
Int J Parallel Prog (2017) 45:340–361
DOI 10.1007/s10766-016-0417-6

Multi-ML: Programming Multi-BSP Algorithms in ML

V. Allombert1 · F. Gava1 · J. Tesson1

Received: 2 September 2015 / Accepted: 21 March 2016 / Published online: 2 April 2016
© Springer Science+Business Media New York 2016

Abstract bsp is a bridging model between abstract execution and concrete parallel
systems. Structure and abstraction brought by bsp allow to have portable parallel pro-
grams with scalable performance predictions, without dealing with low-level details
of architectures. In the past, we designed bsml for programming bsp algorithms inml.
However, the simplicity of the bspmodel does not fit the complexity of today’s hierar-
chical architectures such as clusters of machines with multiple multi-core processors.
Themulti- bspmodel is an extension of the bspmodel which brings a tree-based view
of nested components of hierarchical architectures. To programmulti- bsp algorithms
in ml, we propose the multi- ml language as an extension of bsml where a specific
kind of recursion is used to go through a hierarchy of computing nodes. We define a
formal semantics of the language and present preliminary experiments which show
performance improvements with respect to bsml.

Keywords bsp · multi- bsp · ml · Parallel programming

1 Introduction

Context of Work Nowadays, parallel programming is the norm in many areas but it
remains a hard task. And the more complex the parallel architectures become, the
harder the task of programming them efficiently is. As we moved from unstructured

B V. Allombert
victor.allombert@lacl.fr

F. Gava
frederic.gava@univ-paris-est.fr

J. Tesson
julien.tesson@univ-paris-est.fr

1 Université Paris-Est, LACL (EA 4219), UPEC, 94010 Créteil, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-016-0417-6&domain=pdf

Int J Parallel Prog (2017) 45:340–361 341

sequential code cluttered with goto statements towards structured code, there has been
a move in parallel programming community to leave unstructured parallelism, with
pairwise communications, in favour of global communication schemes [2,6,30] and of
structured abstractmodels like bsp [2,37] or of higher-level concepts like algorithmic
skeletons [18].

Programming in the context of a bridging model, such as bsp, allows to simplify
the task of the programmer, to ease the reasoning on cost and to ensure a better
portability from one system to another [2,25,37]. However, designing a programming
language [20,24] for such amodel requires to choose a trade-offbetween the possibility
to control parallel aspects—necessary for predictable efficiency but which makes
programs more difficult to write, to prove and to port—and the abstraction of such
features, which makes programming easier but which may hamper efficiency and
performance prediction.

With flat homogeneous architectures, like clusters of mono-processors, bsp has
been proved to be an effective target model for the design of efficient algorithms
and languages [39]: while its structured nature allows to avoid deadlocks and non-
determinism with little care and to reason on program correctness [14,15,17] and
cost, it is general enough to express many algorithms [2]. However, modern parallel
architecture have now multiple layers of parallelism. For example, supercomputers
are made of thousands of interconnected nodes, each one carrying several multi-cores
processors. Communications between distant nodes cannot be as fast as communi-
cations among the cores of a given processor; Communications between cores, by
accessing shared processor cache are faster than communications between processors
through RAM.

Contribution of this PaperThose architectures specifics led to a newbridgingmodel,
multi- bsp [38], where the hierarchical nature of parallel architectures is reflected by
a tree-shapedmodel describing the dependencies between memories. The multi- bsp
model gives amore precise picture of the cost of computations onmodern architectures.
While the model is more complex to grasp than the bsp one, it keeps structured
characteristics that prevents deadlock and non-determinism. We propose a language,
multi- ml, which aims at providing a way to program multi- bsp algorithms so as
bsml [16] is a way to program bsp ones. multi- ml combines the high degree of
abstraction of ml (without poor performances because often, ml programs are as
efficient as c ones) with the scalable and predictable performances of multi- bsp.

Outline The remainder of this paper is structured as follows. We first give in Sect. 2
an overview of previous works: the bspmodel at Sect. 2.1 and then the bsml language
at Sect. 2.2 following with the multi- bsp model at Sect. 2.3. Our language multi-
ml is presented at Sect. 3. Its formal semantics and implementation, together with
examples and benchmarks are given at Sect. 4. Section 5 discusses some related works
and finally, Sect. 6 concludes the paper and gives a brief outlook on future work.

2 Previous Works

In this section, we briefly present the bsp and multi- bspmodels and how to program
bsp algorithms using the bsml language. We assume the reader is familiar with ml

123

342 Int J Parallel Prog (2017) 45:340–361

Fig. 1 A bsp super-step

local
computations

p0 p1 p2 p3

communication

barrier

next super-step
...

...
...

...

programming. We also give an informal semantics of the bsml primitives and some
simple examples of bsml programs.

2.1 The BSP Model of Computation

In the bspmodel [2,37], a computer is a set of p uniform processor-memory pairs and
a communication network. A bsp program is executed as a sequence of super-steps
(Fig. 1), each one divided into three successive disjoint phases: (1) each processor only
uses its local data to perform sequential computations and to request data transfers to
other nodes; (2) the network delivers the requested data; (3) a global synchronisation
barrier occurs, making the transferred data available for the next super-step.

This structuredmodel enforces a strict separation of communication and computa-
tion: during a super-step, no communication between the processors is allowed, only
requests of transfer; information exchanges only occur at the barrier. Note that a bsp
library can send data during the computation phase of a super-step, but this is hidden
from the programmers.

The performance of a bsp computer is characterised by 4 parameters: (1) the local
processing speed r; (2) the number of processors p; (3) the time L required for a
barrier; (4) and the time g for collectively delivering a 1-relation, i.e. every processor
receives/sends at most one word. The network can deliver an h-relation in time g× h.
To accurately estimate the execution time of a bsp program, these 4 parameters can
be easily benchmarked [2]. The execution time (cost) of a super-step s is the sum of
the maximal local processing time, the data delivery and the global synchronisation
times. The total cost (execution time) of a bsp program is the sum of its super-steps’
costs.

2.2 BSP Programming in ML

bsml [16] uses a small set of primitives and is currently implemented as a library (http://
traclifo.univ-orleans.fr/BSML/) for themlprogramming languageocaml (http://caml.org).An
important feature of bsml is its confluent semantics: whatever the order of execution of
the processes, the final value will be the same. Confluence is convenient for debugging
since it allows to get an interactive loop (toplevel); It also eases programming since
the parallelisation can be done incrementally from an ml program. Last but not least,

123

http://traclifo.univ-orleans.fr/BSML/
http://traclifo.univ-orleans.fr/BSML/
http://caml.org

Int J Parallel Prog (2017) 45:340–361 343

Table 1 Summary of the bsml primitives

Primitive Level Type Informal semantics

�e� g ’a par (if e:’a) 〈e, . . . , e〉
pid g int par A predefined vector: i on processor i

v l ’a (if v: ’a par) vi on processor i , assumes
v ≡ 〈v0, . . . , vp−1〉

proj g ’a par→ (int→ ’a) 〈x0, . . . , xp−1〉 �→ (fun i → xi)

put g (int→ ’a)par→ (int→ ’a)par 〈 f0, . . . , fp−1〉 �→〈fun i →
fi 0, . . . , fun i→ fi (p−1)〉

it is possible to reason about bsml programs using the coq (https://coq.inria.fr/) proof
assistant [15,17] and to extract actual bsp programs from proofs.

A bsml program is built as an ml one but using a specific data structure called
parallel vector. Its ml type is ’a par. A vector expresses that each of the p processors
embeds a value of any type ’a. The processors are labelledwith ids from 0 to p−1. The
nesting of vectors is not allowed. We use the following notation to describe a vector:
〈v0, v1, . . . , vp−1〉. We distinguish a vector from a usual array because the different
values, that will be called local, are blind from each other; it is only possible to access
the local value vi in two cases: locally, on processor i (using a specific syntax), or
after some communications.

Since a bsml program deals with a whole parallel machine and individual proces-
sors at the same time, a distinction between the 3 levels of execution that take place
will be needed: (1) Replicated execution r is the default; Code that does not involve
bsml primitive is run by the parallel machine as it would be by a single processor;
Replicated code is executed at the same time by every processor, and leads to the same
result everywhere; (2) Local execution l is what happens inside parallel vectors, on
each of their components; Each processor uses its local data to do their own computa-
tions; (3) Global execution g concerns the set of all processors together as for bsml
communication primitives. The distinction between local and replicated is strict: the
replicated code cannot depend on local information. If it were to happen, it would lead
to replicated inconsistency.

Parallel vectors are handled through the use of different communication primitives.
Table 1 shows their use. Informally, they work as follows: let �e� be the vector
holding e everywhere (on each processor), the � � indicates that we enter a vector
and switch to the local level. Replicated values are available inside the vectors. To
access to local information within a vector, we add the syntax x to read the vector x
and get the local value it contains. The ids can be accessed with the predefined vector
pid. For example, using the toplevel for a simulated bsp machine with 3 processors:

let vec1 = � "HLPP" � in
∣
∣ � $vec1$^", proc "^(string_of_int pid) � ;;
— : string par = <"HLPP, proc 0", "HLPP, proc 1", "HLPP, proc 2">

The # symbol is the prompt that invites the user to enter an expression to be evaluated.
Then, the toplevel gives the evaluated value with its type. Thanks to bsml confluence,

123

https://coq.inria.fr/

344 Int J Parallel Prog (2017) 45:340–361

it is ensured that the results of the toplevel or of the distributed implementation are
identical.

The proj primitive is the only way to extract local values from a vector. Given a
vector, it returns a function such that, applied to the pid of a processor, the function
returns the value of the vector at this processor. proj performs communications to
make local values available globally and it ends the current super-step. For example,
if we want to convert a vector into a list, we write:

let list_of_par vec = List.map (proj vec) procs;;
— : val list_of_par : ’a par → ’a list = <fun>
list_of_par � pid � ;;
— : int list = [0; 1; 2]

where procs is the list of ids [0; 1; · · · ;p-1].
The put primitive is another communication primitive. It allows any local value to

be transferred to any other processor. It is also synchronous, and ends the current super-
step. The parameter of put is a vector that, at each processor, holds a function of type
(int→ ’a) returning the data to be sent to processor j when applied to j . The result of
put is a new vector of functions: at a processor j the function, when applied to i , yields
the value received from processor i by processor j . For example, a total_exchange
could be written:

let total_exchange vec =
∣
∣ let msg = put � fun dst → vec� in
∣
∣

∣
∣ � List.map msg procs � ;;

— : val total_exchange : ’a par → ’a list par = <fun>
total_exchange � pid � ;;
— : int list par = <[0;1;2], [0;1;2], [0;1;2]>

where the bsp cost is (p− 1)× s × g+L where s is the size of the biggest sent value.

2.3 The MULTI-BSP Model for Hierarchical Architectures

The multi- bspmodel [38] is another bridging model as the original bsp, but adapted
to clusters of multi-cores. The multi- bsp model introduces a vision where a hierar-
chical architecture is a tree structure of nested components (sub-machines) where the
lowest stage (leaf) are processors and every other stage (node) contains memory. Fig-
ure 2 illustrates the difference between both models for multi-cores. There exist other

multi-bsp

Multi Core

core0

th0 th1 th2 th3

core1

th0 th1 th2 th3

bsp

Network

th0 th1 th2 th3 th4 th5 th6 th7

Fig. 2 The difference between the multi- bsp and bsp models for a multi-core architecture

123

Int J Parallel Prog (2017) 45:340–361 345

Fig. 3 multi- bsp parameters

Level i

Level i− 1

n

n.1 n.pi

gi

gi−1

mi

Li

Fig. 4 bsml direct scan code 1 let scan direct op e vv =
2 let mkmsg pid v dst =
3 if dst<pid then None else Some v in
4 let procs lists =
5 fun pid → from to 0 pid in
6 let receivedmsgs =
7 put mkmsg vv in
8 let values lists =
9 List.map ((compose noSome)

10 $receivedmsgs$) $procs lists$ in
11 (fun (h::t)→ List.fold left op h t)
12 (if pid = 0 then e::$values lists$
13 else $values lists$)

hierarchical models [29], such as d-bsp [1] or h-bsp [7], but multi- bsp describes
them in a simpler way. An instance of multi- bsp is defined by d the depth of a tree
and 4 parameters for each stage i :

– pi is the number of components inside the i stage. We consider p1 as a basic
computing unit where a step on a word is considered as the unit of time.

– gi is the bandwidth between stages i and i+1: the ratio of the number of operations
to the number of words that can be transmitted in a second (illustrated in Fig. 3).

– Li is the synchronisation cost of all components of i−1 stage, but no synchro-
nisation across above branches in the tree. Every components can execute codes
but they have to synchronise in favour of data exchange. Thus, multi- bsp does
not allow subgroup synchronisation as the d-bsp does: at a stage i there is only a
synchronisation of the sub-components, a synchronisation of each of the compu-
tational units that manage the stage i−1.

– mi is the amount of memory available at stage i .

A node executes some code on its nested components (children), then waits for results,
does the communications and synchronises the children. Considering Ci

j =hi ×g j +L j ,
the communication cost of a super-step i at stage j with hi the size of the exchanged
messages at step i , g j the communication bandwidthwith stage j and L j the synchroni-
sation cost. We can recursively express the cost of a multi- bsp algorithm as follows:
∑N−1

i=0 wi + ∑d−1
j=0

∑Mj−1
i=0 Ci

j where N is the number of computational super-steps, wi is
the cost of a single computation step and Mj is the number of communication phases
at stage j .

As a more evolved program, we can find an implementation of the standard direct
scan in Fig. 4. This code builds the values to be communicated to all processes with a
greater pid and it exchanges the values using the put primitive. Then every processes
maps the received values on their own data.

123

346 Int J Parallel Prog (2017) 45:340–361

3 Design of the Multi-ML Language

multi- ml is based on the idea of executing a bsml-like code on every stage of
the multi- bsp architecture, that is on every sub-machine. Hence, we add a specific
syntax toml in order to code special functions, calledmulti-functions, that recursively
go through the multi- bsp tree. At each stage, a multi-function allows the execution
of any bsml code. We first present the execution model that follows this idea; we
then present the specific syntax and we finally give the limitations when using some
advanced ocaml features.

3.1 Execution Model

A multi- ml tree is formed by nodes and leaves as proposed in multi- bsp with the
difference that a node is not only a memory but has the ability to manage (coordi-
nate) the values exchanged by its sub-machines. However, as common architectures
do not have dedicated processors for each memory, one (or more, implementation
dependent) selected computation unit has the responsibility to perform this manage-
ment task, which is limited in practice. Because leaves are their own computing units,
our approach coincides with multi- bsp if we consider that all the computations and
memory accesses, at every nodes, are performed by one (or more) leaf: replicated
codes (outside vectors) that takes place in nodes will be costlier than in leaves. This
is why computations on nodes are reserved to the simple task of coordination. The
multi- ml approach is also a bit more relaxed thanmulti- bsp regarding synchronisa-
tion. Unlikemulti- bsp, we allow asynchronous codes in the sub-machines when only
lower memories accesses are used. Of course, we do synchronise if a communication
primitive is used. As suggested in [38], we also allow flat communications between
nodes and leaves without using an upper level.

In a multi- ml tree, of type ′a tree, every node and leaf contains a value of type
′a in its own memory. It is important to notice that the values contained in a tree are
accessed by the corresponding node (or leaf) only. It is impossible to access the values
of another component without using explicit communications. In multi- ml codes,
we discern four strictly separated execution levels: (1) the level m (multi- bsp) is the
upper one (outside trees) and is appropriate to call multi-functions and managing the
trees; codes at this level are executed by all the computation units in a spmd fashion;
(2) the level b (bsp) is used inside multi-functions and is dedicated to execute bsml
codes on nodes; (3) level l (local) corresponds to the codes that are run inside vectors;
(4) level s stands for standard ocaml codes finally executed by the leaves. It is to
notice that it is impossible to communicate vectors or trees and, like in bsml, the
nesting of parallelism (of vectors/trees) is forbidden.

The main idea of multi- ml is to structure the codes to control all the stage of
a tree: we generate the parallelism by allowing a node to call recursively a code on
each of its sub-machines (children). When leaves are reached, they will execute their
own codes and produce values, accessible by the top node using a vector. As shown in
Fig. 6, the data are distributed on the stages (toward leaves) and results are gathered
on nodes toward the root node. Let us consider a code where, on a node, the following

123

Int J Parallel Prog (2017) 45:340–361 347

Fig. 5 Vector distribution

e . . . e

let v= e

Fig. 6 Code propagation
Parent

Child . . . Child

1)Data

2)Computations

3)Result

Table 2 Summary of the multi- ml primitives

Primitive Level Type Informal semantics

§e§ m ’a tree Build a tree of e

at(v) b,l,s ’a vn on node n of tree a v (if v: ’a tree)

gid m id tree The predefined tree of nodes and leaves ids

�...f...� l ’a In a vector, recursive call of the multi-function

#x# l ’a In a vector, reading the value x at upper stage

mkpar f b ’a par 〈v0, . . . , vpn 〉, where ∀i, f i = vi , at id n of the tree

finally v1 v2 b, s ’a Return value v1 to upper stage and keep v2 in the tree

this b,l, s ’a Current value of the tree

Fig. 7 Node identifiers
0

0.0

0.0.0 0.0.1

0.1

0.1.0 0.1.1

code is executed: �e� . As shown in Fig. 5, the node creates a vector containing e
for each children i . As the code is run asynchronously, the execution of the node code
will continue until reaching a barrier.

3.2 The MULTI-ML Language

Table 2 shows the multi- ml primitives (without recall the bsml ones); their autho-
rised level of execution and their informal semantics. n denotes the id of a node/leaf,
i.e. its position in the tree encoded by the top-down path of positions in node’s vectors.
For example, 0 stands for the root, 0.0 for its first child, etc. For the i th component of
a vector at node n, the id is n.i . Figure 7 illustrates this naming. We now describe in
details these primitives and multi-functions.

The Let-Multi Construction The goal is to define a multi-function, i.e. a recursive
function over the multi- bsp tree. Except for the tree’s root, when the code ends on

123

348 Int J Parallel Prog (2017) 45:340–361

Fig. 8 Sum multi- ml example 1 let multi par fold l =
2 where node =
3 let v=mkpar (fun i→split i l) in
4 let res= par fold v in
5 sum (flatten res)
6 where leaf =
7 List.fold left (fun x y→x+y) 0 l
8 (∗ flatten:’a par→’a list ∗)
9 (∗ sum: int list→int ∗)

a stage i , the computed value is made available to the upper stage i − 1 in a vector.
The let-multi construction offers a syntax to declare codes for two levels, one for the
nodes (level b) and one for the leaves (level s):
let multi f [args] =
where node = ... (∗ bsml code ∗)
where leaf = ... (∗ ocaml code ∗)

[args] are the arguments of the newly define multi-function f. In the leaf block (i.e.
level s), we find usual ml computations and most of the calculations should take place
here. In the node block (i.e. level b), we find the code thatwill be executed at every stage
of the tree but on the leaves. Typically, a node is charged to propagate the computations
and the data using vectors (level l); to manage the sub-machine computations; and
finally, gather the results using the proj (extraction of values from a vector). To go one
step deeper in the tree, the node code must recursively call the multi-function inside
a vector. This call must be done inside a vector in order to spread the computation all
over the tree in the deeper stages. It is also to notice that a multi-function can only
be called at m level of the code and values at this level are available throughout the
multi-function execution. Figure 8 shows, as an example of how data moves through
the multi- bsp tree, a simple program summing of the elements of a list.
It works as follows: We define the multi-function (line 1); lines 2–5 give the code for
the nodes and lines 6–7 give the code for the leaves; the list is scattered across each
component i of the vector (line 3); on line 4, we recursively call the multi-function on
the sub-lists (i.e. call in the contexts of the sub-nodes); we finally gather the results in
line 5 (sum is a bsml code that performs a proj to sum the pn projected integers).

Tree Construction It is similar to the above multi-functions: instead of generating
a single usual ml value, functions defined with let multi tree build a tree of type
′a tree. For this, a new constructor determines the values that are stored (keep) at each
id and those that are ascended (up) to the upper stage—until now, the value returned
by nodes and leaves was implicitly considered as the value given to the upper stage.
This is the role of finally which works as follows: finally ~up:v1 ~keep:v2 sends
up the value v1 and stores in the tree the value v2 (thus replacing the previously stored
value). The primitive this returns the last value stored using finally or the default
value initialised thanks to a where default construction. It is useful to update the
tree.

Figure 9 shows themodifications that have to be added to sum_list in order to obtain
a tree containing the list of partial sums on every leaves and the maximal sub-sums on
each node—Thus, the root node contains the final sum. The code works as follows:
We use a generic operator op with an identity element e and a list li to be distributed

123

Int J Parallel Prog (2017) 45:340–361 349

Fig. 9 Scan multi- ml
example

1 let par scan list op e li =
2 let multi tree m scan flag l =
3 where default = §[]§
4 where node =
5 if flag then
6 let spl=mkpar (fun i→split i l) in
7 let deep=scan direct op e m scan true spl in
8 let v=last if pid=0
9 then (m scan false [$deep$])

10 else at(this) in
11 finally ˜up:v ˜keep:[v]
12 else
13 let v=last m scan false #l# in
14 finally ˜up:v ˜keep:[v]
15 where leaf =
16 let final,l’= if flag then (seq scan op e l)
17 else (map and last op l at(this)) in
18 finally ˜up:final ˜keep:l’
19 in m scan true li
20 (∗ scan direct:(’a→’a→’a)→’a→’a par→’a par ∗)
21 (∗ last:’a par→’a ⇒ gives the last element of a vector ∗)
22 (∗ seq scan:(’a→’a→’a)→’a’→’a list→’a∗’a list
23 ⇒ computes the scan and also returns the last element ∗)
24 (∗ map and last:’a list→(’a→’a)→’a∗’a list
25 ⇒ do a map and also returns the last element ∗)

(line 1); Then we traverse the tree two times (phases distinguished by a boolean flag):
First to split the list and then to compute the partial sums. On the nodes, we split the list
(line 6) and then we do a recursive call over the scattered lists to continue the splitting
at lower levels and then recover the partial sums of children nodes (line 7), a bsp scan
is used to transfer and compose these partial results from sibling nodes left to right
(scan_direct could be replaced by any scan); Finally, we recall the multi-function
(lines 8–10) to complete the partial sums with the communicated values and for this,
we transmit down a list containing only the last value from each branch, keep it in the
tree and give it to the upper level (line 11).

When reaching the leaves the first time, we compute the partial sums (line 16) and,
each time a value (communicated by other branches) comes down to a leaf, we add
it to its own partial sums (line 17). Note that using two multi-functions, one to first
split the list and another one to compute the partial sums, is surely easier, but using a
one-shot multi-function, we exhibit more features of multi- ml.

Variables Accesses There are three different ways to access to variables in addition
to the usual ml access. First, v stands for reading the local value of a vector “v”
inside a vector (l level, as in bsml).

The second way is to read a value inside a vector which had been declared outside.
As explained above, the values available on a node are not implicitly available on
the child nodes. It is thus necessary to copy them from a node to its sub-machines.
For example, the code let x=1 in let vect=�x+1� is incorrect because “x” is not
available on children. It is imperative to use �#x#+1� to copy the value of x from
the b level into the vector (l level).

The last way is for reading the value of a tree. Within the tree construction §e§
(syntax explained below), at(t) stands for reading the value of “t” at id n. Outside
a vector (b level), accessing to a tree t is done in the same way. Finally, gid is the
predefined tree of nodes/leaves ids. When executed inside a vector (l level) at a level

123

350 Int J Parallel Prog (2017) 45:340–361

n, at(gid) stands for the id n.i . However, inside a §e§ code, it stands for the id of the
current level. As expected, in a node (b level) or a leaf (s level), at(gid) is the identifier
at the corresponding level. However, at level m, it is the tree of level identifiers.

A Convenient Tree Construction For building a tree without using a multi-function
(which induce communications), we add the §e§ syntax. It allows to executee on every
nodes and leaves. One can read the values of a previously defined tree t using the t
access in the code of e. In this way, using the predefined tree gid, we can execute
different codes on each components of a tree without any need (and possibility) of
communication between the stages.

A New Primitive For performances reason, we chose to add the new primitive
mkpar. Indeed, in bsml a replicated code is duplicated on every processors, so it is not
necessary to take care of data transfer in code like: let lst=[...] in �split pid lst�
where lst is a large list and split a splitting function. With the multi- ml model, data
are not distributed everywhere and we have to transfer data explicitly. One can write
�split pid #lst#� but it is not useful to copy the whole list on every children in
order to extract a sub list and throw the rest. This is the reason whymkpar computes,
first, pn values and then distributes them to the sub-machines, thus building a vector.
This method is more expensive for the node n in terms of computation time, but it
reduces drastically the amount of data transfers.

3.3 Current Limitations

Exceptions andPartially Evaluated TreesExceptional situations are handled in ocaml
with a system of exceptions. In parallel, this is at least as relevant: if one processor
triggers an exception during a computation, bsml [16] as well as multi- ml have to
deal with it, like ocaml would, and prevent a crash.

The problem is when an exception is raised locally (l level) on (at least) one proces-
sor whereas other processors continue to follow the execution stream, until they are
stopped by the need of synchronisation. This happens when an exception escapes
the scope of a parallel vector. Then, a crash can occur: a processor misses the global
barrier. To prevent this situation, in [16], we introduce a specific handler of local
exceptions that have not been caught locally. The structure trypar...withpar catches
any exception and handles it as usual in ocaml. To do this, when a barrier occurs, all
exceptions are communicated to all processors in order to allow a global decision to
be taken. Furthermore, any access to a vector that is in an incoherent state will raise,
again, the exception.

For multi- ml, if an exception is not correctly handled in a stage, it must be
propagated to the upper stage at the next barrier—as in bsml. If an exception is no
handled in amulti-function, itmust be thrown at the global levelm as a standard ocaml
exception. An exception thrown in a node of a tree leads this node in an incoherent
state until the exception has been caught in a upper level. Any access to this tree must
raise again the exception. This handling has not been implemented yet for multi- ml
but the first author works on it.

An application case is partially evaluated trees. Take for example the following
code: �if random() then raise Error else f � where f is a multi-function. A part

123

Int J Parallel Prog (2017) 45:340–361 351

of the tree will never be instantiated. If a partially evaluated tree is accessed during a
code execution an exception could be immediately thrown.

Type System The main limitation of our prototype is the lack of a type system.
Currently, nesting of bsml vectors/trees are not checked. A type system for bsml
exists [16] but has not been implemented yet. We are convinced that adding multi-
functionswill not fundamentally change the type system: it’smainly amatter of adding
just a new level of execution.

Other ml Features We have not yet studied all the interactions of all the ocaml
features with the multi-function (as well in bsml). Objects, first-order modules and
gadt are left as future works.

4 Semantics, Implementation and Examples

We present a formal semantics of multi- ml as well as two implementations. A
semantics is useful as a specification of the language so as to simplify the design of
the implementations. To get the assurance that both implementations are coherent,
using the semantics, we first prove that multi- ml is confluent. We also give some
examples and benchmarks to illustrates the usefulness of multi- ml. Our prototype
is freely available at http://www.lacl.fr/vallombert/Multi-ML.

4.1 Operational Semantics

We give a big-step semantics of a core-language without tree creation to simplify the
presentation. The syntax (Fig. 10) extends the popular core-ml.

Programs contain variables, constants (integers, etc.), operators (≤,+, etc.), pairing,
let, if , fun statements as usual inml, rec for recursive calls, the bsml primitives (<e>,
put, proj), mkpar, access x to the local value of a vector x , local copy #x# of a
parent’s variable x , the vector of pid component and gid the tree of ids. Finally, we
define let-multi as particular functions with codes for nodes and leaves.

The semantics is a big-step one with environments that represent thememories. We
have a tree of memories (one per node and leaf) and we note them E . ‖E‖n denotes
the memory of E at n where n is the id of a node/leaf. {x �→ v} denotes a binding of a
variable x to a value v in the memory; ∈ denotes a membership test and ⊕ denotes an
update. Those operators have the subscript n that denotes the application in a specific
memory.

Fig. 10 Syntax of
core-multi- ml

e ::= /* core-ml */
| x | cst | op | (e, e) | let x = e in e | (e e)
| if e then e else e | (fun x→e) | (rec f →e)
/* bsml-like primitives */
| x | #x# | <e> | pid
| mkpar e | gid | proj e | put e
/* multi-fun, without tree construction */
| (multi f x → e † e)

123

http://www.lacl.fr/vallombert/Multi-ML

352 Int J Parallel Prog (2017) 45:340–361

bsml-like primitives inductive rules ⇓b
n

(1)
∀i ∈ {1, . . . ,pn e ⇓l

n.i vi

<e>⇓b
n v1, . . . , vpn

(2)
e ⇓b

n v1, . . . , vpn

proj e ⇓b
n (fun i → vi)[]

(3)
e ⇓b

n f1, . . . , fpn

put e ⇓b
n f1, . . . , fpn

where fi j = fj i
(4)

pid ⇓l
n.i i

(5)
{x v1, . . . , vi, . . . , vpn n

x ⇓l
n.i vi

(6)
{x v n

#x# ⇓l
n.i v

(7)
n e ⇓δ v

e ⇓b,l
n v

(8)
e ⇓b

n f ∀i ∈ {1, . . . ,pn (f i) ⇓b
n vi with f ≡ (fun x → e)[E]

mkpar e ⇓b
n v1, . . . , vpn

Multi functions inductive rules ⇓m

(9)
(multi f x → e1 † e2) ⇓m (multi f x → e1 † e2)[E]

(10)
gid ⇓b,l

n n

In what follows g ≡ (multi f x → e1 † e2)[E]

(11)
e ⇓δ v

e ⇓m v
(12)

e1 ⇓m g e2 ⇓m v E ⊕0{x v}⊕0{f →g e1 ⇓b
0 v

e1 e2 ⇓m v

(13)
e1 ⇓l

n.i g e2 ⇓l
n.i v E ⊕n.i{x v}⊕n.i{f →g e1 ⇓b

n.i v

e1 e2 ⇓l
n.i v

(14)
e1 ⇓l

n.i g e2 ⇓l
n.i v E ⊕n.i{x v}⊕n.i{f →g e2 ⇓s

n.i v

e1 e2 ⇓l
n.i v

Fig. 11 Operational big-step semantics rules of a core multi- ml

E � e ⇓ v denotes the evaluation of e in the environment E to the value v. A value is
a constant, an operator or a functional closure (a function with its own environment of
execution, denoted (fun x → e)[E]). The rules of evaluation are defined by induction
and given in Fig. 11. To simplify the reading of the rules, we count vector pids from
1 to pn and not from 0 to pn−1. For core-ml the semantics are as usual.

Even if the semantics contains many rules, there is no surprise and it has to be read
naturally. As explained before, there are 4 different levels of execution: level m for
the execution on all computation units; bsp level b for bsml codes; Local level l for
the codes inside a vector; and finally level s on the leaves. In this way, the evaluation
⇓ is upscripted by the level and can be subscripted by the id of the sub-machine.

The rules for the bsml primitives (Fig. 11) work as follows: (1) creating a new
vector for the machine of id n is triggering pn local evaluations, each with n.i as
subscript since we are going one step deeper, in the i th component; proj (2) and put
(3) rules build the functions of exchanges; pid rule (4) returns i on child n.i ; x
rule (5) read at n.i the i th value of the vector x available on node n; #x# rule (6) read
the value x at the node n from its child; the rule (7) is the evaluation of the coreml part
(sequential);mkpar rule (8) creates the vector but first the node creates the values to
be sent down.

For the multi-functions, we have a rule to create them (9) and a rule (12) to initialise
the recursion through the architecture from the root node. Then, inside the component
i of a vector of sub-machine n, the recursive call of the multi-function generates an

123

Int J Parallel Prog (2017) 45:340–361 353

evaluation on n.i (rule 13), except if we reach a leaf, then the rule (14) says that
the code is evaluated on leaf n.i with level s. The rule (10) is for the tree of ids. By
induction, we can prove:

Lemma 1 (Confluence) ∀E if E � e ⇓m v1 and E � e ⇓m v2 then v1 ≡ v2

Co-inductive rules [28] ⇓∞ (for diverging programs) can be easily infered from
the above rules. For sake of conciseness, we only present some typical examples:

E � e1 ⇓δ true E � e2 ⇓∞

E � if e1then e2else e3 ⇓∞

∃i ∈ {1, . . . ,pt } E � e ⇓∞

E �<e>⇓∞

E � e ⇓∞

E � proj e ⇓∞

We can then prove by co-induction the following lemma:

Lemma 2 (Mutually exclusive) ∀E if E � e ⇓m v then ¬(E � e ⇓m∞)

The result does not depend of the order of evaluation of the processes nor of the
bsp sub-machines. All strategy work and return the same value, especially a sequential
simulation and a distributed implementation. The former is fine for debuggingwhereas
the latter is for benchmarking. We now present both.

4.2 Sequential Simulation and Distributed Implementation

Sequential Simulation We propose a sequential simulator that works as the ocaml
toplevel. Given an architecture as a configuration file, the toplevel allows simulating
multi- ml codes on a single core machine and printing the results. Currently, all the
basic features of ocaml are available, without typing. To be executed, the multi-
ml code is converted into a sequential code using a modified ocaml parser. The
simulator creates a tree structure to represent the whole multi- bsp machine. Vectors
are represented as arrays of data. A global hash table is used to simulate the memory
available at each stage as suggested by the semantics. Figure 12 shows the result when
using the toplevel for a simulated multi- bspmachine composed of 2 processors with
respectively 2 cores.

Fig. 12 Example of the
Toplevel

#let multi tree f n =
where default = ””
where node =

let = f (pid + #n# + 1) in
finally ˜up:() ˜keep:(gidˆ”=>”ˆn)

where leaf=finally ˜up:() ˜keep:(gidˆ”=>”ˆn);;
— : val f : int→string tree = <multi-fun>
#(f 0)
o ”0→ 0”

o ”0.0→ 1”
→ ”0.0.0→2”
→ ”0.0.1→3”

o ”0.1→ 2”
→ ”0.1.0→3”
→ ”0.1.1→4”

123

354 Int J Parallel Prog (2017) 45:340–361

Distributed Implementation To be portable, our implementation is written to use
various communication libraries. We have thus a modular approach and our imple-
mentation depends on a generic functor that requires the architecture configuration
and some particular communication routines: asynchronous broadcasting and gather-
ing for a group of processors, total exchange and building groups of processes. Our
implementation of this module is currently based on mpi. We create one mpi process
for every nodes and leaves of the architecture. Those processes are distributed over
the physical cores and threads in order to balance the charge. As the code executed by
nodes is, most of the time, a simple task of parallel management, this extra job is thus
distributed over the leaves to reduce its impact.

Our implementation is based on a daemon running on each mpi process. Each
daemon has 3 mpi communicators to communicate with its parent (upper node), its
children (leafs) and its siblings (processes at the same sub-level). Each daemon is
waiting for a task given by its parent. When a task is received, it is executed by the
daemon, then the daemon returns to the waiting state until it receives a ”kill” signal,
corresponding to the end of the program.

As the code is an spmd one, every processes know the entire code and they just
need to receive a signal to execute a task. To do so, and to avoid serialising codes
that are inside functional values (the closures) and known by all the nodes due to an
spmd execution, when transmitting down values and thus creating parallel vectors,
we identify the vectors by two kinds of identifiers: (1) a static identifier is generated
globally for every vectors and references their computations through the execution;
(2) when a node needs to create a parallel vector, it generates a dynamic identifier
that represents the data on its children. Then, when a node executes some code using
parallel values inside a vector, it just sends the static identifier (that references the
code to execute) with the dynamic identifier (to substitute the distributed value) to its
children which can then execute the correct tasks. The main advantage of this method
is to avoid serialising unnecessary codes when creating vectors, and thus to reduce the
size of the data exchanged by the processes. However, associating a value to a dynamic
identifier can lead to a memory over-consumption, for example in loops. When the
life cycle of a vector is terminated, we manually clean the memory by removing all
the obsolete identifier and calling the garbage collector.

Shared MemoryWe propose an implementation to avoid some unnecessary copies
of the transmitted data. Indeed, the ocaml memory is garbage collected and, to be
safe, only a copy of the data can be transmitted. Using the standard posix “mmap”
routine and some ipc functionalities (to synchronise the processes), the child (as dae-
mons) can read asynchronously the transmitted serialised value in the mapping of the
virtual address space of the father and synchronise with the father only, as the multi-
bsp model suggest. As architectures can have different types of memory (distributed
or shared), it is possible to mix executions schemes. Since the ocaml memory is
garbage collected (currently with a global thread lock), we sadly cannot use pthreads
as done in [39] to share values without performing first a copy. We are currently
working on using some tricks to overcome this limitation but we leave it as future
work.

123

Int J Parallel Prog (2017) 45:340–361 355

4.3 Benchmarks

In this section we present the benchmarks of a simple scan with integer addition and a
naive implementation of the sieve of Eratosthenes. A scan can be used to perform the
sieve of Eratosthenes using a particular operator which implies more computations
and communications than a simple list summing. The multi- bsp cost of the scan
algorithm (Fig. 9) is as follows:

∑

i∈[0...d[
Vsp(i) + O(|ld|) +

∑

i∈[0...d[
Ci .

where
∑

i∈[0...d[Vsp(i) is the total cost of splitting the list toward the leaves (at depth
d − 1); O(|ld|) is the time needed to compute the local sums in the leaves; and
∑

i∈[0...d[Ci corresponds to the cost of diffusing partial sum back to leaves and to
add these values to the values held by leaves. This diffusion is done once per node.
Vsp(i) is the work done at level i to split the locally held chunk li and scatter it among
children nodes. Splitting li in pi chunks costs O(|li |) where |li |, the size of li , is
n ∗ ∏

j∈[0...i[1
pj

where n is the size of the initial list holds by the root node. Scattering

it among children nodes costs pi ∗ gi−1 + ni
pi

+ Li. The sequential list scan cost at

leaves is O(|ld |) = O(n ∗ ∏

i∈[0...d[1
pi

).
The costCi at level i is the cost of a bsp scan, of the diffusion of the computed values

toward the leaves, in addition to the sequential cost of a map on list held by leaves. Let
s be the size of the partial sum, the cost of bsp scan at level i is s ∗ pi ∗ gi−1 +Li, the
diffusion cost is

∑

j∈]i ...d] gj ∗ s + l j and the final map cost is O(sd). The size s may
be difficult to evaluate: for a sum of integers it will simply be the size of an integer,
but for Eratosthenes sieve, the size of exchanged lists varies depending on which data
are held by the node.

The sieve of Eratosthenes generates a list of prime numbers below a given integer
n. From the list of all elements less than n, it iteratively removes elements that are a
multiple of the smaller element of the list that has not been yet considered.We generate
only the integers that are not multiple of the 4 first prime numbers, then we iterate√
n time (as it is known to be the maximum number of needed iterations). On our

architectures Mirev2 and Mirev3 presented below, the direct and logarithmic scans
are equally efficient.

Figure 4 gives the bsml code of the direct scan. We used the following functions:
elim:int list→ int→ int list which deletes from a list all the integers multiple of the
given parameter; final_elim:int list→ int list→ int list iterates elim using elements
from the first list to delete elements in the second; seq_generate:int → int→ int list
which returns the list of integers between 2 bounds; and select:int → int list→ int list
which gives the

√
n first prime numbers of a list.

For this naive example, we use a generic scan computation with final_elim as the
⊕ operator. In our computation, we also did extend the scan so that the sent values are
first modified by a given function (select) to just send the

√
n first prime numbers.

The bspmethods is thus simple: each processor i holds the integers between i × n
p +1

and (i + 1) × n
p . Each processor computes a local sieve (the processor 0 contains thus

123

356 Int J Parallel Prog (2017) 45:340–361

Table 3 Multi-BSP parameters of Mirev3 (left) and Mirev2 (right)

p0 = 4 g0 = ∞ L0 = 149000 m0 = 0
p1 = 2 g1 = 89 L1 = 1100 m1 = 64Gb
p2 = 16 g2 = 6 L2 = 1800 m2 = 20Mb
p3 = 0 g3 = 3 L3 = 0 m3 = 0

p0 = 8 g0 = ∞ L0 = 195, 400 m0 = 0
p1 = 2 g1 = 14 L1 = 472 m1 = 16Gb
p2 = 4 g2 = 6 L2 = 800 m2 = 6Mb
p3 = 0 g3 = 5 L3 = 0 m3 = 0

Table 4 Execution time (in sec.) of Eratosthenes using multi- ml and bsml on Mirev3

100_000 500_000 1_000_000 3_000_000

multi- ml bsml multi- ml bsml multi- ml bsml multi- ml bsml

8 0.7 1.8 22.4 105.0 125.3 430.7

16 0.5 0.8 13.3 50.3 68.1 331.5 1200.0 . . .

32 0.3 0.5 2.6 18.9 11.3 122.2 173.2 . . .

48 0.5 0.4 1.75 14.5 5.5 88.4 69.3 . . .

64 0.3 0.3 1.3 8.7 4.1 56.1 51.1 749.9

96 0.3 0.38 1.6 6.3 3.9 30.8 38.1 576.1

128 0.5 0.45 2.1 5.2 4.7 24.3 30.6 443.7

the first prime numbers) and then our scan is applied. We then eliminate on processor
i the integers that are multiple of integers received from processors of lower identifier.
Benchmark were done on two parallel architectures named Mirev2 and Mirev3. Here
are the main specifications of these machines:

– Mirev2: 8 nodes with 2 quad-core (AMD 2376) at 2.3Ghz with 16Gb of memory
per node and a 1Gb/s network.

– Mirev3: 4 nodes with 2 hyper-threaded octo-core (16 threads) (Intel XEON E5−
2650) at 2.6Ghz with 64Gb of memory per node and a 10Gb/s network.

The multi- bsp and bsp model can be used to estimate the cost of an algorithm. We
estimated the cost of transferring values and the sequential cost of summing lists of
integers, then we used the multi- bsp parameters given in Table 3 in order to predict
and compare the execution time of scan.

We measured the time to compute the sieve without the time to generate the initial
list of values. The experiments have been done on Mirev2 and Mirev3 using bsml
(mpi version) and multi- ml over lists of increasing size on an increasing number of
processors. The processes have been assigned to machines in order to scatter as much
as possible the computation among the machines, i.e. a 16 process run will use one
core on each processor of the 8 machines of Mirev3. Tables 4 and 5 shows the results
of our experimentations. We can see that the efficiency of multi- ml on small list is
poor but as the list grows, multi- ml exceeds bsml. This difference is due to the fact
that bsml communicates through the network at every super steps; while multi- ml
is focusing on communications through local memories and finally communicates
through the distributed level.

123

Int J Parallel Prog (2017) 45:340–361 357

Table 5 Execution time (in sec.) of Eratosthenes using multi- ml and bsml on Mirev2

100_000 500_000 1_000_000

multi- ml bsml multi- ml bsml multi- ml bsml

8 1.5 1.7 64.5 106.1 402.9 1538.1

16 0.45 0.93 16.0 49.3 91.4 631.7

32 0.14 0.45 4.1 18.7 21.1 219.7

48 0.13 0.40 2.6 11.0 10.8 123.5

64 0.11 0.34 1.89 7.5 8.2 80.5

Table 6 Execution time (in
sec.) and predictions of scan
(sum of integers) on Mirev3

5_000_000

multi- ml bsml Pred_multi- ml Pred_bsml

8 2.91 2.8 3.44 1.83

16 1.42 1.4 1.72 0.92

32 0.92 0.73 0.43 0.46

48 0.84 0.75 0.28 0.31

64 0.83 0.74 0.21 0.23

Table 6 gives the computation time of the simple scan using a summing opera-
tor. On the sum of integers, we can see that multi- ml introduces a small overhead
due to the level management. However it is as efficient as bsml and concord to the
estimated execution times. As the experiment shows, multi- ml out-performs bsml
with communication intensive algorithms. The bsml program tends to saturate the
network when all the processors start to communicate. On the contrary, themulti- ml
algorithm avoid this bandwidth over consumption and takes advantage of the shared
memory.

5 Related Work

There are a lot parallel languages or parallel extensions of sequential languages (func-
tional, iterative, object-oriented, etc.). It would be too long to list all of them.We chose
to point out those that were the most important to our mind. Notice that, except in
[30], there is a lack of comparisons between parallel languages. It is difficult to com-
pare them since many parameters have to be taken into account: efficiency, scalability,
expressiveness, etc.

5.1 Programming Languages and Libraries for BSP Like Computing

Historically, the first library for bsp computing was the bsplib [24] for the c language;
it has been extended in the pub library [4] by adding subgroup synchronisations, high

123

358 Int J Parallel Prog (2017) 45:340–361

performance operations and migration of threads. For the gpu architectures, a bsp
library was provided in [26] with mainly drma primitives close to the bsplib’s ones.
There is also MulticoreBSP [39] which proposes multi- bsp style programming
features. For java, different libraries exist: the first one was [20], then in [12] a library
has been designed with scheduling and migration of bsp threads—the scheduling is
implicit but the migration can be explicit. The library hama [36] is implemented
using a “mapreduce-like” framework. We can also highlight the work of neststep
[27] which is c/java library for bsp computing, which brings nested computations
capabilities in case of a cluster of multi-core but without any safety.

The bsml primitives were adapted for c++ [21]: the bsp++ library provides nested
computation in the case of a cluster ofmulti-cores (mpi+open- mp). But it is the respon-
sibility of the programmer to avoid harmful nested parallelism. bsml also inspired
bsp-python [25] and bsp-haskell [33].

5.2 Functional Parallel Programming

A survey on parallel functional programming can be found in [23]. It has been used
as a basis for the following classification with some updates.

Data-Parallel Languages The first functional one was nesl [3]. This language
allows to create particular arrays and nested computations within these arrays. The
abstract machine is responsible for the distribution of the data over the available
processors. For ml, there is manticore [13], an extension of nesl with the dynamic
creation of asynchronous threads and send/received primitives. For gpu architectures,
an extension of ocaml, using a special syntax for the kernels has been developed in
[5].

sac (Single Assignment c) [19] is a language (with a syntax close to c) for array
processing. Some higher-order operations on multi-dimensional arrays are provided
and the compiler is responsible for generating an efficient parallel code. A data-parallel
extension of haskell has been done in [10] where the language allows to create data
arrays that are distributed across the processors. And some specific operations permit
to manipulate them.

The main drawback of all these languages is that cost analysis is hard to do since
the system is responsible for the data distribution.

Explicit Process Creation We found two extensions of haskell in this category:
eden [31] and gph [35]. Both use a small set of syntactic constructs for explicit process
creation. Their fine-grain parallelism, while providing enough control to implement
parallel algorithms efficiently, frees the programmer from the tedious task ofmanaging
low-level details of communications—which uses lazy shared data. Processes are
automaticallymanaged by sophisticated runtime systems for sharedmemorymachines
or distributed ones.

As above, cost analysis is hard to do and, sometimes, the runtime fails to distribute
correctly the data [35]; it introduces too much communications and thus a lack of scal-
ability. Another parallel language is hume [22]. The main advantage of this language
is that it is provided with a cost analysis of the programs for real-time purpose but
with limitations of the expressiveness.

123

Int J Parallel Prog (2017) 45:340–361 359

Algorithmic Skeletons Skeletons are patterns of parallel computations [18]. They
can be seen as high-order functions that provide parallelism. They thus fall into the
category of functional extensions. They are many skeleton libraries [18]. For ocaml,
the most known work is the one of [11].

Distributed Functional Languages In front of parallel functional languages, there
are many concurrent extensions of functional languages such as erlang, clean or
jocaml [32]. The latter is a concurrent extension of ocaml, which add explicit syn-
chronisations of processes using specific patterns.

alice- ml [34] adds what is called a “future” for communicating values. A future
is a placeholder for an undetermined result of a concurrent computation. When the
computation delivers a result, the associated future is eliminated by globally replacing
it by the result value. The language also contains “promises” that are explicit handles of
futures. scala is a functional extension of javawhich provides concurrency, using the
actor model: mostly, creation of agents that can migrate across resources. Two others
extensions of ocaml are [8] and [9]. The former uses spmd primitives with a kind
of futures. The latter allows migration of threads that communicate using particular
shared data.

All these languages have the same drawbacks: they are not deadlock and race
condition free; furthermore, they do not provide any cost model.

6 Conclusion and Future Work

6.1 Summary of the Contribution

The paper presents a language call multi- ml to program multi- bsp algorithms. It
extends our previous bsml that has been designed for programming bsp algorithms.
They both have the following advantages: confluent operational semantics; equiva-
lence of the results for both toplevel and distributed implementation; cost model and
efficiency.

The multi- bsp model extends the bsp one as a hierarchical tree of nested bsp
machines. multi- ml extends bsml with a special syntax to define special recursive
functions over this tree of nested machines, each of them programmed using bsml. In
a tree, nodes contain codes to manage the sub-machines whereas leaves perform the
largest part of the computation. In this work, we focus on the informal presentation
of multi- ml, an operational semantics of a core-language and benchmarks of simple
examples with a comparison with predicted performances associated with themulti-
bsp cost model. We also compare multi- ml codes with bsml ones as well as the
performances of both languages on a typical cluster of hyper-threaded multi-cores. As
predicted, multi- ml codes run faster than bsml when the cores share the network:
there is no bottleneck; And the multi-core synchronisations are cheaper.

Compared to bsml, multi- ml has several drawbacks. First, the codes, the seman-
tics and the implementation are a bit more complex. Second, the cost model associated
to the program is more difficult to grasp: designing multi- bsp algorithms and pro-
gramming them in multi- ml is more difficult than using bsml only. However, from
our experience, we can say that it is not so hard.

123

360 Int J Parallel Prog (2017) 45:340–361

6.2 Future Work

In a near future we plan to axiomatise the multi- ml primitives inside coq, as we did
for bsml in [15,17], in order to prove the correctness of multi- bsp algorithms. We
also consider to formally prove that the implementations follow the formal semantics.
We also plan to benchmark bigger examples, we think of model-checking problems
and algebraic computations that better follow high-level languages than intensive float
operations can do.

The most important work to do is the implementation of a type system for multi-
ml to ensure safety of the codes: forbid nesting of vectors, forbid data-races when
imperatives features such as exceptions handling [16] are used. In the long term, the
type system could be used to optimise the compiler. Indeed, currently, even in the case
of a share-memory architecture, only serialised values are exchanged between nodes.
We consider implementing a dedicated concurrent garbage collector.

References

1. Beran, M.: Decomposable bulk synchronous parallel computers. In: Pavelka, J., Tel, G., Bartoek, M.
(eds.) Theory and Practice of Informatics (SOFSEM), Volume 1725 of LNCS, pp. 349–359. Springer,
Berlin (1999)

2. Bisseling, R.H.: Parallel Scientific Computation: A Structured Approach Using bsp and mpi. Oxford
University Press, Oxford (2004)

3. Blelloch, G.E.: NESL. In: Padua, D.A. (ed.) Encyclopedia of Parallel Computing, pp. 1278–1283.
Springer, Berlin (2011)

4. Bonorden, O., Judoiink, B., von Otte, I., Rieping, O.: The Paderborn University bsp (pub) library.
Parallel Comput. 29(2), 187–207 (2003)

5. Bourgoin, M., Chailloux, E., Lamotte, J.-L.: SPOC: GPGPU programming through stream processing
with ocaml. Parallel Process. Lett. 22(2), 1–12 (2012)

6. Cappello, F., Guermouche, A., Snir, M.: On communication determinism in parallel hpc applications.
In: Computer Communications and Networks (ICCCN). IEEE (2010)

7. Cha, H., Lee, D.:h- bsp: a hierarchical bsp computationmodel. J. Supercomput. 18(2), 179–200 (2001)
8. Chailloux, E., Foisy, C.: A portable implementation for Objective Caml Flight. Parallel Process. Lett.

13(3), 425–436 (2003)
9. Chailloux, E., Ravet, V., Verlaguet, J.: HirondML: Fair threads migrations for Objective Caml. Parallel

Process. Lett. 18(1), 55–69 (2008)
10. Chakravarty, M.M.T., Leshchinskiy, R., Jones, S.L.P., Keller, G., Marlow, S.: Data parallel Haskell:

a status report. In: Glew, N., Blelloch, G.E. (eds.) Declarative aspects of multicore programming
(DAMP), part of POPL, pp. 10–18. ACM, London (2007)

11. Cosmo, R.D., Li, Z., Pelagatti, S.,Weis, P.: Skeletal Parallel Programmingwith ocaml P3l 2.0. Parallel
Process. Lett. 18(1), 149–164 (2008)

12. da Rosa Righi, R., Pilla, L.L., Carissimi, A., Navaux, P.O.A., Heiss, H.-U.: MigBSP: a novel migration
model for bulk-synchronous parallel processes rescheduling. In: High Performance Computing and
Communications (HPCC), pp. 585–590. IEEE (2009)

13. Fluet, M., Rainey, M., Reppy, J., Shaw, A.: Implicitly-threaded parallelism in manticore. SIGPLAN
Not. 43(9), 119–130 (2008)

14. Fortin, J., Gava, F.: BSP-Why: a tool for deductive verification of bsp algorithms with subgroup
synchronisation. Int. J. Parallel Program. (2015). doi:10.1007/s10766-015-0360-y

15. Gava, F.: Formal proofs of functional bsp programs. Parallel Process. Lett. 13(3), 365–376 (2003)
16. Gesbert, L., Gava, F., Loulergue, F., Dabrowski, F.: Bulk synchronous parallel ml with exceptions.

Future Gener. Comput. Syst. 26, 486–490 (2010)
17. Gesbert, L., Hu, Z., Loulergue, F., Matsuzaki, K., Tesson, J.: Systematic development of correct bulk

synchronous parallel programs. In: Parallel andDistributedComputing, Applications andTechnologies
(PDCAT), pp. 334–340. IEEE (2010)

123

http://dx.doi.org/10.1007/s10766-015-0360-y

Int J Parallel Prog (2017) 45:340–361 361

18. González-Vélez, H., Leyton, M.: A survey of algorithmic skeleton frameworks: high-level structured
parallel programming enablers. Software, Practrice & Experience 40(12), 1135–1160 (2010)

19. Grelck, C., Scholz, S.-B.: SAC: a functional array language for efficient multi-threaded execution. Int.
J. Parallel Prog. 34(4), 383–427 (2006)

20. Gu, Y., Le, B.-S., Wentong, C.: JBSP: A bsp programming library in java. J. Parallel Distrib. Comput.
61(8), 1126–1142 (2001)

21. Hamidouche, K., Falcou, J., Etiemble, D.: A framework for an automatic hybrid mpi+open- mp
code generation. In: Watson, L.T., Howell, G.W., Thacker, W.I., Seidel, S. (eds.) Simulation Multi-
conference (SpringSim) on High Performance Computing Symposia (HPC), pp. 48–55. SCS/ACM,
London (2011)

22. Hammond, K.: The dynamic properties of hume: a functionally-based concurrent language with
bounded time and space behaviour. In: Mohnen, M., Koopman, P.W.M. (eds.) Implementation of
Functional Languages (IFL), Volume 2011 of LNCS, pp. 122–139. Springer, Berlin (2000)

23. Hammond, K., Michaelson, G. (eds.): Research Directions in Parallel Functional Programming.
Springer, Berlin (2000)

24. Hill, J.M.D., McColl, B., Stefanescu, D.C., Goudreau, M.W., Lang, K., Rao, S.B., Suel, T., Tsantilas,
T., Bisseling, R.: bsplib: the bsp programming library. Parallel Comput. 24, 1947–1980 (1998)

25. Hinsen, K., Langtangen, H.P., Skavhaug, O., Ødegård, Å.: Using bsp and python to simplify parallel
programming. Future Gener. Comput. Syst. 22(1–2), 123–157 (2006)

26. Hou, Q., Zhou, K., Guo, B.: BSGP: Bulk-Synchronous gpu Programming. ACM Trans. Graph. 27(3),
19:1–19:12 (2008)

27. Keßler, C.W.: NestStep: nested parallelism and virtual shared memory for the bsp model. J. Super-
comput. 17(3), 245–262 (2000)

28. Leroy, X., Grall, H.: Coinductive big-step operational semantics. Inf. Comput. 207(2), 284–304 (2009)
29. Li, C., Hains, G.: SGL: towards a bridging model for heterogeneous hierarchical platforms. IJHPCN

7(2), 139–151 (2012)
30. Loidl, H.-W., et al.: Comparing parallel functional languages: programming and performance. Higher

Order and Symb. Comp. 16(3), 203–251 (2003)
31. Loogen, R., Ortega-Mallén, Y., Peña Marí, R.: Parallel functional programming in Eden. J. Funct.

Program. 15(3), 431–475 (2005)
32. Mandel, L., Maranget, L.: Programming in jocaml. In: Drossopoulou, S. (ed.) European Symposium

on Programming (ESOP), Volume 4960 of LNCS, pp. 108–111. Springer, Berlin (2008)
33. Miller, Q.: BSP in a Lazy Functional Context. In: Hammond, K., Curtis, S. (eds.) Trends in Functional

Programming, pp. 37–50. Intellect Books (2002)
34. Rossberg, A.: Typed open programming: a higher-order, typed approach to dynamic modularity and

distribution. PhD thesis, Universität des Saarlandes (2007)
35. Scaife, N., Michaelson, G., Horiguchi, S.: Empirical parallel performance prediction from semantics-

based profiling. Scalable Comput. Pract. Exp. 7(3), 781–789 (2006)
36. Seo, S., Yoon, E.J., Kim, J.-H., Jin, S., Kim, J.-S., Maeng, S.: hama: an efficient matrix computation

with the mapreduce framework. In: Cloud Computing (CloudCom), pp. 721–726. IEEE (2010)
37. Valiant, L.G.: A bridging model for parallel computation. Comm. ACM 33(8), 103–111 (1990)
38. Valiant, L.G.: A bridgingmodel for multi-core computing. J. Comput. Syst. Sci. 77(1), 154–166 (2011)
39. Yzelman, A.N., Bisseling, R.H.: An object-oriented bulk synchronous parallel library for multicore

programming. Concurr. Comput. Pract. Exp. 24(5), 533–553 (2012)

123

	Multi-ML: Programming Multi-BSP Algorithms in ML
	Abstract
	1 Introduction
	2 Previous Works
	2.1 The BSP Model of Computation
	2.2 BSP Programming in ML
	2.3 The multi-bsp Model for Hierarchical Architectures

	3 Design of the Multi-ML Language
	3.1 Execution Model
	3.2 The multi-ml Language
	3.3 Current Limitations

	4 Semantics, Implementation and Examples
	4.1 Operational Semantics
	4.2 Sequential Simulation and Distributed Implementation
	4.3 Benchmarks

	5 Related Work
	5.1 Programming Languages and Libraries for BSP Like Computing
	5.2 Functional Parallel Programming

	6 Conclusion and Future Work
	6.1 Summary of the Contribution
	6.2 Future Work

	References

