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Abstract Intel Xeon Phi accelerators are one of the newest devices used in the field
of parallel computing. However, there are comparatively few studies concerning their
performance when using most of the existing parallelization techniques. One of them
is thread-level speculation, a technique that optimistically tries to extract parallelism
of loops without the need of a compile-time analysis that guarantees that the loop can
be executed in parallel. In this article we evaluate the performance delivered by an
Intel Xeon Phi coprocessor when using a software, state-of-the-art thread-level specu-
lative parallelization library in the execution of well-known benchmarks. We describe
both the internal characteristics of the Xeon Phi platform and the particularities of
the thread-level speculation library being used as benchmark. Our results show that,
although the Xeon Phi delivers a relatively good speedup in comparison with a shared-
memory architecture in terms of scalability, the relatively low computing power of its
computational units when specific vectorization and SIMD instructions are not fully
exploited makes this first generation of Xeon Phi architectures not competitive (in
terms of absolute performance) with respect to conventional multicore systems for the
execution of speculatively parallelized code.

Keywords Thread-level speculation · Speculative parallelization · Optimistic
parallelization · Xeon Phi

B Diego R. Llanos
diego@infor.uva.es

Alvaro Estebanez
alvaro@infor.uva.es

Arturo Gonzalez-Escribano
arturo@infor.uva.es

1 Departamento de Informatica, Universidad de Valladolid, Campus M. Delibes,
47011 Valladolid, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-016-0421-x&domain=pdf


226 Int J Parallel Prog (2017) 45:225–241

1 Introduction

Currently, physical limitations of single core chips are inducing a quick develop-
ment of multicore architectures. One of the most recent approaches is the Intel�Xeon
PhiTM [3,11,20], a coprocessor with more than 60 cores able to execute both offloaded
and native codes. Nonetheless, due to its own novelty, this coprocessor has not yet
been extensively tested with non-regular parallel codes. The dissemination of experi-
mental results under these conditions would be really useful to test the behavior and
capabilities of this computing resource.

In this paper we use a Xeon Phi coprocessor to run irregular applications that
were speculatively parallelized, with the help of a software-only, speculative paral-
lelization library. Thread-level speculation (TLS) [8,34,35,42], also called speculative
parallelization (SP) [14,18,22,46] or optimistic parallelism [25,26] tries to extract
parallelism of loops that can not be considered fully parallel at compile time. TLS
optimistically assumes that dependence violations will not occur, launching the par-
allel execution of the loop. A hardware or software monitor ensures the correctness of
that assumption. If a dependence violation is detected, offending threads are stopped
and re-started in order. After solving the issue, the optimistic, parallel execution is
allowed to continue. The target of TLS systems are usually for loops. Other loops can
be considered as well, but as long as their number of iterations can not be so easily
predicted, the applicability of TLS solutions is limited by scheduling problems.

In order to handle the speculative parallelization of a loop, all variables have to
be classified as private, shared, or “speculative”.1 All reads to a speculative variable
are replaced at compile time with a function that recovers the most up-to-date value
for this variable. In a similar way, all writes to a speculative variable are replaced
with a function that not only performs the write operation, but also ensures that no
thread executing a subsequent iteration has already consumed an outdated value of
this variable. TLS is useful when executing codes that present scarce dependence
violations at runtime. Otherwise, costs associated to check for correctness, stop and
retry executions, and commitments, make this technique inefficient.

The contribution of this paper is to test the performance of a state-of-the-art TLS
runtime library using an Intel Xeon Phi. This coprocessor has a big number of parallel
threads, therefore, it is interesting to measure its behavior with a shared-memory tech-
nique such as TLS, when data is permanently shared among threads. We believe that
TLS is also a good problem to test such hardware architecture, because the Xeon Phi
platform allows the different threads to follow different execution paths (contrary to
GPUs), so the use of a Xeon Phi platform can be viewed as a natural environment for
TLS. Our experimental results show that the benchmarks considered scale well when
running them on a Xeon Phi coprocessor. However, our results also confirm that, due
to the irregular nature of the target applications for TLS techniques, and the modest
computing capabilities of each individual core when vectorized and SIMD instruc-
tions are not fully exploited, execution times are much higher than those gauged in
conventional shared-memory systems. This limit the usability of the current genera-

1 This issue can be addressed by the programmer, or by the use of specific compilers such as [4].
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tion of Xeon Phi platform for irregular, not-easily-vectorized applications, although
we expect that this situation will change with the new generation of the Xeon Phi
platform, that will incorporate out-of-order, more powerful processors.

The rest of this paper is structured as follows: Sect. 2 describes the main charac-
teristics of the Xeon Phi coprocessor. Section 3 describes the software-based, TLS
framework used to test the coprocessor. Section 4 describes both the experimental
environment and the benchmarks used. Section 5 shows some experimental results in
terms of performance measured in a shared-memory system without coprocessor, and
in a Xeon Phi coprocessor. Section 6 summarizes some works that helps to put into
perspective our contribution. Finally, Sect. 7 concludes this paper.

2 Intel Xeon Phi in a Nutshell

Intel Xeon Phi [3,11,20] is a coprocessor launched by Intel in 2012. It is called
coprocessor because, although it can run a Linux operating system by itself, it should
be placed aside another processor to work properly. Although first impressions might
suggest a number of similarities, it is not an accelerator such as GPUs. Whereas the
Intel Xeon Phi cores are more similar to classical complete CPUs, the GPUs thread
scheduling hardware is different. As the reader may know, GPUs have a hierarchical
hardware architecture, so they should be programmed with a hierarchical thread struc-
ture inmind [7], that uses the concept of threads, blocks, and grids.2 Furthermore, Intel
Xeon Phi coprocessors do not use the grid, and groups of threads in the same way, and
also thememory latency hidingmechanisms are different. This issue hinders easy code
migrations to the latter kind of accelerators, and requires and in-depth understanding
of special programming models as CUDA [30], or OpenCL [23]. On the other hand,
the Xeon Phi coprocessor is able to use all standard parallel programmingmodels such
as OpenMP [12], POSIX threads, MPI [43], or even OpenCL. Thus, using this new
coprocessor only requires a minimum learning curve, assuming that the programmer
knows at least one of these common parallel programming models.

2.1 Internal Details

Intel Xeon Phi coprocessors have up to 61 cores at 1090 MHz, interconnected by
a high-speed bidirectional ring. Each core is enhanced with four hardware threads
(up to 244 threads per coprocessor), and with a 512-KB L2 cache. L2 cache levels are
shared by all cores. Furthermore, in addition to 64-bit x86 instructions, cores offer 512-
bit wide SIMD vectors, intended to speed-up the execution of regular code through
vectorization. The coprocessor is generally connected to the host system via the PCI
Express bus, and supports up to 8 GB GDDR5 memory. Figure 1 briefly describes the
architecture of the Intel Xeon Phi.

2 A thread is the simplest unit of execution, intended to process a specific code. A block is defined as a
group of threads, where threads can be executed concurrently or sequentially with no order. At this level, a
block allow the coordination of its threads with the use of barriers. A grid is a group of blocks without any
possible synchronization among them.
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Fig. 1 Overview of the microarchitecture of an Intel Xeon Phi coprocessor

2.2 Use of the Xeon Phi

There are mainly two ways of executing a parallel program into a Xeon Phi coproces-
sor:

Native Execution: The Intel Xeon Phi coprocessor is capable of running a Linux
operating system. It is possible to log into the Xeon Phi from the host processor
using SSH, through a mic0 network interface, added to the kernel by a module
provided by Intel, and use it natively. Thus, it allows the execution of the typical
Linux-based commands as well as our own programs.
Offload Extensions from the host: Intel defined a set of pragmas and keywords to
be used in parallel codes in order to execute them in coprocessors. A programmer
only needs to declare the region which should be executed in a coprocessor. Inside
this region, any kind of function can be used. For example, in the case of OpenMP,
a single pragma defined as #pragma offload target mic should be used, where
mic represents the identifier of the target Xeon Phi coprocessor. In addition, we
should point out the variables that will be used in the coprocessor, declaring their
use with the clauses in(), out(), or inout(). The use of variables with dynamic size
requires to explicitly declare the size, e.g. in(a:length(n)). These variables will be
copied from the host to the device, and/or vice versa, depending on their usage.
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As can be seen, the Xeon Phi programming methodology is really convenient in
order to gain speedup with a relatively low programming effort.

3 Description of the ATLaS Runtime Library

The ATLaS framework [4] enhances OpenMP with a new clause to allow the specu-
lative use of variables inside a program. The use of this tool is simple: A programmer
only needs to include the list of speculative variables in the predefined speculative
clause of al parallel for directive. The compilation and runtime system automati-
cally transforms the code to a version capable of running in parallel while preserving
sequential semantics. To do so, the system augments all accesses to speculative vari-
ables, adapting them to the functions of the ATLaS runtime library [15], that ensures
sequential consistency. In this work, we have modified the runtime library so as to
adapt it to particularities of the Intel Xeon Phi coprocessor. However, our aim was
doing as few modifications as possible. A more in-depth adaptation would require
a deep modification of the library implementation, that is out of the scope of this
paper.

The ATLaS runtime library supports the speculative execution of for loops with
dynamic and pointer-referenced speculative variables, handling dynamic memory,
and managing, on demand, the space needed for speculative variables in each thread.
This TLS runtime library allows the parallelization of loops with variables of any
data type, allowing the programmer to reference these variables either by name or
by address. In this section we will briefly show the architecture of our library in
order to understand the structures and operations in which the Intel Xeon Phi will be
tested.

3.1 ATLaS Runtime Data Structures

Figure 2 outlines the data structures needed by the speculative runtime library. In
this section we will only briefly describe the main characteristics of this solution:
A detailed explanation can be found in [4,15]. At the top of the figure, we can
see two pointers to the non-spec and the most-spec threads, that are the threads
in charge to the execution of the non-speculative and most-speculative chunks of
iterations. The non-speculative chunk is the one whose execution is not speculative,
while the most-speculative one is the one that is more likely to suffer a dependence
violation from a predecessor thread. Below these pointers there is a matrix with
W window slots (four in the figure) implementing a sliding window that manages
the runtime of the library. Each slot is responsible to handle the speculative execu-
tion of a particular set of iterations. Each slot is composed of two fields, STATE
with the state of the execution being carried out in each slot; and a pointer to
maintain the position of the speculative variables used by each slot in the execu-
tion.

It is very important to understand that there is not a fixed association between
threads and slots. Whenever a thread is assigned a new chunk of iterations, it is
also assigned a slot to work in, that is located at the right of the most-speculative
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Fig. 2 Data structures of our speculative library

slot. This allows to maintain an order relationship among the chunks being exe-
cuted.

In addition to its STATE, each slot points to a data structure that holds the version
copies of the data being speculatively accessed. Figure 2 represents a loop with three
speculative variables. At a given moment, the thread executing the non-speculative
chunk has speculatively accessed variables a and b. Each row of the version copy data
structure keeps the information needed tomanage the access to a different speculative
variable. The first column indicates the address of the original variable, known as the
reference copy. The second one indicates the data size. The third one indicates the
address of the local copy of this variable associated to this window slot. Finally, the
fourth column indicates the state associated to this local copy. Once accessed by a
thread, the version copies of the speculative data can be in three different states:
Exposed Loaded, indicating that the thread has forwarded its value from a predecessor
or from the main copy;Modified, indicating that the thread has written to that variable
without having consumed its original value; and Exposed Loaded and Updated, where
a thread has first forwarded the value for a variable and has later modified it.

Figure 2 represents a situation where the thread working in Slot 1 has performed a
speculative load from variable a (obtaining its value from the reference copy) and a
speculative store to variable b. Regarding a, the figure shows that the thread working
in Slot 3 has forwarded its value. With respect to variable b, the information in the
figure shows that b has been overwritten both by threads working in Slots 1 and 3
without taking into account its prior value (since both version are in Modified state).
When the commitment of the data generated by these threads take place, variable b
will be first overwritten by the version copy produced by the non-speculative thread.
After finishing this commit operation, the non-spec pointer advances one position, and
when the thread located in Slot 2 finishes, it will overwritten again the variable b with
the new value.
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3.2 Speculative Operations

In order to manage versioning and detect dependence violations on speculative vari-
ables, all accesses to speculative variables are replaced at compile time with a function
that manages the structures described above. Reading a speculative variable implies to
obtain the most updated value of this variable, in order to avoid, as much as possible,
dependence violations. For the same reason, write operations are also replaced with a
function that, in addition to storing the value in an intermediate place, checks if any
successor thread (a thread which executes a chunk of subsequent iterations) has used
an outdated version of this variable. In this case, the thread should discard the data
calculated so far during the execution of the current chunk of iterations and restart it.
When doing so, the thread will forward the correct value of the variable. As can be
inferred, while a load or store operation of a scalar datum only requires to perform
a single memory access, the transformation of this operation in a speculative load or
store requires to replace the single memory access to a function call that performs all
the required actions. This implies that the time consumed by the speculative load or
store operation can be easily two or three orders of magnitude higher than the original
one.

The partial commit operation is exclusively carried out by the non-speculative
thread. Every time a thread should check if its data have to be committed or discarded,
it first checks if it has not been squashed and if is the non-speculative thread. If the
thread is speculative, the slot is left, since it will be committed later by the non-spec
thread.

It is interesting to point out that each thread only writes on its local version copy
data structure, so no critical sections are needed to protect them. The only critical
section used protects the sliding window data structure, because, without it, a thread
could overwrite another thread’s state.

4 Experimental Setup

The goal of this work is to test the Xeon Phi coprocessor in off-loading mode to
speculatively execute in parallel different, well-known benchmarks. In this way, the
ATLaS runtime library was adjusted to offload the execution of the parallel loop to the
Xeon Phi coprocessor, without further optimizations such as vectorization, one of the
most important features of the Xeon Phi. In any case, this feature is not very useful
for our benchmarks, mainly composed of irregular code.

To test the performance of the ATLaS TLS runtime, we have used three different
real-world benchmarks, together with a synthetic one. The real-world applications
include the 2-dimensional convex hull problem (2D-hull) [10], the Delaunay trian-
gulation problem [13,29], and a C implementation of the TREE benchmark [5]. The
synthetic benchmark is the Fast [4] benchmark.

The 2D-hull problem solves the computation of the convex hull (smallest enclosing
polygon) of a set of points in the plane. We have parallelized Clarkson et al. [10]’s
implementation. The algorithm starts with the triangle composed by the first three
points and adds points in an incrementalway. If the point lies inside the current solution,
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it will be discarded. Otherwise, the new convex hull is computed. Note that any change
to the solution found so far generates a dependence violation, because other successor
threadsmayhave used the old enclosing polygon to process the points assigned to them.
The probability of a dependence violation in the 2D-Hull algorithm depends on the
shape of the input set. Therefore, we have used three different, ten-million-point input
sets to run this benchmark. TheKuzmin input set follows aGauss–Kuzmin distribution,
with a higher density of points around the center of the distribution space, which leads
to very few dependence violations, since points far from the center are very scarce. The
two other input sets, Square andDisc, cause more dependence violations thanKuzmin,
with their points uniformly distributed inside a square and a disc, respectively. The
Square input set leads to an enclosing polygon with fewer edges than the Disc input
set, thus generating fewer dependence violations.

The second real-world application is the randomized incremental construction of
the Delaunay triangulation using the jump-and-walk strategy, which was introduced
by Mücke et al. [13,29]. This incremental strategy starts with a number of points,
called anchors, whose containing triangles are known. The algorithm finds the closest
anchor to the point to be inserted (the jump phase), and then traverses the current
triangulation until the triangle that contains the point to be inserted is found (the walk
phase). The goal of the algorithm is to find the network of triangles in which all the
circumcircles of all triangles in the network are empty, i.e., the circumcircle of each
triangle contains no other vertices than those three that define the triangle. We have
used an input set of 5000 anchors, and one million points to be inserted.

The TREE problem [5], unlike the previous two applications, does not suffer from
dependence violations, but it is still not parallelizable at compile time because the
compiler is not able to ensure that there are no data dependencies. Compilers also find
hurdles in several sum and maximum reductions contained in the code. We have run
this benchmark with a 4096-point input set.

We have also used a synthetic benchmark called Fast [4], which presents almost no
dependences between iterations, and which was designed to test the efficiency of the
speculative scheduling mechanism, with few iterations

We have used two different platforms to compare the scalability of the speculative
execution of our benchmarks. The first one isHeracles, a 64-processor server, equipped
with four 16-core AMD Opteron 6376 processors at 2.3GHz and 256GB of RAM,
which runs CentOS 7 Linux. The second one is Chimera, a server equipped with two
Intel Xeon E5-2620 V2 processors with six cores each, 32 Gb of RAM, and a Xeon
Phi 3120A coprocessor with 6 Gb of RAM running at 1.1 GHz. The system also runs
CentOS 7 Linux.

All threads had exclusive access to the processors during the execution of the
experiments, and we used wall-clock times in our measurements without taking into
account times spent in data transfer.We have used icc (ICC) 15.0.2 for all applications
in both platforms. Although we know that ICC may be not the most appropriate
compiler for an AMD platform, Xeon Phi offloaded codes can only be compiled with
ICC, and we preferred to use the same compiler in all the experiments. Times shown
in the following sections represent the time spent in the execution of the parallelized
loop for each application. To better assess the scalability offered by the Xeon Phi, the
time required for data offloading has not been taken into account in the measurements.
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The execution time used as the baseline for comparing speedups was the sequential
execution of each benchmark in both platforms, with the same compiler and compi-
lation flags.

5 Experimental Results

5.1 Scalability

Figure 3 compares the speedup obtained with the same parameters in both the shared-
memory processor, and the Xeon Phi coprocessor. Results show that, regarding the
speedup, the Xeon Phi coprocessor delivers a better scalability than a conventional,
shared-memory system. This scalability improvement is related to the Xeon Phi mem-
ory architecture. All TLS runtime libraries require many accesses to shared data, so
the faster and higher bandwidth, the better performance. In our case, while the AMD
Opteron 6376 achieves up to 51.2 GB/s memory bandwidth per socket, [1], the Intel
Xeon Phi coprocessor achieves a peak of 240 GB/s [2]. In our experiments, the bench-
mark with the highest number of variables involved in the speculative execution is the
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Fig. 3 Speedups by number of processors for each tested benchmark, comparing the performance obtained
by using Intel Xeon Phi coprocessor, and a conventional shared-memory system
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Delaunay triangulation, with more than 12 million, different scalar variables, while
the one with the smallest shared data set is FAST, with just two variables. Whilst
in the latter benchmark the speedup is similar in both architectures, in the Delaunay
triangulation the speedup achieved by the Intel Xeon Phi is up to 2.38× higher with
respect to the AMD Opteron 6376.

5.2 Oversubscription

Figure 4 shows the experimental results produced with the execution of the bench-
marks using the whole threads of the Xeon Phi coprocessor. The particular nature of
the threads per core in this platform, being not independent of each other, severely
limits the scalability when more than 60 or 70 threads are launched, depending on
the application. In some cases, performing such an oversubscription with respect to
the number of cores leads to slightly better results, but the performance decays when
we tried to use more cores. We attribute this fact mainly to memory issues, since
the benchmarks considered mainly use integer arithmetic and therefore do not make
noticeable use of FP ALU sharing among contexts. As we have exposed in Sect. 2.1,
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Fig. 4 Speedups by number of processors for each benchmark tested on the Intel Xeon Phi coprocessor
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Xeon Phi coprocessors can manage up to 244 threads. However, due to the fact that
threads of each core are not independent, from 61 threads on (there are in total 61
cores) most of these cores are of no use to execute speculative threads that follow their
own execution path.

In conclusion, we have found that the particular architecture of the Xeon Phi, with
threads working synchronously in each core, is not particularly suitable for software-
based speculative execution.

5.3 Absolute Performance

Although the Xeon Phi presents a better scalability when comparing with a conven-
tional, shared-memory system, when considering absolute times, the picture is very
different. Figure 5 shows the absolute times required to run each benchmark in Her-
acles and in the Xeon Phi installed in Chimera. The analysis of this figure leads to
two conclusions. First, the use of the Xeon Phi to execute these benchmarks in par-
allel reduces the execution time needed by a single, high-end processor for the Fast,
Tree, and 2D-hull benchmarks, using the Square and the Kuzmin input sets. On the
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Fig. 5 Execution time in seconds with respect to the number of threads for each benchmark. The sequential
time obtained with a single Xeon processor in Heracles is also shown
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Table 1 Comparison of the time in seconds required to execute the benchmarks tested in both the Heracles,
the shared memory system, and in the Xeon Phi coprocessor of Chimera

32 threads 64 threads

Application (A) Xeon Phi (B) Heracles (A)/(B) (A) Xeon Phi (B) Heracles (A)/(B)

FAST 154.45 19.28 8.01 87.68 9.03 9.71

2D-Hull, Disc 11.71 2.22 5.27 13.81 2.39 5.77

2D-Hull, Square 4.93 0.99 4.98 4.58 0.80 5.75

2D-Hull, Kuzmin 3.01 0.54 5.62 2.36 0.40 5.90

Delaunay 114.08 22.04 5.18 139.50 23.24 6.00

TREE 87.30 23.18 3.77 99.33 47.49 2.09

contrary, Delaunay and 2D-hull using the circle input set does not benefit at all from
this architecture.

The second conclusion is that when comparing the absolute times obtained with
the same number of threads in both architectures, we can see that the shared-memory
architecture of Heracles allows to obtain execution times that are roughly an order of
magnitude better than those produced by the Xeon Phi. The reasons are not only the
higher clock speed of AMD processors, but their more advanced architecture, with
out-of-order execution and branch prediction, compared with the in-order execution
of the Pentium-based Xeon Phi computing units, that stall the execution in the case of
a cache miss. The much more powerful architecture of AMD processors compensates
the performance losses derived from the memory organization in the shared-memory
system with respect with the one offered by the Xeon Phi, that leads to a better
scalability as we saw in previous sections. Regarding the influence of the compiler
chosen, in theory the choice of the Intel compiler might help the Xeon Phi platform to
obtain better results. However, as long as the benchmarks are irregular, integer-based
applications, the vectorization capabilities of the Intel compiler are of limited use in
this case.

Table 1 summarizes the execution times for 32 and 64 threads in both architectures,
with the corresponding relationship. As can be seen, relative speedups obtained by
Heracles range from 2.09× for TREE with 64 processors, to 9.71× for FAST with 64
processors.

Despite the poor performance delivered, we consider that the Xeon Phi coprocessor
may still help in the speculative execution of loops thanks to their comparatively big
number of threads. Our future work include the combination of software-based TLS
techniques with other solutions, such as value prediction, or the use of helper threads.

6 Related Work

To the best of our knowledge, this is the first research that tests TLS with Xeon Phi
coprocessors. We will briefly review some related TLS approaches, and other studies
that measure Xeon Phi capabilities.
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6.1 TLS Approaches

Several researches have been centered on the parallelization of loops with cross-
iteration dependences through thread-level speculation (TLS) techniques. Some of
them have been implemented in hardware (e.g. [24,28,40], through the design of
specific chips, or the addition of some functionalities. But there are also several soft-
ware approaches that support the mentioned parallelism with no architectural changes
[8,22,25,42]. In this work, wewill describe some of the software approaches, and pro-
pose a number of possible hardware additions which might improve the performance
of TLS on the Intel Xeon Phi coprocessors.

6.1.1 Software Branch

One of these software approaches is the work of Tian, Feng, Nagarajan and Gupta
in [42], where they proposed the Copy-or-Discard (CorD) execution model, in which
the execution of parallel threads are separately managed by the non-speculative one.
Speculative threads read values of the non-speculative thread and perform their com-
putation, after that, speculative threads are committed in order. After that results are
checked by non-speculative thread in order to preserve semantics of sequential order.
Commit operation is performed by non-speculative thread through theCopy orDiscard
mechanism that checks whether results are correct to be copied to the non-speculative
data, or discarded with no cost otherwise. However, CorD approach did not support
those applications whose speculative variables were dynamically allocated, so in [41]
Tian, Feng and Gupta developed mechanisms that enable their solution to do it.

Cintra and Llanos [8,9] developed another scheme mainly based on an aggressive
sliding window, with checks for data dependence violations on speculative stores that
reduced synchronization constraints, and with fine-tuned data structures.

Kulkarni et al. [25,26], introduced Galois, a system to support complex pointer-
based sets of elements in optimistic parallelism. They were centered on parallelize
applications with complex structures as linked lists, graphs, trees, etc.

Oancea et al. [31] described their own TLS approach called SpLIP, centered on
decreasing overheads of speculative operations of previous approaches. They imple-
mented non-locking operations where possible, and used a hash function to improve
location of version copies. Their hash is based on mapping adjacent zones of the array
that stored speculative values in a single place. A similar approach to SpLIP [31],
called MiniTLS, was developed by Yiapanis et al. [45].

Jimborean et al. [21] introduced a TLS framework specially designed to specula-
tively execute nested loops. To do so, authors used features of polyhedral model to
dynamically transform code in a more optimized version that led to higher speedups.
Framework consisted on dividing execution in two parts, one to generate some skele-
tons, and other one that selected the optimized code at runtime.

Most of the reviewed approaches might be useful to test the performance of the
Xeon Phi. As we saw in previous section, we have used the ATLaS framework [4,15].
Our results suggest that the use of other software-only TLS solutions may lead to
similar conclusions.
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6.1.2 Hardware Improvements to Benefit Software TLS

We will now explore some enhancements which might possibly improve the perfor-
mance of TLS on Intel Xeon Phi coprocessors. We will center our discussion on
applying ideas belonging to the classical hardware approaches to manage speculation
in multicore processors. Therefore, the implementation of these ideas would need
changes in the Xeon Phi architecture.

Sohi et al. [40] developed the multiscalar processor, where cores were intercon-
nected through a ring, an approach also followed in the speculative multithreaded
processor [28]. For these systems, hardware modules developed to store intermediate
versions of variables were also proposed, such as ARB [17] or SVC [19]. As long as
the ring interconnection mechanism is also present in the Xeon Phi coprocessors’, the
application of their mechanisms to handle dependences in hardware might decrease
software overheads.

Another possible improvement might be the addition of a new cache, based on
the Trace cache [37]. This proposal stored traces (dynamic sequences of instructions
stored in the hardware) at runtime, and instructions were executed in parallel, while
dependences were speculated with the use of predictors.

A different approach like the used in the I-ACOMA architecture [24] may work
as well. They used a binary annotator that added some notes into executable files
to detect possible dependences, that were managed at runtime with a special mod-
ule called memory disambiguation table. Another source of ideas for improvements
is the threaded multi-path execution [44] approach, that was focused on prediction
techniques. This proposal executed all possible branches of a loop, whilst there were
enough resources, a situation that is likely to occur in Xeon Phi coprocessors.

6.2 Studies Related to the Xeon Phi Coprocessor

The Xeon Phi coprocessor is being extensively studied. Some papers have developed
extensions to offloaded regions. For example, COSMIC [6] is a middleware inte-
grated in the subjacent software that tries to ease and improve the performance of
multiprocessing in Xeon Phi coprocessors. This work aimed to reduce imbalance and
overheads through the management of resources. It handled offload regions and takes
care of the request of coprocessors, cores and memory. Snapify [36] tried to reduce
failure rates of Xeon Phi coprocessors. The underlying idea was taking snapshots
during execution (saving the state of applications) and if an error was produced, the
execution was restored to a correct, saved state, instead of being restarted.

Some essays are focused in the implementation of existing algorithms into
coprocessors. For example, [33] developed a multi-node 1D FFT implementation
on coprocessors; [27] implemented a sparse matrix-vector multiplication; and [32]
developed a SQL engine that benefited from the inherent parallelism related to Xeon
Phi coprocessors.

Furthermore, as it is the case, there are many other papers centered on the mea-
surement of the performance obtained from a Xeon Phi. [38] was one of the first
papers that used Intel Xeon Phi coprocessor (that was called Intel Knights Ferry) to
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evaluate the performance of scientific applications. Later, Cramer et al. [11] evaluated
the behavior of some OpenMP benchmarks in a Xeon Phi coprocessor. They affirmed
that common OpenMP codes could be easily migrated to Intel Xeon Phi, gaining more
parallel performance without adding overheads. This study was enhanced in [39]. [16]
also tested the Xeon Phi through the development of some microbenchmarks.

7 Conclusions

In this work we have evaluated the behavior of the Xeon Phi coprocessor in the context
of software-only, thread-level speculation (TLS), a parallel technique that optimisti-
cally executes in parallel sequential codes without a prior dependence analysis. Intel
Xeon Phi coprocessors are one of the state-of-the-art architecture that aims to execute
parallel codes. Our experimental results show that the particular memory architecture
of the Xeon Phi leads to better scalability with regards to speculative execution, with
better relative speedups than those obtained using a conventional, shared-memory
architecture. However, the relatively low computing power of its computational units
when specific vectorization and SIMD instructions are not exploited, indicates that
further development of new specific techniques for this platform is needed to make it
competitive for the application of speculative parallelization comparing with high-end
processors or conventional shared-memory systems. This situation is likely to change
with the arrival of the new generation of Xeon-Phi platforms, that incorporates more
competitive processors. We plan to extend this work to this new generation, with a
more detailed profile analysis, as soon as it becomes available.

Although the use of a Xeon Phi coprocessor to execute software-based, TLS codes
is not competitive, the Xeon Phi architecture might be useful when combining TLS
solutions with other existing techniques such as value prediction or helper threads. In
this way, some of the available threads could be used to help TLS execution, reducing
dependence violations and thus improving performance.
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