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Abstract SyDPaCC is a set of libraries for the Coq proof assistant. It allows to write
naive functional programs (i.e. with high complexity) that are considered as speci-
fications, and to transform them into more efficient versions. These more efficient
versions can then be automatically parallelised before being extracted from Coq into
source code for the functional language OCaml together with calls to the Bulk Syn-
chronous ParallelML library. In this paperwe present a new core version of SyDPaCC
for the development of parallel programs correct-by-construction using the theory of
list homomorphisms and algorithmic skeletons implemented and verified in Coq. The
framework is illustrated on the maximum prefix sum problem.

Keywords Parallel programming · Algorithmic skeletons · Constructive algorithms ·
Proof assistant

1 Introduction

Nowadays parallel architectures are everywhere, but not parallel programmers. High-
level programming abstractions and methods are needed, in particular for distributed

B Frédéric Loulergue
frederic.loulergue@univ-orleans.fr

Wadoud Bousdira
wadoud.bousdira@univ-orleans.fr

Julien Tesson
Julien.Tesson@lacl.fr

1 Inria πr2, PPS, CNRS, Univ. Paris Diderot, Paris, France

2 Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, Orléans, France

3 LACL, UPEC, Université Paris Est, 94010 Créteil, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-016-0415-8&domain=pdf


Int J Parallel Prog (2017) 45:300–319 301

memory models. Our goal is to provide a framework to ease the systematic develop-
ment of correct parallel programs.

In the Bird Meertens Formalism (BMF) [2], an efficient program is obtained from
a naive functional program considered as a specification, through program transfor-
mations. BMF can be applied to parallel programming (e.g. [5]). In these approaches,
however, the transformations are pen-and-paper proofs and the transition from an effi-
cient functional expression to a parallel program (often in an imperative language, for
example a library of algorithmic skeletons hosted in C++) is not grounded on a formal
basis.

We develop the framework SyDPaCC [7,14] for the Coq proof assistant [22] to
ease the use of methods based on program transformation and algorithmic skeletons
and make them more reliable. More specifically the contributions of this paper are:

– the support of list homomorphisms in SyDPaCC that previously only supported
BSP homomorphisms [14] and the GTA paradigm [7],

– improvements of the formalisation of the parallel functional language Bulk Syn-
chronous Parallel ML (BSML) [13] and algorithmic skeletons in Coq,

– an application of the framework to produce a parallel program for the maximum
prefix sum problem.

We first give an overview of the features of Coq. The paper does not assume any
prior knowledge of Coq, but familiarity with functional programming is necessary.
Then we present how a function written as a composition of sequential map and
reduce could be automatically parallelised in SyDPaCC based on a formalisation of
BSML (Sect. 3) and verified parallel versions of map and reduce (Sect. 4). In Sect. 5
we present the modelling in Coq of two important list homomorphism theorems that
are used to prove that a function having three simple properties can be expressed
as a composition of sequential map and reduce and therefore be parallelised. The
framework is exemplified on themaximum prefix sum problem in Sect. 6. Comparison
with related work (Sect. 7) and conclusion (Sect. 8) close the paper.

2 An Overview of the Coq Proof Assistant

Coq [22] is an interactive theorem prover. It is based on the Curry–Howard correspon-
dence relating terms of a typedλ-calculus [the calculus of (co)-inductive constructions]
with proof trees of a logical system in natural deduction form. From a more practi-
cal side, Coq can be seen as a functional programming language, close to OCaml or
Haskell but with a richer type system that allows to express logical properties. There
are many cases where programs are developed in Coq and their properties are also
proved in Coq. This is for example the case of the CompCert compiler, a compiler
for the C language, implemented and certified using Coq [12]. Our SyDPaCC system
also uses this style.

In Coq, data structures are defined only by induction. For example the list data
structure is defined in Coq, Haskell and OCaml in Fig. 1. In all three cases, a list is
built using the constructor for empty list (Nil), or the constructor that adds an element
at the beginning of a given list (Cons). In Haskell and OCaml, a and α respectively are
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(∗ Coq ∗)

Inductive list (A:Type) : Type :=
| Nil: list A
| Cons: A→list A→list A.

Fixpoint map A B (f:A→B) xs :=
match xs with
| Nil ⇒ Nil B
| Cons x xs ⇒ Cons(f x)(map f xs)
end.

−− Haskell
data List a = Nil | Cons a (List a)
map f Nil = Nil
map f (Cons x xs) = Cons (f x) (map f xs)

(∗ OCaml ∗)
type α list = Nil | Cons of α ∗ α list
let rec map f = function
| Nil → Nil
| Cons(x,xs) → Cons(f x,map f xs)

Set Implicit Arguments.

Fig. 1 Lists in Coq, Haskell and OCaml

type variables. In the Coq version, A is simply a variable and we indicate this variable
is a Type.

In Coq, values and types can be mixed together, and types may depend on values.
For example the definition for lists of a given size begins with:

Inductive t (A:Type) : nat→Type := nil: t A 0 | (∗...∗)

In this definition A is a parameter: all the applications of the inductive definition t
should be applied only to A in the body of the definition of t. t has a second argument:
a natural number indicating the size of the vector. As in the declaration of t different
values are passed for this argument, it cannot be a parameter, hence its position after
the : symbol. In summary in new type declarations in Coq, parameters/arguments of
the type could be both types and values.

Figure 1 also shows the definitions of the map function in the three considered lan-
guages. All the definitions are recursive and by pattern matching on the list argument.
They are quite similar but in their arguments: in Coq there are two arguments A and
B that are types. Note that we could write (A B:Type) instead, but we prefer to let
Coq infer the type. We also let Coq infer that the type of xs is list A. Considering the
type arguments as regular arguments is very expressive. However, it may be verbose
to explicitly apply a polymorphic function to the types it is parametric in. The Set
Implicit Arguments command tells Coq to make this kind of arguments implicit
(and inferred byCoq). In the recursive call ofmap these arguments are actually omitted
and the code looks very similar to the Haskell and OCaml code.

If we request the various systems to give the type of map, Coq returns
the type ∀ A B:Type,(A→B)→list A→list B whereas OCaml returns the type
(α→β)→α list→β list and Haskell (t→a)→List t→List a. The ∀(x:A), B construc-
tion is a primitive one, it is called the depend product. This type is the type of the
expression fun(x:A)⇒e where e has type B considering x has type A. A→B is syn-
tactic sugar when B does not contain free occurrences of x.

It is also possible to define usual OCaml (or Haskell) notations for lists in Coq. In
the remaining of the paper we will use [] for the empty list, and :: in infix notation for
Cons.

Dependent product, function abstraction, inductive definitions and (dependent) pat-
tern matching are the key constructions of Coq. Logical elements can be built using
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them.We refer to [22] for the details, and just show an example of a lemma statement1

from the Coq standard library about lists:

Lemma in inv : ∀ A (a b:A) (l:list A), In b (a :: l) → a = b ∨ In b l.

In this statement, → may be thought as logical implication rather than functional
arrow (actually these notions are in correspondence by the Curry–Howard correspon-
dence). The predicate In could be defined as:

Inductive In A (x:A): list A→Prop := (∗ Prop is the kind of ‘‘logical’’ types ∗)
| Inhead: ∀ (xs:list A), In x (x::xs)
| Intail: ∀ (y:A) (xs:list A), In x xs→In x (y::xs).

In the Curry–Howard correspondence, a type and a logical statement are the same
and a program and a proof are the same. The notation in_inv : (∗...∗) indicates that the
name in_inv has what follows the colon as type. For the definition of a function or a
value, the body of the definition (for example for function map) follows after symbol
:=; it is actually a syntax friendly λ-term of the calculus of inductive constructions.
If we follow the Curry–Howard correspondence, the proof of the lemma in_inv could
be also written as a λ-term/program. However, it is not convenient to do so and Coq
provides a language of tactics to write scripts that build λ-terms that are proofs. For
in_inv one possible script is:

Proof. intros A a b l H. inversion H; subst; [left | right]; trivial. Qed.

We will not explain what exactly this script means, but only emphasise that Coq
enters an interactive proof mode that helps the user to write the script and that just
beforeQed aλ-term is built. The commandQed then checks that this termhas actually
the type given as the statement of lemma in_inv. Only after this check is done, the
lemma is added to Coq definitions. This means the only part of Coq that should be
trusted is the type checking part: the kernel. Buggy tactics could build incorrect proofs
but these proofs would be rejected by the kernel.

One additional strength of Coq is that the functional programming realm and the
logical realm could be mixed together. The simplest example of doing so is the depen-
dent pair:

Inductive sig (A:Type)(P:A→Prop): Type := exist : ∀ x : A, P x → sig P.

For a predicate P over value of type A, a value of type2 sig A P is a pair composed of:
a value a of type A together with a proof that P a holds. There exists a Coq notation
for sig P A which is quite intuitive: {x:A | P x}. In particular, this type could be used
to express pre- and post-conditions of functions in Coq. For example, the head of a
list is only defined on non empty lists, but only total and terminating functions can be
defined in Coq. Therefore one can use a pre-condition and write:

Program Definition head A (xs:{l:list A| l<> []}) : A :=
match xs with | [] ⇒ _ | x::xs ⇒ x end.

1 In Coq all the following commands are synonym: Fact, Lemma, Proposition, Theorem.
2 Actually A is implicit but making it explicit makes the explanation clearer.

123



304 Int J Parallel Prog (2017) 45:300–319

Here we use the Program feature of Coq that allows to consider that xs is of type list
A in the definition of the body of the function and to omit some parts of the body using
the _ symbol on the right of ⇒ for the empty list case. Program then generates a
proof obligation, for each hole in the body. In this case we do not have to write a proof
script for the proof obligation because Coq proves it by itself. This proof is a proof by
contradiction: l is both empty (from pattern matching) and non-empty (pre-condition).

Coq has a module system similar to OCaml’s. A module is a collection of inductive
definitions, value and function definitions, theorems and so on. A module type is a
collection of the same items that can be found in amodule, plusmore abstract elements:
“parameters” that are names together with types but without a body. For a value or
a function this corresponds to the usual notion of type signature. For a theorem, it
means a theorem without a proof, in other words an axiom. The general syntax for
parameters is Parameter name : type and a synonym is Axiom. An example of
module type is given in Fig. 4.

A module realises a module type if it provides the bodies of all the parameters
of the module type. A module can be parametric, i.e it can depend on the imple-
mentation of one or several other modules. For example a module implementing
a data-structure of sets using trees could depend on a module defining the type
and ordering of the elements. The definition of such a module would look like
Module Set (E : OrderedType). (∗...∗) End Set. where OrderedType is a mod-
ule type.

As a motivation for introducing the last feature of Coq we need, let us consider
join-lists. Join-lists and list homomorphisms suit very well to the divide-and-conquer
paradigm and are therefore very interesting as formal basis for a parallel program
development system. The SyDPaCC framework uses this kind of functions as a foun-
dation.

A join-list is a finite sequence of values of the same type. It can be: the empty list
[], a singleton [a] (for some element a) or a concatenation xs ++ ys of two lists xs and
ys. The concatenation is associative and [] is its identity element. map and reduce can
be defined on join-lists as:

map f [ ] = [ ] reduce ⊕ [ ] = id⊕
map f [x] = [ f x] reduce ⊕ [x] = [x]
map f (xs ++ ys) = reduce ⊕ (xs ++ ys) =
(map f xs) ++ (map f ys) (reduce ⊕ xs) ⊕ (reduce ⊕ ys)

where ⊕ is an associative operator with identity element id⊕.
Of course in Coq join-list cannot be defined as is because this definition has logical

properties on the constructors; However, join-lists are isomorphic to cons-lists as
defined in Fig. 1. Function map corresponds to function map in Coq. For reduce there
are two difficulties: first we assume that ⊕ and i⊕ form a monoid, and second reduce
is defined, as it is traditional in the Bird Meertens Formalism, as a binary operation
taking⊕ and a list. The first difficulty can be simply overcome: these logical properties
could be added as a pre-condition to an argument containing both ⊕ and i⊕:
Fixpoint reduce A (m:{(op,e):(A→A→A)∗A|Monoid A op e})(l:list A):=(∗...∗)
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As A would be implicit, reduce would be a binary operation where the m argument is
a complex value containing the binary operator, its identity element, and the fact that
they form a monoid with A. A better solution would be:

Fixpoint reduce A (op:A→A→A) (H:Monoid A op e) (l:list A) : A := (∗...∗)

in such a way that H is made implicit: the identity element of op and the fact they form
a monoid with A should come from some information of the context where reduce is
used.

Monoid could be defined as a conjunction of properties about op and e. A con-
venient way to do so is to use a record that is in fact syntactic sugar for an inductive
definition plus the dot notation to access the fields:

Record Monoid A (op:A→A→A) (e:A) : Prop :=
{ left_unit: ∀ a:A, op e a = a;

right_unit: ∀ a:A, op a e = a;
associative: ∀ a b c : A, op a (op b c) = op (op a b) c }.

Note that all the fields are logical statements. Therefore we use the proof mode to
define a value of type Monoid:

Definition monoid_plus_O : Monoid plus O. Proof. constructor; auto.
Defined.

It is possible to use the notation {name:type} instead of (name:type) in a definition
to make an argument implicit. However even if we do that in the proposed signature
of reduce, Coq will have no way to infer this implicit argument. The necessary Coq
feature are type classes. A class is similar to a record but values of these classes are
definedby the keyword Instance that defines themand stores them into a database that
is queried by the Coq inference mechanism when it encounters an implicit argument
whose type is a class.

The class Monoid only differs from the record Monoid in using the command
Class instead of Record. Then we can define instances as follows:

Instance m_plus_O : Monoid plus O. Proof. (∗...∗). Defined.
Instance m_app_nil A: Monoid (@app A) []. (∗ @ makes all arguments
explicit∗)

where app is the concatenation of lists as defined in the Coq standard library.
One possible definition for reduce is then:

Unset Implicit Arguments. (∗ We prefer to control the implicit status ∗)
Fixpoint reduce {A} (op:A→A→A) {e} {H:Monoid op e} (l:list A) : A :=
match l with | [] ⇒ e | x::xs ⇒ op x (reduce op xs) end.

It is possible to compute inCoq:Eval compute in reduce plus [1;2;3].Coq answers
= 6 : nat to this last command. First note that reduce is used as a binary operation and
that its first argument is also a binary operator (here the addition on natural numbers).
To infer the implicit arguments, Coq internals detect that the argument name H has
as type a type class Monoid. Therefore it looks into its database of instances: it finds
the last defined instance which has plus as an operator. In our setting it is the instance

123



306 Int J Parallel Prog (2017) 45:300–319

m_plus_O. This instance provides e and therefore all the implicit arguments are
inferred.

3 Bulk Synchronous Parallel ML in Coq

An Overview of BSML Bulk Synchronous Parallel ML or BSML is a functional pro-
gramming language currently implemented as a library for the functional programming
language OCaml. The BSML library [13] provides two different implementations of
the BSML primitives, a sequential implementation and a parallel implementation on
top of MPI, as well as a standard library of parallel functions. Compared to a full
language, the library does not provide the specific type system useful to ensure some
properties about BSML programs [10]. We present here the classic syntax of BSML.
A revised, more friendly syntax exists, but as programming in this style is based on
OCaml pre-processing, it is not possible to have it in Coq.

BSML is based on the BSP model [23] and there is a cost model for each primitive,
however for the sake of conciseness, we omit the costs in this presentation, as our
framework currently does not use them. A BSP computer is a set of processor and
memory pairs interconnected through a network togetherwith a global synchronisation
unit. A BSP program is a sequence of super-steps, each one being composed of: a
pure computation phase where processors compute using only the data they have
in local memory, a communication phase where processors exchange data, and a
synchronisation barrier that ensures that all data exchanges are completed during the
super-step.

BSML offers a global view of programs: a parallel program is structured as a
usual sequential program but operates on a parallel data structure through dedicated
primitives. This parallel data structure is called “parallel vector”. A parallel vector is
composedof p values, one per processor. p is the number of processes of the underlying
BSP computer. p does not change during the execution of a program. From the typing
point-of-view, a parallel vector has type α par: all the processors have values of the
same type. Nesting of parallel vectors is not allowed, i.e. α cannot contain a parallel
type: This is one of the properties enforced by theBSML type system. In the remaining,
we informally write 〈 v0 , . . . , vp−1 〉 for a parallel vector.

BSMLprovides four constants to access theBSPparameters of the parallelmachine.
The only one used in this paper is bsp_p, the number of processors of the BSP
computer. BSML also provides four primitives to manipulate parallel vectors.mkpar
and apply are evaluated in the pure computation phases of BSP supersteps whereas
proj and put need a full super-step to be evaluated, in particular there is an implicit
synchronisation barrier at the end of proj and put. The informal semantics of BSML
primitives is given in Fig. 2.

mkpar f = f 0 , . . . , f (p − 1)
apply f0 , . . . , fp−1 v0 , . . . , vp−1 = f0 v0 , . . . , fp−1 vp−1
proj v0 , . . . , vp−1 = λi → vi
put f0 , . . . , fp−1 = λj → fj 0 , . . . , λj → fj (p − 1)

Fig. 2 BSML primitives—informal semantics
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mkpar:(int→α)→α par is used to create a parallel vector from a function describ-
ing its components. For readers familiar with OCaml standard library, it is similar to
the function Array.init: int→(int→α)→α array but missing the first argument (the
size of the create array), as the size of parallel vectors is always bsp_p. OCaml being
a higher-order functional language, it is possible to have a parallel vector of functions.
Such a parallel vector cannot be applied to values as a parallel vector of functions is
not a function, thus BSML provides the primitive apply:(α→β)par→α par→β par
to apply a parallel vector of functions to a parallel vector of values.

proj:α par→(int→α) is the inverse ofmkpar: it creates a function from a parallel
vector. Note that as processor names are represented by values of type int in OCaml,
proj is only the inverse of mkpar on the interval [0,bsp_p-1]. The communication
pattern of proj is a total exchange (each processor as to make its value available
to all other processors). For more finely tuned communication patterns, BSML pro-
vides put:(int→α)par→(int→α)par. This primitive takes as input a parallel vector
of functions describing the messages to be sent to other processors. For example if at
processor 2, this parallel vector contains a function f2, and that f2 4 returns a certain
value v, it means that processor 2 will send message v to processor 4. The result of
put is also a parallel vector of functions, but these functions describe the messages
received by the processors. Continuing the same example, after having performed the
put, the function g4 at processor 4 is such that g4 2 returns v: processor 4 received
message v from processor 2. By convention, the first constant constructor of a type
is considered to represent the absence of message and therefore does not incur any
communication. The empty list is such a value.

BSML in Coq There are two main ways to model the semantics of programming
languages in a proof assistant: shallow embedding and deep embedding [24]. Deep
embedding is well suited to reason about the general properties of the language such
as typing is preserved by reduction/evaluation. However it is much less convenient to
reason about individual programs.

When the base language is a functional one, another possibility is to use the proof
assistant as a functional language, and add the new primitives and their seman-
tics as signatures and axioms: This is a shallow embedding. In this setting, one
cannot reason about general properties of the language as it would mean to rea-
son about the interactive prover itself, but it is much more convenient for writing
and reasoning about individual programs. All the proof assistant libraries could be
used.

FormodellingBSML inCoqwe follow the shallow embedding approach.Moreover
rather than adding signatures and axioms at the top-level of Coq, which may lead to
logical inconsistencies, we write a module type. All the applications of BSML in
Coq are then written as parametric modules that take an implementation of such a
module type. After we extract from Coq to OCaml, we obtain OCaml functors and we
apply them to the module implementing BSML: either the sequential implementation
or the parallel implementation. Note that we also provide an implementation of this
module type in Coq: it is meant to check that the axioms we provide are consistent
with Coq’s logic, and as a by-product it is a verified sequential implementation of
BSML.

123



308 Int J Parallel Prog (2017) 45:300–319

Module Type BSP PARAMETERS.
Parameter p : nat.
Axiom p spec : 0 < p.

End BSP PARAMETERS.

Fig. 3 BSP parameters in Coq

Module Type BSML. (∗ ... ∗)
Section Parallel vectors.
Parameter par : Type → Type.
Parameter get: ∀ {A: Type}, par A → pid → A.
Axiom par eq : ∀ {A:Type} (v v’: par A), (∀ (i: pid), get v i = get v’ i) → v = v’.

End Parallel vectors.
Section Primitives.
Parameter mkpar: ∀ {A:Type} (f:pid → A), par A.
Axiom mkpar spec: ∀ (A:Type)(f:pid→A)(i:pid), get (mkpar f) i = f i.
Parameter apply: ∀ {A B: Type}(vf: par(A→B))(vx:par A), par B.
Axiom apply spec: ∀ (A B: Type) (vf: par (A → B)) (vx: par A) (i: pid),
get (apply vf vx) i = (get vf i) (get vx i).

Parameter put: ∀ {A:Type}(vf:par(pid→A)), par(pid→A).
Axiom put spec: ∀ (A:Type)(vf:par(pid→A))(i j:pid), get (put vf) i j = get vf j i.
Parameter proj: ∀ {A:Type}(v: par A), pid → A.
Axiom proj spec: ∀ (A:Type)(v: par A)(i: pid), (proj v) i = get v i.

End Primitives.
End BSML.

Fig. 4 BSML primitives in Coq

The presented formalisation improves on previous ones [9,21]. It is defined as a
module type and it avoids to rely too much on sigma types. Proofs using this model
are easier to do than using the previous ones.

First, there is a module type for BSP parameters (Fig. 3), we only consider
the bsp_p parameter here, and we assume at least one processor in the BSP
machine. The module type BSML models the BSML primitives. It contains a
module Bsp of module type BSP_PARAMETERS and the following notation:
Notation pid := { n:nat | ltb n Bsp.p = true } meaning that a pid is a natural num-
ber n together with a proof that n is strictly smaller than Bsp.p. ltb:nat→nat→bool
is a function testing the strict ordering of two natural numbers. The remaining of the
module type BSML is given in full in Fig. 4.

Section Parallel_vectors models the type of parallel vectors. We called it par as
in the OCaml implementation of BSML. It is an abstract type and the notation differs
from an abstract type in OCaml: it takes as input a type (the type of the sequential
components) and returns the type of parallel vectors of this sequential type. In order to
model the semantics of BSML primitives, we need to be able to describe the value at
a specific processor in a parallel vector: that is what the get operation does. Note that
this operation is not a programming primitive of BSML. It should only be used in the
logical parts. The axiom associated to this operation means that two parallel vectors
are equal if and only if their components are equal. Some representation of parallel
vectors (for example functions) may not satisfy this property, thus it is important to
explicitly state this property as we want to have it.
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Section Primitives describe the BSML primitives. For each primitive we give its
signature in a style very close to their signature in OCaml, but in the handling of
polymorphism. The semantics of the primitive is given by an axiom whose name ends
by _spec. For example the axiom of mkpar, ∀ i:pid, get (mkpar f) i = f i clearly
states that for all process identifiers i, the value held at processor i in parallel vector
mkpar f is equal to f i. It is exactly a quantified version of the informal semantics of
mkpar shown in Fig. 2.

Using this module type, it is possible to write BSML programs in Coq and to reason
about their semantics using the specifications of the BSML primitives. One possible
application is to program BSML algorithmic skeletons in Coq.

4 Algorithmic Skeletons and Automatic Parallelisation in Coq

Algorithmic Skeletons in Coq Writing algorithmic skeletons using BSML primitives
in Coq is actually very close to doing the same in OCaml and BSML.We illustrate this
on the implementation of map and reduce skeletons. To implement programs using the
BSML primitives, one needs to implement a parametric module taking as argument a
module that implements the BSML primitives:

Module MapReduce (Bsml : BSML).

We use two utility functions for that:

Definition replicate A (x:A) : par A := mkpar(fun _ ⇒ x).
Lemma replicate_spec: ∀ A (x:A) i, get (replicate x) i = x.
Definition parfun A B (f:A→B)(v:par A) : par B := apply (replicate f) v.
Lemma parfun_spec: ∀ A B (f:A→B) v i, get(parfun f v) i=f(get v i).

For these functions we follow the same modelling convention as for the primitives,
but here the terms are given, by first defining a function then a lemma describing its
specification. We omit the proof scripts but using automated tactics, they are very
short. It is then easy to define a parallel map on distributed lists (here distributed lists
means parallel vectors of lists):

Definition par_map A B (f:A→B) : par(list A)→par(list B) := parfun (map’ f).

where map’ is a tail recursive version of map. The parallel reduce can be defined
using the proj primitive for communications:

Definition par_reduce‘(op:A→A→A)‘{H:Monoid op e}(v:par(list A)) : A :=
let local := parfun (reduce op) v in (∗ local reductions ∗)
let list := List.map (proj local) pids in (∗ vector → list ∗)
reduce op list. (∗ reduction of the partial reductions ∗)

In the previous definition, symbol ‘ in ‘{var:ty} indicates that the free variables in ty
should be generalised, i.e. introduced before {var:ty} as additional implicit arguments.
In this version of par_reduce the final result is not a parallel value. We can also have
an alternative version where the result is a parallel vector with the same value on each
of the processors. We choose here a simple algorithm, using put:
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Program Definition par_reduce’ {A}(op:A→A→A){e:A}{H:Monoid op e}
(v: par(list A)) : {v:par A | ∀ i, get v i = get v first } :=
let local := parfun (reduce op) v in
let msgs := put(apply(mkpar(fun pid msg dst⇒msg)) local) in
let lists := parfun (fun f⇒List.map f pids) msgs in
parfun (reduce op) lists.

Next Obligation. (∗ omitted, 9 lines ∗) Qed.

In this alternative version, the return type is a parallel vector, and we use the ability of
Coq to express post-conditions: this vector has the same value on all the processors.
The Program feature of Coq allows to define the function as if no post-condition was
present. It generates a proof obligation (corresponding here to this post-condition).
The proof script is omitted here, but is short.

To verify that the implementations correspond to the semantics we have in mind,
we could write _spec lemmas associated to each of these functions. However, it is not
convenient to express the specification ofpar_map andpar_reduce by describing the
content of their output at each processor. As these functions are algorithmic skeletons,
we rather prefer to express the correspondence they have with sequential functions.

Types and Functions Correspondences To do so, we rely on two main type classes
(defined in the Core.Parallelisation library of SyDPaCC). First we need to express
that a parallel type is a correct parallelisation of a sequential type.

Definition 1 (Type correspondence) There is a correspondence between a type A and
a parallel type Ap (i.e. that contains at least one par) if and only if there exists a total
surjective function join A : Ap → A.

The totality of the function ensures that we can construct a sequential value for any
value in Ap and its surjectivity ensures the existence of at least one parallel represen-
tation for any sequential element.

In Coq we formalise these notions as type classes:

Class Surjective A B (f:A→B) :=
{ surjective : ∀ y : B, ∃ x : A, f x = y }.

Class TypeCorr (seq_type:Type) (par_type:Type) (join:par_type→seq_type)
{:= type_corr :> Surjective join }.

Examples of type correspondences are given in Fig. 5. In module ParList, the join
function transforms a parallel vector of lists into a list. This sequential list also provides
a “global view” of the parallel vector of lists: We think of the parallel vector as a big
list obtained by concatenation of the lists hold by the processors, in increasing order of
processor identifier. The proof that join is surjective is quite easy: For a sequential list,
it is enough to build the parallel vector that contains this list at one specific processor
(for example the first one) and empty lists on all other processors.

In module ReplicatePar, join takes as input parallel vectors that contain the same
value at all the processors, and returns this value. It is straightforward to show join is
surjective, as it is enough to replicate the sequential value.

Using type correspondence,we can define a relation between sequential and parallel
functions.
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Module ParList (Import Bsml: BSML)(Import Pid : Pid.TYPE Bsml.Bsp).
Program Definition join A (v:par(list A)) : list A :=
List.flat map (proj v) pids.

Program Instance surjective join A : Surjective (join(A:=A)).
Next Obligation. (∗ Omitted, 12 lines ∗) Qed.
Program Instance list par list corr A : TypeCorr (@join A).

End ParList.

Module ReplicatePar (Import Bsml: BSML)(Import Pid : Pid.TYPE Bsml.Bsp).
Program Definition join A (r:{v:par A|∀ i,get v i=get v first}) : A :=
(proj (proj1 sig r)) first.

Program Instance surjective join A : Surjective (join (A:=A)).
Next Obligation. (∗ Omitted, 5 lines ∗) Qed.
Program Instance replicate par corr A : TypeCorr (@join A).

End ReplicatePar.

Fig. 5 Type correspondences

Definition 2 (Function correspondence) Given two types A and B, and their parallel
correspondent Ap and Bp, there is a correspondence between the sequential function
f : A → B and the parallel function f p : Ap → Bp if and only if joinB ◦ f p =
f ◦ join A.

In other words, the following diagram commutes:

A B

Ap Bp
f p

joinBjoin A
f

This notion is also modelled as a type class:

Class FunCorr ‘{ACorr:TypeCorr A Ap join_A}‘{BCorr:TypeCorr B Bp join_B}
(f:A→B) (fp:Ap→Bp) := { fun_corr : ∀ ap, join_B (fp ap) = f (join_A ap) }.

Of course a parallel function may take a sequential value as input and returns a parallel
value, or may take as input a parallel value and returns a sequential value (such as the
first version of par_reduce does). In these cases the diagrams are:

A B

Bp
f p

joinB
f

A B

Ap
f p

join A
f

and the type classes are:

Class LeftFunCorr ‘{ACorr:TypeCorr A Ap}{B}‘(f:A→B)(fp:Ap→B) :=
{ left_fun_corr : ∀ ap, fp ap = f (join ap) }.

Class RightFunCorr {A}‘{BCorr:TypeCorr B Bp}‘(f:A→B)(fp:A→Bp) :=
{ right_fun_corr : ∀ a, join (fp a) = f a }.

123



312 Int J Parallel Prog (2017) 45:300–319

There are two kinds of instances for the function correspondences: general ones
and instances stating the correspondence of a specific parallel function and a specific
sequential function. The former are also given in the library Parallelisation, the other
are together with the skeleton definitions. There are several general instances that state
facts about the correspondence of compositions. For two instances of FunCorr, we
have for example:

Program Instance fun_corr_comp_fun_corr ‘{ACorr : TypeCorr A Ap join_A}
‘{BCorr : TypeCorr B Bp join_B} ‘{CCorr : TypeCorr C Cp join_C}
‘{fCorr : @FunCorr A Ap join_A ACorr B Bp join_B BCorr f fp}
‘{gCorr : @FunCorr B Bp join_B BCorr C Cp join_C CCorr g gp} :

FunCorr (compose g f) (compose gp fp).
Next Obligation. (∗ Omitted, 3 lines ∗) Qed.

The composition of the two sequential functions corresponds to the composition of
the two corresponding parallel functions. Note that the directions of the arrows in our
diagrams are important to have such a compositional notion.

Now that we can express the correspondence between a sequential function and a
skeleton, we can do it for par_map:

Program Instance map_par A B (f:A→B): FunCorr (map f) (par_map f).
Next Obligation. (∗ Omitted, 5 lines ∗) Qed.

This piece of code assumes that the instance defined in the module ParList described
above (Fig. 5) is in the context. It is this type correspondence that is used both for
input and output.

In the case of par_reduce, the same type correspondence is used only for input,
as the output is the same type A in the sequential and parallel cases:

Program Instance reduce_par_reduce ‘(op:A→A→A) ‘{Monoid A op e} :
LeftFunCorr (reduce op) (par_reduce op).

Next Obligation. (∗ Omitted, 8 lines ∗) Qed.

The correctness of the last skeleton par_reduce’ uses the type correspondence
defined in the module ReplicatePar (Fig. 5):

Program Instance reduce_par_reduce’ ‘(op:A→A→A) ‘{Monoid A op e} :
FunCorr (reduce op) (par_reduce’ op).

Note that as the instances we have do not overlap, the instance resolution mechanism
has no problem to find the instance we expect. In a richer library with overlapping
instances (e.g. with different joins on parallel vectors of lists) the function corre-
spondence might need to be specified more carefully by the user (i.e. some implicit
arguments might need to be made explicit). However, as the library is organised in a
modular way, the user has control over the visibility of overlapping instances.

Automatic Parallelisation If a sequential function h is defined as a composition of
maps and reduces, the instances we defined can actually serve as an automatic par-
allelisation mechanism. Consider the following function:
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Definition parallel ‘(f:A→B)
‘{ACorr: TypeCorr A Ap joinA} ‘{BCorr : TypeCorr B Bp joinB}
‘{fCorr: @FunCorr A Ap joinA ACorr B Bp joinB BCorr f fp} : Ap→Bp := fp.

This function seems uninteresting as the result it returns is one of its arguments. How-
ever all the arguments, except the sequential function f, are implicit and are instances
of type classes. It means thatDefinition par_h:=parallel h launches the instance res-
olution mechanism of Coq. Function h will first be decomposed if it is a composition,
until instances of correspondence between a sequential function and a skeleton are
found, and the parallel version par_h of h will be automatically built as a composition
of skeletons.

The last component of the framework we need is thus a way to prove that cer-
tain classes of functions can be written as compositions of sequential functions that
correspond to skeletons. The Bird Meertens Formalism, with the theory of list homo-
morphisms is a convenient formalism for this purpose.

5 List Homomorphisms and Their Theorems in Coq

In our parallelisation framework, we need functions defined as compositions of map
and reduce. We consider the class of ⊕-homomorphic functions.

Definition 3 (⊕-homomorphic) A function h on lists is⊕-homomorphic if for all lists
x and y, h(x ++ y) = (h x) ⊕ (h y).

Fact 1 If h is ⊕-homomorphic, then (img h, �, h []) is a monoid.

Note this it is not true in general on the codomain of h. There are two useful theorems
for our framework: the first and the third homomorphism theorems [11].

Theorem 1 (Third Homomorphism Theorem) If a function h is both:

– ⊕-leftwards, i.e. there exists ⊕ such that h([x] ++ xs) = x ⊕ (h xs),
– ⊗-rightwards, i.e. there exists ⊗ such that h(xs ++[x]) = (h xs) ⊗ x,

then there exist � such that h is �-homomorphic.

Theorem 2 (First Homomorphism Theorem) If h is �-homomorphic then h =
(reduce �) ◦ (map f ) where ∀x, f x = h[x].
In this first theorem, we consider the restriction of � on the image of h, as in general
(codomain h, �, h []) is not a monoid (and reduce requires a monoid).

In Coq, we model the homomorphic property as a class:

Class Homomorphic ‘(h:list A→B) ‘(op:B→B→B) :=
{ homomorphic : ∀ x y, h (x++y) = op (h x) (h y) }.

Fact 1 is actually a result that is not trivial in Coq. First we need to define the image
of h, and definitions to build the restriction of⊕ (named op from now on) to the image
of h:
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Definition img ‘(h:list A→B) := { b:B | ∃ l, h l = b }.
Program Definition restrict_op ‘(op:B→B→B) ‘{Homomorphic A B h op} :

img h → img h → img h := op. (∗ ... ∗)
Definition to_img A B (h:list A→B)(xs:list A) : img h := (∗...∗).

Fact 1 is then written:

Program Instance homomorphic_restrict_op_monoid ‘{Homomorphic
A B h op} :
Monoid (A:=(img h)) (restrict_op op) (to_img h []).

Actually, we need a slightly more general result, where we replace the restriction of
the operator by a function that is extensionally equivalent:

Program Definition restrict ‘{Homomorphic A B h op}
‘(Eq:∀ a b, op’ a b= ‘ (restrict_op op a b)): img h→img h→img h:=op’(∗ ... ∗)

Program Instance homomorphic_restrict_monoid ‘{Homomorphic A B h op}
‘(Eq:∀ a b, op’ a b = ‘ (restrict_op op a b)) : Monoid (restrict Eq) (h []).

(∗ 20 lines+usage of several omitted lemmas ∗)

This allows to replace the output of the third homomorphism theorem by a simplified
version of the binary operator.

To express the first homomorphism theorem, we define a function that produces
the composition of map and reduce from an op-homomorphic function and possibly
optimised versions of op and of fun (x:A)⇒h[a]:

Definition hom_to_map_reduce ‘(h:list A→B) ‘{H:Homomorphic A B h op}
‘{@Optimised_op A B h op H}‘{@Optimised_f A B h op H} : list A→img h :=
(reduce (optimised_op h)) ◦ (List.map (optimised_f h)).

There are default instances of the Optimised_op and Optimised_f that relate op and
fun (x:A)⇒h[a] to themselves. We omit the details of the optimisation aspects and
refer to the source code of the framework. The theorem then checks that this function
produces a function equal to h:

Theorem first_homomorphism_theorem: ∀ ‘{H:Homomorphic A B h op}
‘{@Optimised_op A B h op H}‘{@Optimised_f A B h op H},

∀ l, h l = of_img (hom_to_map_reduce h l).
Proof. (∗ 12 lines ∗) Qed.

The classical proof of the third homomorphism theorem relies on the notion ofweak
right inverse, i.e. a function h′ such that for all x , h x = h(h′(h x)). In [11], a lemma
states that for every computable total function h with enumerable domain, there exists
a weak right inverse of h. The proof however is the following: “To compute g t for
some t simply enumerate the domain of h and return the first x such that h x = t .
If t is in the range of h then this process terminates.” The problem with this proof
is that: function g may not terminate but it is not possible to define non-terminating
functions in Coq. Moreover even if it could be defined, its efficiency would be in
general catastrophic.

Therefore we state and prove a weak form of the third homomorphism theorem
using the following classes:
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Class Rightwards ‘(h:list A→B)‘(op:B→A→B)‘(e:B) :=
{ rightwards: ∀ l, h l = List.fold_left op l e }.

Class Leftwards ‘(h:list A→B)‘(op:A→B→B)‘(e:B) :=
{ leftwards: ∀ l, h l = List.fold_right op e l }.

Class Right_inverse ‘(h:list A →B)(h’:B→list A) :=
{ right_inverse: ∀ l, h l = h(h’(h l)) }.

Instance third_homomorphism_theorem ‘{h:list A→B}
‘{inv:Right_inverse A B h h’}
‘{Hl:Leftwards A B h opl e}‘{Hr:Rightwards A B h opr e} :
Homomorphic h (fun l r ⇒h( (h’ l)++(h’ r))).

Proof. (∗ 20 lines + usage of a 10 lines lemma + lemmas on folds ∗) Qed.

To parallelise a function h, we should prove instances of Rightwards h oplus,
Leftwards h otimes and Right_inverse h h’ and call the hom_to_map_reduce
function on h. The resolution instance mechanism of Coq would then produce an
instance of Homomorphic for h using the third homomorphism theorem.

The obtained composition could then be parallelised using parallel (or variant
left_parallel) explained in the previous section. We illustrate this process on an appli-
cation example in the following section.

6 An Example: Maximum Prefix Sum

The goal is to obtain a parallel function that solves the maximum prefix sum problem.
An example of evaluation of the sequential function mps follows (the prefix whose
sum is maximum is underlined): mps [1; 2;−1; 2;−1; 3;−4] = 6.

A trivial solution that we consider to be a specification follows, where prefix returns
the list of all the prefixes of its input and t is the type of an abstract representation of
mathematical integers (module type Number):

Program Definition sum : list t → t := reduce add.
Definition maximum : ∀(l:list t), NonEmpty l→t := NE.reduce max.
Program Definition mps_spec : list t → t := maximum◦’(map sum) ◦’’prefix.

maximum is not defined on the empty list: we use a version of reduce that also
requires to be applied to a non-empty list. The property NonEmpty is a class:

Class NonEmpty ‘(l:list A) := { non_emptiness : l<> [] }.

The variants of composition handle the additional arguments concerning non-
emptiness. This is transparent to the user as there are instances of the NonEmpty
class that state that prefix always returns a non-empty list and that map preserves
non-emptiness.

mps_spec is not leftwards. But it is possible to tuple mps_spec with sum:

Definition tupling A B C(f:A→B)(g:A→C) := fun x ⇒ (f x, g x).
Definition ms_spec := tupling mps_spec sum.

ms_spec is opl-leftwards and opr-rigthwards:
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Module MPS (Import Bsml: Core.BSML)(N: Number).
Module Pid := Pid.Make Bsml.Bsp.
Module ParList := Correspondences.ParList Bsml Pid.
Module MapReduce := MapReduce.Make Bsml Pid ParList ReplPar.
Module Mps := Make N.
Definition par ms := Eval sydpacc in left parallel (hom to map reduce Mps.ms spec).
Definition par mps := Eval simpl in fst ◦ of img ◦ par ms.

End MPS.

Fig. 6 Parallelisation

Definition opl (a:t) (b:t∗t) : t∗t := ( max 0 (a + fst b), a + (snd b) ).
Instance ms_leftwards : Leftwards ms_spec opl (0,0). Proof. (∗ ... ∗) Qed.
Definition opr (a:t∗t) (b:t) : t∗t := (max (fst a) ((snd a)+b),(snd a)+b).
Instance ms_rightwards : Rightwards ms_spec opr (0,0).

The proofs of the instances are about 20 lines long and they both use two 10 lines
lemmas about maximum and sum. Then we need to find a weak right inverse of
ms_spec:

Definition ms’ (p:t∗t) := let (m,s) := p in [ m; s + −m].
Program Instance ms_right_inverse : Right_inverse ms_spec ms’.
Next Obligation. (∗ 25 lines ∗) Qed.

The third homomorphism is applied to show that ms_spec is�-homomorphic where
� =fun l r⇒ms_spec(ms’ l++ms’ r). In the pen-and-paper proof, usually one shows
that (am, as)�(bm, bs) = (0 ↑ am ↑ (as +bm), as +bs)where↑ returns themaximum
of two numbers. Using the Optimised_op class, it is also possible to do it in Coq,
in a process similar to the pen-and-paper proof (i.e. the final version is not known
before the proof starts). This requires about 30 more lines using several short lemmas
on mps_spec and sum.

To parallelise, we need to instantiate the parametric modules presented in the pre-
visous sections and then call the left_parallel function (or the parallel function using
the ReplicatePar in addition to ParList). Finally to obtain only the mps component
of the result, we compose with projections (Fig. 6).

The Coq code can then be extracted towards OCaml. The extraction mechanisms
removes the logical parts to keep only the computational parts. What we obtain is an
OCaml functor:

module MPS=functor(Bsml:BSML)→functor(N:Number)→struct (∗...∗)
end

A parallel implementation on top of MPI results from applying this functor to a
Bsml module that is a wrapper around the Bsmlmpi uncertified implementation of
BSML in OCaml, C and MPI. The main difference between Bsml and Bsmlmpi is
that in the former pid is the type nat and in the latter it is type int. As we dealt with
an abstract representation of integers, we also need to provide an OCaml module
that follows the extraction of the module type Number (basically a type for num-
bers plus basic operations on them). The application module would look as follows:
module App = Mps.MPS_Parallel (Bsml) (Nint).
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The framework and results of scalability experiments are available online.3 The
framework only requires Coq 8.4, OCaml 4 or above, and an MPI library.

7 Related Work

To our knowledge SyDPaCC is the only approach in which actual source code of
scalable and correct parallel programs can be obtained from a development in a proof
assistant. The theory of constructive parallel algorithms provides various ways to ease
the systematic development of correct parallel programs.However, the transformations
are not mechanically verified and the transition from an efficient functional expression
to a parallel program is not based on a formal basis. Most often, with the exception
of [1,4], the semantics of algorithmic skeletons remains informal.

There exist several logics to reason about BSP programs, for example [19], but
none of them is mechanised in a proof assistant, and only one of them is related to a
tool that can provide actual source code [26]. The main differences with our approach
is that: LOGS starts from an imperative and local view of parts of the program to build
a larger one by parallel composition whereas we start from a functional and global
view and our framework is in Coq. BSP-Why [8] is an extension of the Why2 system
for the deductive verification of imperative BSP programs. The tool is based on the
generation of verification conditions from users annotations, those conditions being
automatically proved by SMT solvers, or interactively with Coq. BSP-Why does not
support program transformation and higher-order functions.

Although there are systems to support program calculation (for example [25]) they
lack the rich set of theories that exist for Coq and that can be reused for program
transformation. Moreover Coq offers a more trusted framework through its kernel.
The work on polytypic programming and program transformation in Coq [17] and
Agda [18] is also related. Our framework follows more closely a simple functional
programming style with additional pre/post conditions or statements about the simple
functional programs. Moreover for the parallel aspects it would be a challenge to
provide correspondence between polytypic sequential functions and efficient parallel
ones.

To our knowledge, there are only three works associating data parallelism and proof
assistants. The operational semantics of a type safe subset of Data Parallel C is for-
malised in Isabell/HOL [6]. In this approach Isabelle/HOL expressions that represent
programs are generated and manipulated. It is therefore a deep embedding approach.
Swierstra [20] formalised mutable arrays in Agda, and added explicit distributions
to these arrays. He used it to reason about a distributed map and distributed sum on
these arrays. In BSML the distribution of parallel vectors is fixed but it is possible
to define a higher-level data structure on top of parallel vector and consider various
distributions of the data structure in parallel vectors [3]. Moreover it is possible to
formalise mutable arrays, and even extract such imperative programs to OCaml as
done by Malecha et al. [16]. Lupinski et al. [15] formalised the semantics of a skele-
tal parallel programming language. It is also a deep embedding that models both the

3 http://traclifo.univ-orleans.fr/SyDPaCC, version core-0.2.

123

http://traclifo.univ-orleans.fr/SyDPaCC


318 Int J Parallel Prog (2017) 45:300–319

high-level semantics of skeletons and their implementations in a formalised JoCaml.
BSML shallow embedding is more convenient.

8 Conclusion

The SyDPaCC framework shows that the Coq proof assistant is suited for program
calculation in the Bird Meertens Formalism tradition, and that when using the right
features of Coq, the additional work to have machine checked proofs rather than pen-
and-paper proofs is quite manageable. Coq also allows automatic parallelisation using
algorithmic skeletons. The key points in this respect is that we provide a shallow
embedding of a pure functional parallel programming library in Coq; that one can
program and verify algorithmic skeletons in Coq based on this embedding; and that
expressing the correctness of algorithmic skeletons with respect to usually sequential
functions in a compositional way as instances of type classes makes possible the use
of the instance resolution mechanism of Coq for automatic parallelisation. Actual
programs are obtained through the extraction feature. The extracted code is combined
with the unverified parallel implementation of BSML in OCaml and C+MPI. The
core SyDPaCC presented in this paper is very concise (2 kLoC of Coq, 600 LoC of
OCaml 120 LoC of C). Experimental results on the generated programs are presented
in [7,14,21] and in the SyDPaCC website.
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