
Int J Parallel Prog (2017) 45:283–299
DOI 10.1007/s10766-016-0416-7

Data Parallel Algorithmic Skeletons with Accelerator
Support

Steffen Ernsting1 · Herbert Kuchen1

Received: 6 August 2015 / Accepted: 21 March 2016 / Published online: 31 March 2016
© Springer Science+Business Media New York 2016

Abstract Hardware accelerators such as GPUs or Intel Xeon Phi comprise hundreds
or thousands of cores on a single chip and promise to deliver high performance. They
are widely used to boost the performance of highly parallel applications. However,
because of their diverging architectures programmers are facing diverging program-
ming paradigms. Programmers also have to deal with low-level concepts of parallel
programming that make it a cumbersome task. In order to assist programmers in
developing parallel applications Algorithmic Skeletons have been proposed. They
encapsulate well-defined, frequently recurring parallel programming patterns, thereby
shielding programmers from low-level aspects of parallel programming.Themain con-
tribution of this paper is a comparison of two skeleton library implementations, one in
C++ and one in Java, in terms of library design and programmability. Besides, on the
basis of four benchmark applications we evaluate the performance of the presented
implementations on two test systems, a GPU cluster and a Xeon Phi system. The two
implementations achieve comparable performance with a slight advantage for the C++
implementation. Xeon Phi performance ranges between CPU and GPU performance.

Keywords High-level parallel programming · Algorithmic skeletons · GPGPU ·
Hardware accelerators

B Steffen Ernsting
s.ernsting@uni-muenster.de

Herbert Kuchen
kuchen@uni-muenster.de

1 University of Muenster, Leonardo-Campus 3, 48149 Muenster, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-016-0416-7&domain=pdf

284 Int J Parallel Prog (2017) 45:283–299

1 Introduction

Nowadays, multi-core and many-core processors are ubiquitous. Both the growing
complexity of applications and the growing amount of data lead to high demand for
high performance. In the last few years we can observe a trend towards hardware
accelerators such as graphics processing units (GPUs) or the Intel Xeon Phi. Both
GPUs and Xeon Phi [1] are many-core processors comprising hundreds or thousands
of cores on a single chip and promising to deliver high performance in teraflops-scale.

Programming GPUs is very challenging because of their specialized nature for
highly parallel, high throughput computing. Fully exploiting their computing capa-
bilities still requires programmers to deal with intrinsic low-level concepts such as
e.g. memory allocation in device memory and data transfer to or from main memory.
Programming multi-GPU systems is even more challenging because the program-
mer is responsible for managing multiple buffers and data transfer between GPUs.
These low-level concepts constitute a high barrier to efficient development of parallel
applications and also make it a tedious and error-prone task.

The Intel Xeon Phi is based on a x86-compatible multiprocessor architecture.
Programming the Xeon Phi therefore is a much more convenient task than program-
ming GPUs because existing parallelization software and tools such as e.g. MPI and
OpenMP can be utilized. Nevertheless, programs written for the Xeon Phi processor
cannot be run on GPUs and vice versa. Porting existing applications from Xeon Phi
to GPUs or vice versa can be very complex and typically involves a lot of effort.

With algorithmic skeletons [2,3] Cole has proposed an approach to structured
high-level parallel programming. Algorithmic skeletons can be considered as high-
level tools that encapsulate well-defined, frequently recurring parallel and distributed
programming patterns, thereby hiding low-level details and also encouraging a struc-
tured way of parallel programming. The high level of abstraction ensures portability:
skeletons can be implemented for various architectures. Thus, programs that utilize
algorithmic skeletons are innately portable between various architectures (that are
supported).

In this paper, we present a comparison of two implementations of the Muenster
Skeleton Library (Muesli), one in C++ and one in Java, in terms of library design and
programmability, and performance. A skeleton library allows for platform indepen-
dent development of parallel applications. Supported computing architectures include
(multi-core) CPUs and GPUs (C++ and Java), as well as Xeon Phi (C++ only). We
also present four benchmark applications in order to draw a performance compari-
son between the two presented implementation approaches as well as between the
supported computing architectures. The four benchmark applications include matrix
multiplication, N-Body computations, shortest paths, and ray tracing.

The remainder of this paper is structured as follows. Section 2 introduces the
Muenster Skeleton Library, briefly pointing out the underlying concepts. The imple-
mentation of data parallel skeletons with accelerator support is presented in Sect. 3
where we point out some implementation aspects that both implementations have in
common and where they distinguish from each other. The two implementations are
evaluated, in terms of performance, in Sect. 4. Related work is discussed in Sect. 5
and finally, Sect. 6 concludes the paper and gives a short outlook to future work.

123

Int J Parallel Prog (2017) 45:283–299 285

2 The Muenster Skeleton Library Muesli

The C++ library Muesli provides algorithmic skeletons as well as distributed data
structures for shared and distributed memory parallel programming. It is built on top
of MPI and OpenMP. Thus it provides efficient support for multi- and many-core
computer architectures as well as clusters of both. A first implementation of data
parallel skeletons with GPU support using CUDA[4] was presented in [5]. A pure
Java implementation of data parallel skeletons (CPU only) was presented in [6].

Conceptually, we distinguish between data parallel and task parallel skeletons.
Data parallel skeletons such as map, zip, and fold are provided as member functions
of distributed data structures, including a one-dimensional array, a two-dimensional
matrix, and a two-dimensional sparse matrix [7].1 Communication skeletons such as
permutePartition assist the programmer in dealing with data that is distributed among
several MPI processes. Task parallel skeletons represent well-known process topolo-
gies, such as Farm, Pipeline (Pipe), Divide and Conquer (D&C) [8] and Branch and
Bound (B&B) [9]. They can be arbitrarily nested to create a process topology that
defines the overall structure of a parallel application. The algorithm-specific behavior
of such a process topology is defined by some particular user functions that describe
the algorithm-specific details.

InMuesli, a user function is either an ordinary C++ function or a functor, i.e. a class
that overrides the function call operator. Due to memory restrictions, GPU-enabled
skeletons must be provided with functors as arguments, CPU skeletons can take both
functions and functors as arguments. As a key feature of Muesli, the well-known
concept of Currying is used to enable partial application of user functions [10]. A
user function requiring more arguments than provided by a particular skeleton can
be partially applied to a given number of arguments, thereby yielding a “curried”
function of smaller arity, which can be passed to the desired skeleton. On the functor
side, additional arguments are provided as data members of the corresponding functor.

3 Implementation of Data Parallel Skeletons with Accelerator Support

The implementation of data parallel skeletons with GPU support has already been
presented in [5] (C++) and [6,11] (Java). In this paper, we want to point out imple-
mentation aspects that both implementations have in common and aspects that are
different for the two implementations. Additionally, we briefly explain how the Xeon
Phi coprocessor is supported by the C++ implementation. For a more detailed descrip-
tion of each implementation please refer to the above mentioned papers.

3.1 Distributed Data Structures

As we already mentioned in Sect. 2, data parallel skeletons in Muesli are provided as
member functions of distributed data structures. As the name suggests, distributed data

1 In this paper, we focus on the data structures array and matrix. The sparse matrix currently does not
provide accelerator skeletons.

123

286 Int J Parallel Prog (2017) 45:283–299

(a) (b) (c)

Fig. 1 a Global view of a distributed matrix. b Local view of a distributed matrix. c Local view after
applying the Map skeleton

structures are distributed among several MPI processes, each maintaining a partition
of the entire data structure. The concept of such parallel data structures is common
to both implementations. We distinguish between the global view that considers the
entire data structure, and the local view that considers the decomposition into local
partitions (see Fig. 1a, b). Programmers may concentrate on the global view because
all data parallel skeletons process the entire data structure, meaning all elements of
a data structure (see Fig. 1c). However, when designing their programs, they must
keep in mind that data is physically separated in distributed memory. Currently, the
data structures DArray (one-dimensional) and DMatrix (two-dimensional) provide
skeletons with accelerator support.

3.2 Parallelization

For our C++ implementation of data parallel skeletons with accelerator support we
make use of a multi-tier approach based on MPI, OpenMP, and CUDA for paralleliza-
tion. The code can be separately compiled for each supported platform. MPI is used
for inter-node (distributed memory) parallelization. The CPU and Xeon Phi versions
utilize OpenMP and the GPU version utilizes CUDA for intra-node (shared memory)
parallelization.

In our Java implementation wemake use ofMPJ Express [12] (MPJE, a Java imple-
mentation of MPI) and Aparapi [13,14] for parallelization. Aparapi is an API for data
parallel Java that translates at runtime suitable Java (byte)code into OpenCL[15] code
that can be executed on GPUs. It does not (yet) deliver the performance of Java bind-
ings such as jCuda [16,17], JOCL[18], or JogAmp’s JOCL[19], but instead provides
good programmability, which is ideal for high-level approaches such as algorithmic
skeletons [20]. At present Aparapi is restricted to primitive data types and includes
only limited support for simple Java objects. However, because of incompatible mem-
ory layouts between Java and OpenCL the performance will be poor. Future releases
may address this issue. For additional information on how we integrate MPJE and
Aparapi please refer to [6,11].

Xeon Phi Support For the GPU version computational offloading is employed: the
main code runs on the host system and specific compute-intensive tasks (in this case

123

Int J Parallel Prog (2017) 45:283–299 287

the skeletons) are offloaded to the GPU. Data has to be transferred explicitly. For the
Xeon Phi version, the code runs in so-called native mode, where the entire application
runs on the coprocessor. The advantage of this approach is that data transfer to the
coprocessor’s memory is handled implicitly. For applications with a high portion of
sequential code this can be disadvantageous, because the Xeon Phi is mainly designed
to run highly parallel code and performs poorly running sequential code. However,
most applications based on data parallel skeletons are highly parallel by nature and
involve only a small fraction of sequential code.

3.3 Data Parallel Skeletons

On the basis of the mapInPlace skeleton of the distributed array we want to briefly
explain how the data parallel skeletons are implemented. Listing 1 shows the C++
implementation for both the CPU and Xeon Phi variant (lines 2–9) and the GPU
variant (lines 11–22) of this skeleton.

On the CPU (Xeon Phi, respectively) side, the main part is a parallel for-loop that
iterates over the local partition in order to call the user function f (which actually is
not a function but a functor) for each element of the data structure (lines 5–8). On
the GPU side we need to first transfer data to the GPUs’ memory (line 15). After
that, the map kernel can be launched on each GPU (lines 17–21). The map kernel
straightforwardly maps the user function to each element of each local GPU partition,
such that finally every element of the distributed data structure is processed according
to the user function. The call of the notify() function in line 20 originates from
the mechanism that allows for additional arguments to the user function. It will be

123

288 Int J Parallel Prog (2017) 45:283–299

explained in detail in the next section. Listing 2 shows the Java implementation of the
mapInPlace skeleton.

Because of the use of Aparapi as the parallelization tool, the mapInPlace skeleton
is very simple in the Java version. The user provides the user function in terms of a so-
called MapKernel, which is an abstract class that incorporates all the functionality
that is necessary for Aparapi to generate OpenCL code and run it on the GPU. The
kernel is initializedwith input andoutput data in line 2 and launched in line 3.Disposing
the kernel (line 3) ensures synchronization with the host thread. In the next section
we will give detailed information about this abstract kernel class and how it is to be
extended by the user.

In order to give an example of the interaction between shared and distributed mem-
ory parallelization, Listing 3 schematically presents the fold skeleton. According to
the two-tier parallelization, first, each process calculates a local result by folding its
local partition of the data structure (line 2). This is done in parallel by CPU or GPU
threads, depending on the execution mode. In the next step all the local results are
shared among the processes (lines 4–5) to finally calculate a global result which is
then returned by the skeleton (line 7).

3.4 Providing the User Function

In order to provide a skeleton with a user function, the user has to implement a functor.
Listing 4 exemplarily shows the abstract class MapFunctor that is to be extended by
the user. The actual user function is implemented in terms of the function call operator
(line 6). In case of a map functor, this function takes a value of type IN as argument
and returns a value of type OUT. The preprocessor macro MSL_UFCT2 expands to
host device when compiled forGPUplatforms via theNVIDIA compiler.

2 MSL_UFCT is a contraction for MSL_USERFUNCTION.

123

Int J Parallel Prog (2017) 45:283–299 289

It tells the compiler to generate code that can be run on the host system (i.e. on theCPU)
as well as on the GPU. When compiled with any other compiler, this macro expands
to the empty word. A concrete functor that extends the abstract class MapFunctor
will be presented in Listing 6.

On the Java side, the user has to implement a functor in terms of a so-called kernel
(see Listing 5). This is due to the way how Aparapi generates OpenCL code from Java
code. Due to the restriction to primitive data types, these kernels have to implemented
for a specific (primitive) type (in this case int). The map functionality is provided
with the run method within which the map function is applied. Data to be processed
(arrays in and out in line 2) must be a member of the kernel in order for Aparapi to
be able to handle data transfer to GPU memory through JNI. Initialization of the map
kernel is handled by the map skeleton (see Listing 2, line 2). The important part for
the user is the abstract method mapFunction in line 4 that is to be implemented in
order to provide the functionality of the user function. A concrete kernel that extends
the abstract class MapKernel will be presented in Listing 8.

Additional Arguments for the User Function The arguments of a user function are
determined by the skeleton that calls this particular function. The map skeleton
for instance passes only the current value to the user function. For most applica-
tions, however, it is crucial to enable the user function to access further data. In
former versions of Muesli, this mechanism was accomplished through the concept
of Currying [10] where function pointers are incorporated into functors that hold
additional arguments. Because in CUDA it is restricted to take the address of a

device function [21] it was not feasible to simply adopt this feature for the

123

290 Int J Parallel Prog (2017) 45:283–299

skeletons with GPU support. Having the user directly implementing a functor anyway
immediately suggests to simply add additional arguments in terms of a functor’s data
members as shown in Listing 6. This works well for data types whose size in bytes can
be correctly calculated by the sizeof-operator, e.g. primitives and simple structures.
This is usually not the case for classes with pointer data members such as for instance
the classes DArray and DMatrix.

Adding arguments of such complex types is problematic: pointer data that are to be
accessed from a GPU device requires to be uploaded to GPUmemory first. In a multi-
GPU setting, due to disjoint memory of multiple GPUs, this leads to holding multiple
pointers, one for each GPU and one pointing to the host data in main memory. When
accessing these pointers on the GPUs, we need to take care that each GPU accesses
the correct pointer (that points to an address in its memory). For that reason, the
functors in Muesli are implemented similarly to the observer pattern [22] (see Fig. 2).
Listing 7 shows the implementation in C++ of the abstract classes ArgumentType
and FunctorBase. In order to serve as an argument type, a class needs to extend
the abstract class ArgumentType, i.e. override the update function. This function
notifies a concrete observer, that it needs to update the current pointer, so that it
points to an address in the correct GPU memory. On the functor side, the user has to
register concrete observers (i.e. Arguments) with the help of the addArgument
function. At first glance, this may seem to be complex. However, users need to deal
with this procedure only when defining their own argument types. For the distributed
data structures DArray and DMatrix Muesli provides some kind of proxy classes
LArray and LMatrix3 that implement this behavior described above. The reason
for the use of proxy classes instead of implementing this behavior directly in the
classes DArray and DMatrix is that functors must be passed by value to the CUDA
kernels. This would involve a copy of the entire data structure to be made by the copy
constructor every time the functor was passed to a CUDA kernel (in case of 4 GPUs 4
copies would be made). The classes LArray and LMatrix instead are just shallow
copies that store the pointers only.

3 The L in LArray and LMatrix stands for “local” and is thought to denote that only the local partition
of a distributed data structure can be accessed locally.

123

Int J Parallel Prog (2017) 45:283–299 291

Fig. 2 UML class diagramm for functor classes in Muesli

On the Java side, passing additional arguments is much simpler. However, here,
arguments are restricted to primitive data types and arrays of primitive data types.
The user can simply add an argument to the user function in terms of a data member
of the kernel class. Aparapi handles memory allocation and data transfer to the GPU
memory. A simple user function with an additional argument is exemplarily shown in
Listing 8.

123

292 Int J Parallel Prog (2017) 45:283–299

4 Experimental Results

In order to demonstrate how the presented data parallel skeletons with accelerator
support perform, we have implemented four benchmark applications: matrix multi-
plication, N-Body computations, shortest paths, and ray tracing. There are two test
systems on which the benchmarks were conducted: The first system is a multi-node
GPU cluster. Each node is equipped with two Intel Xeon E5-2450 (Sandy Bridge)
CPUs with a total of 16 cores and two NVIDIA Tesla K20x GPUs. The second system
is a Xeon Phi system including 8 Xeon Phi 5110p coprocessors. For each of the first
three benchmarks, we considered six configurations:

– two CPU configurations C++ CPU, Java CPU
– three GPU configurations C++ GPU, C++ multi-GPU, and Java GPU
– one Xeon Phi configuration C++ Xeon Phi

For the CPU configurations, 16 threads per node are employed. For the GPU config-
urations C++ GPU and Java GPU a single GPU per node has been utilized. For the
C++ multi-GPU configuration two GPUs per node have been utilized. Each of these
configurations was run on multiple nodes, ranging from 1 to 16 nodes. For the C++
Xeon Phi configuration up to 8 Xeon Phis have been utilized. In this case one Xeon
Phi processor corresponds to one node.

Each of the first three benchmark applications is implemented just twice: one C++
version and one Java version. In order to run the benchmark with different hardware
configurations, we can simply compile the same application for multiple architectures.
Due to the restriction to primitive data types on the Java side, we have implemented
the ray tracing benchmark only for the C++ version. For that reason, we considered
only the four C++ configurations for this benchmark.

4.1 Matrix Multiplication

For the matrix multiplication benchmark, we have implemented Cannon’s algo-
rithm[23] for multiplying two n × n-matrices. It is based on a checkerboard block
decomposition and assumes the matrices to be partitioned into p submatrices (local
partitions) of size m × m, where p denotes the number of processes and m = n/

√
p.

Initially the submatrices of A and B are shifted cyclically in horizontal and vertical
direction, respectively (see Fig. 3a). Submatrices of row i (column j) are shifted i (j)
positions to the left (upwards). After the initial shifting, the first submatrix multipli-
cation takes place (see Fig. 3b). The grey boxes indicate one pair of row and column
to calculate the dot product from. This is done in parallel by all processes for each
element of C. Within each step, a submatrix multiplication takes place followed by a
row and column shift of A and B, respectively. In total,

√
p steps are required until

each process has calculated one submatrix of the result matrix C.

123

Int J Parallel Prog (2017) 45:283–299 293

(a)

(b)

Fig. 3 Cannon’s algorithm: a Initial shifting of submatrices. b Intermediate result of first submatrix mul-
tiplication and stepwise shifting of submatrices

123

294 Int J Parallel Prog (2017) 45:283–299

The implementation of the algorithm is presented in Listings 9 (C++) and 10 (Java).
The initial shifting is performed by the communication skeletons rotateRows and
rotateCols, respectively, in lines 3-4 (Java: 2-3). When called with a function or
functor as argument, these skeletons calculate the number of positions each submatrix
has to be shifted by applying the functor to the row and column indices of the subma-
trices, respectively. According to the function/functor negate, a submatrix of row i
(column j) is shifted i (j) positions to the west (north).When called with the argument
-1 (lines 10-11, Java: 9-10), submatrices of row i (column j) are shifted one position
to the west (north). In line 8 (Java: 7) the submatrix multiplication is performed by
the mapIndexInPlace skeleton. It is called with a dot product functor presented
in Listings 11 (C++) and 12 (Java). The suffix Index indicates that amongst the ele-
ment itself also the indices of that element are passed to the user function. The suffix
InPlace denotes that the skeleton works in-place, i.e. elements are overridden.

123

Int J Parallel Prog (2017) 45:283–299 295

Fig. 4 Results of the Matrix multiplication benchmark with n=8192. Run time (in seconds) is given on a
logarithmic scale

Listing 12 Map kernel that calculates the dot product (Java).

The dot product of corresponding rows of matrix A and columns of matrix B is
calculated in lines 14-16 (Java: 12-14).

Performance results are reported in Fig. 4. As expected, the C++ multi-GPU con-
figuration clearly performs best, followed by the C++ GPU configuration. The Java
GPU and C++ Xeon Phi configurations are on a similar level, but clearly staying
behind the C++ (multi-)GPU configurations. The two CPU configurations C++ CPU
and Java CPU are trailing behind, with the C++ version having a slight edge over the
Java version. Comparing theGPUconfigurationswith theCPUconfigurations, one can
observe speedups of about 90x on a single node. On higher node counts, the speedups
decrease. This is due to CPU cache effects that result in super-linear speedups (about
40x on 16 nodes compared to a single node) for the CPU configurations.

123

296 Int J Parallel Prog (2017) 45:283–299

Fig. 5 Results of the N-Body benchmark with n=500.000 over 10 time steps. Run time (in seconds) is
given on a logarithmic scale

4.2 N-Body Computations

Performance results for the N-Body benchmark are reported in Fig. 5. Analogous
to the matrix multiplication benchmark, the C++ multi-GPU configuration has a
clear advantage over the other configurations. For lower node counts (1-2 nodes),
the C++ GPU and Java GPU configurations are on the same level. However, for
higher node counts (4-16) the C++ version delivers higher scalability, thus achieving
better speedups and providing better performance. The C++ Xeon Phi configuration
is about 2-3 times slower than the single GPU versions C++ GPU and Java GPU.
The CPU configurations C++ CPU and Java CPU are on the same level for all node
counts. However, they cannot compete with the accelerator configurations that achieve
speedups of about 10-12x compared to the CPU configurations.

4.3 Shortest Paths

Performance results for the shortest paths benchmark are reported in Fig. 6. The
results from this benchmark are very similar to the Matrix multiplication benchmark.
For higher node counts super-linear speedups are noticeable. Again, this is likely due
to cache effects. For the Java GPU configuration, however, higher node counts result
in strongly decreasing speedups. The speedup when shifting from 4 to 16 nodes is only
about 1.06, which is very close to no speedup at all. There is also close to no speedup
recognizable for the C++ Xeon Phi configuration when shifting from 1 to 4 nodes.

4.4 Ray Tracing

Performance results for the ray tracing benchmark are reported in Fig. 7. Again, as
expected, the C++ multi-GPU configuration has a clear edge over the other config-

123

Int J Parallel Prog (2017) 45:283–299 297

Fig. 6 Results of the Shortest paths benchmark with n=8192. Run time (in seconds) is given on a loga-
rithmic scale

Fig. 7 Results of the Ray tracing benchmark with an image size of 2048× 2048. Run time (in seconds) is
given on a logarithmic scale

urations, being almost twice as fast as the C++ GPU configuration. Until up to 4
nodes, the C++ Xeon Phi configuration is about 10–20% faster than the C++ CPU
configuration. At node count 8, the CPU configuration is even faster than the Xeon
Phi configuration. This is due to the lack of auto-vectorization that was not feasible for
this benchmark application. Inter-node speedups are close to ideal for each considered
configuration.

All in all the results show that, performance-wise, there is not a big gap between
the C++ and the Java implementation. Nevertheless, the multi-GPU configuration of
the C++ implementation clearly outperforms any other configuration, which is not
surprising. The Xeon Phi performance strongly depends on (auto)vectorization [24]
and is only slightly better than the CPU performance.

123

298 Int J Parallel Prog (2017) 45:283–299

5 Related Work

SkelCl [25] and SkePU[26] are C++ skeleton frameworks targeting multi-core, multi-
GPU systems. While SkelCl is exclusively built on top of OpenCL, SkePU provides
support for both CUDA and OpenCL. Additionally, SkePU allows for heterogeneous
execution as well as performance-aware dynamic scheduling and load balancing. Both
frameworks are currently limited to multi-core, multi-GPU systems and do not sup-
port distributed memory systems such as clusters. FastFlow[27] is a C++ framework
providing high-level parallel programming patterns. It supports heterogeneous shared
memory platforms equipped with hardware accelerators such as GPUs, Xeon Phi,
and Tilera TILE64 as well as clusters of such platforms. As of this writing all three
frameworks are limited to the C++ programming language and do not provide a Java
implementation of their skeletons. To the best of our knowledge they also do not pro-
vide the functionality to arbitrarily add arguments to the user functions that are passed
to the skeletons.

6 Conclusion

We have presented the implementation of data parallel skeletons with accelerator
support in C++ and Java. It provides a high-level approach to simplify parallel and
distributed programming. Applications developed with these skeletons are portable
across a variety of platforms, including CPUs, GPUs and the Xeon Phi as well as
clusters of such platforms. Programmers may specify whether they want to run a
program either on CPUs only or with accelerator support. On the Java side, features
such as e.g. its huge standard library, garbage collection, and reflection also contribute
to making (parallel) programming more comfortable.

The benchmark results show that the Java and theC++ implementation offer compa-
rable performance. However, there are still some restrictions on the Java side. Because
of the restriction to primitive data types there is no opportunity to implement generic
data structures, which results in code bloat. Also the restriction to single GPU systems
needs to be addressed in future releases.

The Xeon Phi is sort of in-between CPUs and GPUs, performance-wise and in
terms of programmability. Thanks to the Xeon Phi’s support for existing paralleliza-
tion tools and frameworks, support for this platform could seamlessly be added to
the (C++) skeletons. Additional support for the Xeon Phi platform within the Java
implementation will be targeted in the future.

References

1. IntelCorp: IntelXeonPhiCoprocessor—TheArchitecture (Website). https://software.intel.com/en-us/
articles/intel-xeon-phi-coprocessor-codename-knights-corner. Accessed Jan 2016

2. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation. MIT Press, Cam-
bridge (1989)

3. Cole,M.: Bringing skeletons out of the closet: a pragmaticmanifesto for skeletal parallel programming.
Parallel Comput. 30(3), 389–406 (2004)

123

https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

Int J Parallel Prog (2017) 45:283–299 299

4. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with CUDA. Queue
6(2), 40–53 (2008)

5. Ernsting, S., Kuchen, H.: Algorithmic skeletons for multi-core, multi-GPU systems and clusters. Int.
J. High Perform. Comput. Netw. 7(2), 129–138 (2012)

6. Ernsting, S.,Kuchen,H.:Data parallel skeletons in java. In: Proceedings of the InternationalConference
on Computational Science (ICCS), pp. 1817–1826. Omaha, Nebraska, USA (2012)

7. Ciechanowicz, P.: Algorithmic skeletons for general sparse matrices on multi-core processors. In:
Proceedings of the 20th IASTED International Conference on Parallel and Distributed Computing and
Systems (PDCS), pp. 188–197 (2008)

8. Poldner, M., Kuchen, H.: Skeletons for divide and conquer algorithms. In: Proceedings of the IASTED
International Conference on Parallel and Distributed Computing and Networks (PDCN). ACTA Press
(2008)

9. Poldner, M., Kuchen, H.: Algorithmic skeletons for branch and bound. In: Proceedings of the 1st
International Conference on Software and Data Technology (ICSOFT), vol. 1, pp. 291–300 (2006)

10. Kuchen, H., Striegnitz, J.: Higher-order functions and partial applications for a C++ skeleton library.
In: Proceedings of the 2002 Joint ACM-ISCOPE Conference on Java Grande, pp. 122–130. ACM
(2002)

11. Ernsting, S., Kuchen, H.: Java implementation of data parallel skeletons on GPUs. In: Proceedings of
the International Conference on Parallel Computing, ParCo 2015. Publication status, Edinburgh (2015)
In press

12. Shafi, A., Carpenter, B., Baker, M.: Nested parallelism for multi-core HPC systems using Java. J.
Parallel Distrib. Comput. 69(6), 532–545 (2009)

13. Frost, G.: A parallel API. http://developer.amd.com/tools-and-sdks/opencl-zone/aparapi/ (2011).
Accessed Jan 2016

14. Aparapi Github pages. https://aparapi.github.io/. Accessed Jan 2016
15. OpenCL Working Group: The OpenCL Specification, Version 1.2. (2011)
16. jCuda Website. http://jcuda.org. Accessed Jan 2016
17. Yan, Y., Grossman, M., Sarkar, V.: JCUDA: a programmer-friendly interface for accelerating java

programs with Cuda. In: Euro-Par 2009 Parallel Processing, Lecture Notes in Computer Science, pp.
887–899. Springer (2009)

18. jOCL Website. http://jocl.org. Accessed Jan 2016
19. JogAmp Website. http://jogamp.org. Accessed Jan 2016
20. Docampo, J., Ramos, S., Taboada, G.L., Expósito, R.R., Touriño, J., Doallo, R.: Evaluation of java

for general purpose GPU computing. In: 27th International Conference on Advanced Information
Networking and Applications Workshops, pp. 1398–1404. Barcelona, Spain (2013)

21. Nvidia Corp: NVIDIA CUDA C Programming Guide 7.5. Nvidia Corporation (2015)
22. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley Longman Publishing Co., Inc, Boston (1995)
23. Quinn, M.J.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill Education Group, New

York (2003)
24. Intel Corp: Vectorization Essentials (Website). https://software.intel.com/en-us/articles/vectorization-

essential. Accessed Jan 2016
25. Steuwer, M., Kegel, P., Gorlatch, S.: SkelCL—a portable skeleton library for high-level GPU program-

ming. In: HIPS ’11: Proceedings of the 16th IEEE Workshop on High-Level Parallel Programming
Models and Supportive Environments, Anchorage, AK, USA (2011)

26. Enmyren, J., Kessler, C.W.: SkePU: a multi-backend skeleton programming Library for multi-GPU
systems. In: Proceedings of the Fourth International Workshop on High-Level Parallel Programming
and Applications. HLPP ’10, pp. 5–14. ACM, New York, NY, USA (2010)

27. Aldinucci, M., Torquati, M., Drocco, M., Peretti Pezzi, G., Spampinato, C.: An Overview of FastFlow:
Combining Pattern-Level Abstraction and Efficiency in GPGPUs. In: GPU Technology Conference
(GTC 2014). San Jose, CA, USA (2014)

123

http://developer.amd.com/tools-and-sdks/opencl-zone/aparapi/
https://aparapi.github.io/
http://jcuda.org
http://jocl.org
http://jogamp.org
https://software.intel.com/en-us/articles/vectorization-essential
https://software.intel.com/en-us/articles/vectorization-essential

	Data Parallel Algorithmic Skeletons with Accelerator Support
	Abstract
	1 Introduction
	2 The Muenster Skeleton Library Muesli
	3 Implementation of Data Parallel Skeletons with Accelerator Support
	3.1 Distributed Data Structures
	3.2 Parallelization
	3.3 Data Parallel Skeletons
	3.4 Providing the User Function

	4 Experimental Results
	4.1 Matrix Multiplication
	4.2 N-Body Computations
	4.3 Shortest Paths
	4.4 Ray Tracing

	5 Related Work
	6 Conclusion
	References

