri te(a) ∈ θ(stmt) ∧ read(a) ∈ θ(node)] ∨

[wri te(a) ∈ θ(stmt) ∧ wri te(a) ∈ θ(node)] then
if isT ask(stmt) then

so f tdeps ← so f tdeps ∪ stmt
else

harddep ← stmt
end if

end if
if stmt ⊃ node then

break
end if

end for

The invocation parallelization is completed when the Future declaration is at the
right position, the Future call is at the invocation site, and there is a granularity control
introduced in the beginning of each parallel method.

4.3.2 Parallel DO-ALL

Besides invocations, for and for-each loops are also targets for parallelization. How-
ever, there are two scenarios, DO-ALL and DO-ACROSS. First, we will focus on
DO-ALL, when iterations of the loop are independent and have dependencies only
with code outside the for loop.

In order to verify if this is the situation, accesses to arrays or arraylists are anno-
tated with an indexed datagroup. This means that the code array[i] = 1 will have
a permission wri te(array[i]) that is treated as a wri te(array) for all code out-
side loops. Inside loops, the indexed permission is used to verify if reads and writes
are independent. The verification performed is rather naïve, as it only considers for-
loops in which the iteration variable is only increased or decreased. Nevertheless,
it is possible to apply the polyhedral model, obtaining a better degree of paral-
lelism.

The code generation of DO-ALL simply replaces the for loop with a call to a
static helper method, that will dynamically create parallel tasks for slices of the range.
The iteration code is defined as a lambda function passed to the helper method. The
helper method will return a Future that can be used as a soft dependency for later
Futures.
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4.3.3 Parallel DO-ACROSS

In order to parallelize DO-ACROSS loops, the loop must contain the same conditions
as for DO-ALL, but some write permissions are allowed inside the loop, namely
operations that are commutative and associative. By default, the compiler considers for
these tasks the operators +,-,* and the methods Math.min(), Math.max(). However,
any over operation can be annotated as such, and will be parallelized using the same
mechanism.

The compiler generates a Map-Reduce operation for the DO-ACROSS loop. The
map lambda contains the loop code, saving the new changes inside the lambda, instead
of the global state. The reduce lambda aggregates two states together. The return type
of the operation is also a Future, in order to be used as a soft dependency.

4.4 ÆminiumGPU Integration

The ÆminiumGPU Compiler is a source-to-source compiler from Java-to-Java, in
which the final Java code has some extra OpenCL code. The compiler targets lambda
functions used inside Map-Reduce style of functions. For each of these lambdas, the
compiler generates an OpenCL function. This function is compiled as a kernel during
the compilation phase, but can also be dynamically compiled during execution, if
merged with another function. This dynamic merging of functions into one kernel is
used to avoid overheads in kernel scheduling and eventual memory transfers to and
from the GPU.

It is important to notice that not all Java code can be translated to OpenCL. The
ÆminiumGPU compiler does not support all method calls, non-local variables, for-
each loops, object instantiation and exceptions. It does support a common subset
between Java and C99 with some extra features like static accesses, calls to methods
and references to fields of the Math object.

Since DO-ALL and DO-ACROSS loops generate Map and Map-Reduce function
calls, the lambdas can be automatically translated by the ÆminiumGPU compiler
and handled by the ÆminiumGPU runtime, thus taking advantage of available GPU
processing power.

5 Runtime Execution

5.1 Tasks and Dependencies

TheÆminiumRuntime is a Java library that exposesAPIs for expressing asynchronous
execution of code. The Runtime is composed of modules that allow for an efficient
execution of the source code, by leveraging the multiple hardware threads available.

The core concept of the Æminium Runtime is the task as a representation of code
that can execute asynchronously. Tasks have a body, which can be represented as a
lambda, an anonymous inner class or as a regular class (useful when doing recursive
calls). Tasks are also defined by a set of dependencies on other tasks. If A depends on
B, it means that A cannot execute before B is completed. Tasks can also have a parent
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task to represent subcomputations. If A is the parent of B, then A is only considered as
completed when both the body of A has completed and B is considered as completed.
Finally, tasks can be characterized with hints, such as Recursive, Loops, Small or
Large. An example task graph can bee seen in Fig. 3, which represents 6 tasks with
dependencies among them, as well as parent-child relationships.

Each task can be of one of three types:

– Non-Blocking Tasks are all operations that are purely computational.
– Blocking Tasks are tasks that have at least one operation that performs input or
output, such as disk reads/writes, communication over sockets or other interactions
with the Operative System.

– Atomic Tasks are tasks that cannot execute at the same time as other Atomic
Tasks that share the same Data Group. The Data Group acts as the lock that each
atomic task must acquire before executing and release after executing. However,
two Atomic Tasks with different Data Groups can execute concurrently.

Figure 4 shows the lifecycle of tasks inside the Runtime. When a task is submitted
to the runtime, along with its dependencies, the runtime analyzes if the dependencies
are already met. If so, the task is sent to a queue for execution. If not, no action is
performed at this point.

The ÆminiumRuntime does not create a Thread for each task, as the overhead
would be very noticeable. Instead, there are always n threads running, one for each
processor core available in the machine (This number can be configurable per program
execution). These threads are responsible for executing tasks that are considered ready.
In order to reduce the locking on the queues, each thread has its own queue. When a
thread finds its queue empty, it will “steal” a task from the queue of other thread. The
ÆminiumRuntime has a few stealing algorithms, including a random steal, stealing
from the largest queue or from the one with more dependent tasks.

Non-Blocking and Atomic tasks are stored on those regular queues. Since the exe-
cution of Blocking Tasksmay take a long time to execute, because of OS dependencies
such as Sockets or Files, they are added to a special ThreadPool-backed queue. This
avoids blocking Work-Stealing workers with Blocking tasks.

When a task completes, it will check if there are any child tasks that were scheduled
during execution and belong to the logical concern of the current task. When all
child tasks have finished, the task is marked as completed, and it will notify both the
dependent tasks and parent task that they do not need to wait for it anymore.
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5.2 Executing DO-ALL and DO-ACROSS

Since each iteration may take a different time to execute, DO-ALL and DO-ACROSS
loops cannot simply be divided in equal parts and executed in slices. In order to balance
loads across cores, a more dynamic approach is required. We provide two different
approaches: Binary Splitting and Lazy Binary Splitting [32]. Binary Splitting divides
the current range in two if the Decider module considers that it is still useful to create
new tasks. If not, it executes the current range iterations immediately. With Lazy
Binary Splitting, there is a parameter PPS which represents how frequently should we
check if we should split the range in half. A PPS of 3 means that every 3 iterations the
runtime checks if the remaining range should be split in two.

For DO-ACROSS loops, the Map-Reduce approach is better than creating lock-
protected atomic blocks, since it avoids locking contention when all threads want
to access that data. However, only associative and commutative operations can be
converted into Map-Reduce. This is not a large problem, as most data-intensive com-
putations are based on those operations, such as +,*, -.

5.3 Controlling Granularity

One of the most important factors when executing irregular programs is to decide
whether to execute a new task in parallel or inline the task body inside the current
task. This decision has a great impact since the overhead in task creation is too high
that can prevent recursive programs from having any speedups. The solution is to start
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calling the parallel version, but after a certain point, convert it to the sequential version
of the method.

TheÆminiumRuntime provides severalmechanisms for controlling the granularity
of tasks:

Maximum Task Recursion Level (Max-Level) Divide-and-conquer algorithms
create tasks in a tree-shaped structure. In order to avoid the creation of too many tasks,
the cut-off limit may be defined by the depth of the recursion [15], which can be
calculated by the number of ancestors of the running task.

This approach limits the depth of the task hierarchy graph,whichmay be suitable for
more balanced parallelism programs, but not for more dynamic unbalanced programs.

MaximumNumber of Tasks (Max-Tasks) In this approach, tasks are created until
the total number of active tasks reaches a certain threshold [15]. After that point, all
new computations are inlined instead of spawning another thread. When the number
of active tasks lowers, new tasks can be created until the threshold is reached again.

The threshold in this approach is typically defined as the number of processor
threads on the machine, adapting to different machines, but being oblivious to other
factors such as memory and processor speed.

Load Based This simple heuristic is based on whether all cores are being used or
not. A new task is only created if there is at least one idle core [14].

Surplus Queued Task Count This approach is included in Java’s Fork Join frame-
work [22] and it relies on the size of work-stealing queues. Before creating a new
task, the number of queued tasks in the current thread that exceeds the number of
tasks in other queues is compared to a threshold limit (usually 3 in existing ForkJoin
benchmarks).

In order to decrease the overhead of computing the size of queues, the size of
other queues is estimated from the size of the current queue after applying a factor
of (number of idle threads / active threads), because idle threads are known to have
0 tasks in their queue. This estimation assumes a regular distribution among threads,
which may not always happen.

Adaptive Tasks Cut-Off (ATC) Adaptive Tasks Cut-Off [14] changes the policy
of the cut-off mechanisms according to the recursion lifecycle. Tasks are only created
if two conditions are met. The first is that there are fewer tasks than the number
of threads on a given recursion level. This condition forces the threads to expand in
depth, creating work for all threads and being within a certain bound limit. The second
condition is that the depth-level is less than a certain threshold. This is, in fact, the
usage of max-level and max-tasks together.

ATC adds a profiler that saves information regarding how much time a sub-tree
takes to execute, and predicts further subtrees (if the prediction is larger than 1ms, the
task will not be created). This is, however, based on the assumption that all tasks inside
a level have a similar behavior, which does not happen in unbalanced parallelism.

Maximum Queue Size We introduce this new approach, which limits the number
of tasks in the local queue to a certain threshold This approach differs from maxtasks
in only looking at the local queue, instead of all the queues, reducing the time by not
accessing information from other threads. If the threshold is one or two tasks higher
than the threshold of max-tasks, queues will have extra tasks that can be stolen by
other threads.
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Stack Size In recursive divide-and-conquer programs, the recursion limit of the
platform imposes heavy limitations on the parallelization of programs. Recursive calls
are necessary to inline the execution of tasks inside the same worker thread. As such,
the performance of programs decreases when the stack grows beyond a certain size.

System Monitoring Instead of looking to the task and runtime state, this decider
method analyses the system load. If it is below a given CPU occupation and below
a given memory occupation, then a new task is created. Both the CPU and memory
occupations can be configurable.

The Runtime can use any of these methods for each program execution. It is also
possible to combine two or more of the methods at the cost of increasing the overhead
of the decision.

5.4 ÆminiumGPU Integration

The ÆminiumGPU Runtime allows the execution of data-parallel operations (such
as map and reduce) on GPUs. Operations are lazy and are only executed when the
result is needed. This differs from regular Java semantics, as it can avoid unnecessary
overheads in the case two GPU operations are chained. In that case, we merge the
GPU kernels into one, making only one data copy to each side, and starting only one
kernel.

The first step is to decide how to divide work between the GPU and the CPU cores.
If the GPU is going to be used, a OpenCL kernel is compiled, data is sent to the GPU
and the kernel executes. After completion, data is copied back to the main memory.

The decision whether to use the GPU is firstly done by analyzing the size of input
data. If it is below a given threshold (which depends on the machine) and the operation
is complex enough, then it is executed on the regularÆminiumRuntime as a DO-ALL
or DO-ACROSS loop. If it is complex enough, it can execute on the GPU or in amix of
GPU and CPU. This decision has been improved by using Machine Learning [18], in
which features from static analysis (number of memorywrites and reads, global versus
local accesses, cyclomatic complexity, number of branch instructions and number of
mathematical intensive operations) and runtime information (size of data, number of
chained operations) are used to decide which platform to use for execution.

6 Evaluation

In this section, we will evaluate several design options of the JPar Compiler, as well
as Runtime configuration for its programs. We then compare it with OoOJava and
with a manually parallelized version. The experiments shown were performed on a
12-core machine with a Intel Xeon X5660 @ 2.8GHz processor with 12 cores and 24
hyper-threads, and 24GB of RAM. The machine was running Ubuntu 14.04 server
64-Bit and Java Hotspot 64-Bit Server JVM. The machine was chosen for it’s high
number of cores. Unless specified, programs were executed 7 times and the average
value was used.
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Table 1 Description of the programs used in the benchmark

Program Parallelism Input size

Black–Scholes DO-ACROSS 100,000

FFT Recursive 16,777,216

Fibonacci Recursive n = 51

Health Recursive, DO-ALL n = 6

Integrate Recursive s = −2101, e = 1700, error = 10−14

MergeSort Recursive n = 251,658,240

N-Body DO-ALL it = 10, bodies = 25,000

Pi DO-ACROSS n = 1,500,000,000

Fig. 5 Distribution of execution times for each version of the FFT program of a random array with 262,144
elements

6.1 Benchmark Programs

In order to evaluate the performance of the compiler, we used the sequential version
of 8 programs from the Æminium Benchmark Suite [17]. The configuration for each
program is described in Table 1, as well as the parallelization performed for each
program.

6.2 Compiler Granularity Control

The JPar compiler performs a selection ofwhether tasks should be parallelizable, based
on the number of instructions. To evaluate whether this is useful, we compared two
versions of the compiler, one with fine-grained parallelism, and other that only creates
tasks if there are 10 or more instructions in the body of the task, or have recursive calls
or loops.

We used the FFT benchmark because it works with an array of Complex objects,
each with several lightweight methods, such as sin, cos, tan, times and divide. The
Full Parallel version converts invocations that can occur in parallel into tasks, while
the Partial parallel will only create parallel tasks for the main recursive function.
Figure 5 shows the distribution of execution times of both versions, as well as of the
sequential version. With an input size of 262,144 elements, there is no speedup in any
of the versions. However, with higher input sizes, the Full Parallel version will have
take more than one hour to execute, while the Partial Parallel version would provide
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speedups. Thus, we confirm that enabling a threshold for task parallelization benefits
programs.

6.3 Binary Versus Lazy Binary Splitting

Programs that have for loops parallelized, can generate tasks in two different ways:
Binary Splitting or Lazy Binary Splitting. For Lazy Binary Splitting, we used the
recommended value of 3 for the PPS parameter, and a higher value of 10 for less
frequent decisions. Figure 6 shows the speed-up over sequential programs of the three
approaches in programwith loops. The Lazy Binary Split version achieved best results
in the Black–Scholes program, running in less than half of the time as its Binary Split
counterpart, but could not complete the other programs within a 5-minute time-out,
resulting in no speed-up. The conclusion is that Binary Split is a conservative approach
that can be used for any program, while Lazy Binary Split can be used to achieve best

Fig. 6 Average speedup of binary split and lazy binary split (PPS = 3 and 10) versions of the programs
with loops
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results, but needs to be applied after verifying there is a speedup in that particular
program.

6.4 Cutoff Mechanism

One of the most important variables for tuning a parallel program is the granularity
of tasks. Besides the compilation-time decision of parallelizing a task or not, the
Æminium Runtime has several automatic granularity control mechanisms. Figure 7
shows the speed-up achieved by each method on the 8 programs. For each mechanism,
several parameters were previously tested, and we used the best.

Black–Scholes is a program with a high number of tasks and each task performs
very small work. Creating extra-tasks in this kind of program brings a high penalty,
because the task overhead is several times more expensive than executing the task
itself. max-level is the mechanism with the best performance since all loop iterations
take equal time to execute. However, amaximum level of other value than 12would not
perform as well. The samemechanism does not performwell on Fibonacci or Integrate

Fig. 7 Speed-ups of different cut-off approaches for each program
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Fig. 8 Average speed-ups of different cut-off approaches across the eight different programs

given the very irregular and unbalanced nature of the problem. The skewness in the
computation tree would leave one task with a time-consuming task similar that of the
sequential version.

Black–Scholes is the program that takes more advantage of being parallelized on
this machine. ATC, Load Balance, Max-Level and Surplus show a good performance.
When cutting parallelism by the stack depth or system resources, too many tasks are
created, and there is an high unnecessary overhead.

The FFT program did not achieve high speedup values because of memory issues.
Each recursive call would allocate a large array of memory, and this revealed to be
a performance hit on the java platform. The approaches that limited the JVM stack
depth achieved the best results, but still under the desired values. The same happened
with N-Body simulation because of compiler-time granularity. N-Body is made of two
loops, and the JPar compiler over-parallelizes the program by trying to convert both
loops in DO-ALL operations. Since the inner loop is small enough to be considered
only one task, the compiler introduces a high overhead by trying to parallelize a block
that is already small enough.

The comparison between approaches for the overall benchmark can be seen in
Fig. 8. DespiteMax-Level having the highest speedup, we used as default the Surplus3
approach because of its lower variance.Most of the difference of speedup ofMaxLevel
is due to only one program: Black–Scholes.

6.5 Comparison with Other Approaches

We evaluated the JPar compiler against two other approaches: OoOJava and a
human programmer. The source programs were annotated with the sese statements
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Fig. 9 Speed-up comparison between JParCompiler, Human and OoOJava approaches. The JPar version
includes the two best performant cut-off mechanisms, maxtasks2 and surplus3. TheHuman version includes
one version on top of the Fork–Join framework, and two on top of theÆminiumRuntime, one with amanual
cut-off and other with an automatic cut-off mechanism. For the OoOJava compiler, the serial and parallel
versions are shown

to identify main parallel tasks. Without these annotations, the generated version
would be equivalent to the sequential version. Since the OoOJava compiler gener-
ates C code, a sequential version using the same compiler is also presented. The
OoOJava compiler was unable to compile Black–Scholes, Health and the N-Body
programs, failing to identify dependencies during code-generation. The Æminium
Benchmark includes versions of the programs manually written on top of the Fork–
Join framework, and on top of the Æminium Runtime. Manual or automatic cut-off
mechanisms were selected using a manual local search across mechanisms and para-
meters.

Figure 9 shows the speedup achieved by the three approaches, each with different
configurations of platform, granularity controlmechanismand, in the case ofOoOJava,
the sequential version is also included. Overall, the performance of JPar compiler was
superior to that of OoOJava. OoOJava did not even achieve a speedup compared with
the OoOJava sequential version. The reason is that the automatic granularity control
mechanism of the OoOJava over-parallelizes, resulting in overheads on smaller tasks
and on a heavier contention in locking. The results presented in [21]mask the overhead
by introducing a manual cut-off decision in the sequential programs, which should not
be aware that they are parallel.

Overall, the human versions Fork–Join and Æminium programs performed better
than those of JParCompiler, which is expected, since the programmers have a better
knowledge of the nature of the program, and select the best parts to parallelize. Black–
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Scholes is an exception, since the Human version only parallelizes inside each loop,
and does not consider parallelizing different tasks at the same time. This is a casewhere
the compiler could find parallelism hidden in plain sight, and this can be used to further
improve the benchmarks. In the other cases, theHuman versions outperformed the JPar
compiler with the best general cut-off. It is important to notice that the best threshold
in some programs would show a speed-up similar to the human version, however we
decided not to include a manual tuning of the parallel version generated by the JPar
compiler.

7 Conclusion

We have presented the JPar compiler and the Æminium framework for automatically
parallelizing sequential programs. By analyzing the data dependencies in the sequen-
tial program, we were able to conservatively extract parallelism without changing the
program semantics. We have improved over our previous work by performing the
data-dependency analysis in one pass, and by generating source-code similar to the
original, but with futures replacing parallel computations. This change allows devel-
opers to understand how parallelization occurs, and how to improve it.

We have also studied two granularity control mechanisms. The JPar compiler only
considers for parallelization tasks that are considered large enough. This change intro-
duced speedups in several programsof the benchmark, thatwould not have it otherwise.
We have also applied several existing runtime cut-off mechanisms, as well as three
new (StackSize, System Monitor, and a combination of StackSize with Max Tasks)
that can be used to improve the performance of programs. We have also studied the
usage of Binary versus Lazy Binary Splitting.

Finally,we comparedour compilerwith another state-of-the-art compiler,OoOJava,
andwith human parallelization.While our resultswere not as good as if a humanwould
write and fine-tune the programs, JPar generated programs outperformed OoOJava.

For future work, we intend to select the best granularity control mechanism for
a given program by looking at its structure. This can be performed using machine
learning techniques over a large dataset of programs. A low-overhead combination of
mechanisms that can be used to improve any program is also currently being explored.
Another aspect which needs improvement is to better access the granularity of tasks
at compile-time, for which a cost model can be of use.
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