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Abstract MapReduce, first proposed by Google, is a remarkable programming
model for processing very large amounts of data. An open-source implementation
of MapReduce, called Hadoop, is now used for developing a wide range of applica-
tions. Although developing a correct and efficient program on MapReduce is much
easier than developing one with MPI etc., it is still nontrivial if the target applica-
tion requires involved functionalities of Hadoop MapReduce. Under these situations,
functional models for MapReduce computation play important roles because we can
utilize them for better understanding, proving the correctness, and even optimization
of MapReduce programs. In this paper, we develop two functional models, a low-
level one and a high-level one, which capture the semantics of Hadoop MapReduce
computation. We discuss the detailed semantics mainly in terms of the following two
computations: the computation of Mapper and Reducer classes and the computa-
tion in the Shuffle phase with the secondary-sorting technique. In addition, we develop
MapReduce algorithms for the scan computational pattern (prefix sums) on the newly
proposed models.

Keywords MapReduce · Functional model · Hadoop

1 Introduction

MapReduce, first proposed by Google [8], is a remarkable programming model as
well as an infrastructure for processing very large amounts of data on large clusters.
From the viewpoint of programming, it provides a simple data-parallel programming
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model, in which users should specify in principle two parameter functions: map and
reduce. From the viewpoint of infrastructure, it provides nice mechanisms such as
task mapping, load balancing, and fault tolerance.

Several MapReduce-like implementations have been developed, for instance,
Hadoop [1,25], Phoenix [22], Spark [27], and SSS [18]. Among them, Hadoop, an
open-source implementation of MapReduce, is now widely used in very many com-
panies dealing with large amounts of data, such as Yahoo!, IBM, Amazon, Facebook,
and Twitter [2]. It is used for not only processing data from theweb but also developing
a wide range of applications [16].

Although Google’s original MapReduce and Hadoop MapReduce were imple-
mented in C++ and Java, they attracted the interest of researchers in the functional
programming community and algorithm community. There have been several stud-
ies on modeling MapReduce programming models in a more formal manner. Among
them, themost highly cited workwas by Lämmel [15], who first discussed a functional
model ofGoogle’sMapReduce. There have been several others froma theoretical point
of view, for instance, Feldman et al. [11] and Karloff et al. [14] proposed algorithmic
classes that MapReduce can deal with. Pace [20] compared MapReduce computation
with the BSP (bulk synchronous parallel) model [24].

Functional models are important for several reasons.

– Understanding the computation Since MapReduce uses the same terms, map
and reduce, in a different way from functional languages like Lisp or Haskell,
some people misunderstood or were misled by the actual computation model of
MapReduce [7]. A clear functional model helps us to understand the computation
correctly.

– Proof of correctnessCorrectness of programs is an important property, and certified
parallel programming is now an important topic in parallel programming [17].
Functional models are very helpful for proving the correctness of MapReduce
programs. On this topic, Ono et al. [19] and Jiang et al. [13] used a simpler model
of MapReduce to prove MapReduce programs on the Coq proof assistant.

– Preventing unsafe usage Even in the conventional MapReduce framework, we
could share states or communicate betweenMap tasks through the back-door, since
imperative code can make it easy. However, such an unintended or unapproved
usage is often unsafe. Developing algorithm on functional models prevents such
an unsafe usage of the framework.

– Program calculation After getting suitable functional models, we can apply the
program transformation (or program calculation) techniques (e.g. [12]) to obtain
better programs from specifications.

– Cost model We can also develop cost models [10] based on those functional mod-
els. A cost model plays an important role in optimization: we can predict the
performance of MapReduce programs before execution or with a little profiling of
execution. On this topic, Dörre et al. [10] wrote down the computation of Hadoop
MapReduce and developed a cost model for MapReduce programs.

In this study, we develop two functional models that capture the semantics
of Hadoop MapReduce computation. Since Hadoop is now the de facto standard
implementation of the MapReduce framework, we take into account the Hadoop-
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specific mechanism and implementation. We write down a low-level model based
on the implementation of Hadoop MapReduce and then modify it into a high-level
one.

The contributions of the paper are summarized as follows.

– Functional modelsWe develop two functional models, a low-level one and a high-
level one, for Hadoop MapReduce. The Haskell test code is available at http://
www.info.kochi-tech.ac.jp/~kmatsu/MRModel/

– List scan on MapReduce Based on the functional models, we develop algorithms
of the scan (prefix sums) computation on lists. The development of BSP-inspired
scan algorithm on MapReduce have not been reported in literature as far as the
author knows.

The rest of the paper is organized as follows. In Sect. 2, we introduce notations
and basic functions used in the paper. In Sect. 3, we start by briefly reviewing the
programming model of MapReduce. We propose a low-level functional model in
Sect. 4 based on the implementation of Hadoop MapReduce. We then modify the
model into a high-level one in Sect. 5 in terms of the Shuffle phase. We develop two
scan algorithms on the proposed functional models in Sect. 6. We review related work
in Sect. 7 and finally conclude the paper in Sect. 8.

2 Preliminaries

In this paper, we basically borrow the notation of Haskell [4] for describing the func-
tional models and the algorithms. The line after “--” is dealt with as comment in
Haskell.

2.1 Basic Notation

A function application is denoted with a space with its argument without brackets: f a
means f (a). Functions are curried and bind to the left: f a bmeans ( f a) b. Function
composition is denoted by ◦, and the identity function is id: ( f ◦ g) x = f (g x). The
last expression could be written without brackets using the “$” operator: f (g x) =
f $ g x . Anonymous functions (lambda expressions) are denoted with “\” and “→”:
f = \x → 2 ∗ x is the same as f x = 2 ∗ x . We can use “−” for a parameter to
show that we do not care about its value. For a binary operator ⊕, we can treat it as a
function by sectioning: (⊕) a b = (a ⊕) b = (⊕ b) a = a ⊕ b.

In this paper, we use two type classes, Eq and Ord, to clarify requirements on
datatypes. For any datatype that belongs to Eq, we have the operator “==”. For any
datatype α that belongs toOrd, we have the function compare of type compare :: α →
α → Ordering. Here, the type Ordering has three constructors, which represent “less
than,” “equal,” and “greater than,” respectively.

data Ordering = LT | EQ | GT
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The function comparing is used to apply a function before comparing two values.

comparing f a b = compare ( f a) ( f b)

Tuples consist of a finite number of values, for example, pair (a, b) or triple (a, b, c).
The function fst takes the first element of the pair; snd takes the second element. The
following function applyW applies the parameter function and makes a pair with the
output and the input.

applyW :: (α → β) → α → (β, α)

applyW f a = ( f a, a)

2.2 Lists and Functions Manipulating Lists

A list is an ordered sequence of elements of the same type.We denote a list with square
brackets. The type of list with elements of type α is denoted by [α]. The empty list is
denoted by [ ], and list concatenation is denoted by binary operator ++. The function
head takes the first element in the list, and last takes the last element. For a list xs,
xs !! n returns the n th value in xs. The function init returns all the elements in the list
except for the last element. For a list xs, take n xs returns the first n elements in xs,
and drop n xs removes the first n elements.

In the functional programming community, Bird-Meertens Formalism [5] is known
as one of the programming theories for lists (and other data structures). Here are some
important functions for lists used in the paper. Their definitions are given in Fig. 1.

The function map takes a function and applies it to every element in the input list.
The function foldl collapses the input list from left to right using a binary operator.
The function zip takes two lists and makes pairs of the corresponding elements. The

map f [a0, a1, . . . , an−1] = [f a0, f a1, . . . , f an−1]

foldl (⊕) e [a1, a2, . . . , an] = (· · · ((e ⊕ a1) ⊕ a2) ⊕ · · ·) ⊕ an

zip [a1, a2, . . . , an] [b1, b2, . . . , bn] = [(a1, b1), (a2, b2), . . . , (an, bn)]

scan (⊕) e [a0, a1, . . . , an−1] = [y0, y1, . . . yn−1]
where yi = e ⊕ a0 ⊕ · · · ⊕ ai−1

flatten :: [[α]] → [α]
flatten = foldl (++) [ ]

sortBy :: (α → α → Ordering) → [α] → [α]
-- omitted

partition :: (α → Bool) → [a] → ([a], [a])
partition p [ ] = [[ ], [ ]]
partition p (a : as) = let (ts, fs) = partition p as

in if p x then (a : ts, fs) else (ts, a : fs)

Fig. 1 Definitions of basic functions for lists
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function scan (also called prescan) takes an associative binary operator with unit,
initial value, and a list and returns a list of the same length whose elements are prefix
sums of the input list.

The function flatten takes a list of lists (a nested list) and concatenates all the inner
lists. The function sortBy takes a comparison function and sorts the elements in the
input list in terms of the comparison function. The function partition takes a predicate
and splits the input list into two lists where one list includes all the elements satisfying
the predicate, and the other list includes all the others.

2.3 Bags (Multisets) and Functions Manipulating Bags

A bag (multiset) is an unordered sequence of elements of the same type. The type of
bag with elements of type α is denoted by Bag α 1. We may use NilB and ConsB for
pattern matching with an empty bag and an element in a bag similarly to the case of
lists. Conversion from a list to a bag and vice versa are done by the functions list2bag
and bag2list, where we assume that the elements are aligned in any order in the result
list of bag2list.

We can define functions for bags similarly to the case of lists (suffix B is added to
these functions). We will use the following functions for bags.

mapB :: (α → β) → Bag α → Bag β

flattenB :: Bag [α] → Bag α

headB :: Bag α → α

sortByB :: (α → α → Ordering) → Bag α → [α]
partitionB :: (α → Bool) → Bag α → (Bag α,Bag α)

3 MapReduce Programming Model in Nutshell

MapReduce [8] provides a simple data-parallel programming model suitable for
processing large amounts of data. In this section, we briefly review the programming
model [15] that is commonly behind Google’s MapReduce and its variants. More
details on Hadoop MapReduce will be given in the next section.

Figure 2 depicts a simple model of MapReduce computation. The input and output
of MapReduce computation are put on a distributed filesystem (DFS), where data are
split into smaller chunks. Each fragment of data forms a key-value pair throughout
the MapReduce computation.

MapReduce computation consists of three phases: the Map phase, Shuffle phase,
and Reduce phase2.

1 It is not trivial to give a definition of Bag supporting its nondeterministic behavior. One way is to define
the structure in the same way as the list with simulating the behavior by permutation of elements.
2 We will use the term “phase” for the models of computation and “task” for the implementation. In the
implementation, MapReduce consists of two sets of tasks: the mapper tasks work from the input to the end
of the Map phase, and the reducer tasks work from the Shuffle phase to the end of the output.
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Fig. 2 Illustration of simple MapReduce model

– Map phase: For each fragment of data split by the system, a user-defined function
mapper is applied independently in parallel. The function should take a key-value
pair and return one or more (or possibly no) intermediate results as key-value pairs
(the types of key and/or value can differ).

– Shuffle phase: The intermediate results of the same key are grouped and passed to
the following reduce phase.

– Reduce phase: For each set of intermediate results of the same key, the user-defined
function reducer is applied in parallel. The function should take a key and a list
of values and generate one or more final results, which will be stored on the DFS.

The main task of programmers in the programming model of MapReduce is to
provide the two parameter functions mapper and reducer. The MapReduce system is
responsible for data distribution, communication, and fault tolerance.

In the MapReduce computation, there is another feature called Combiner, which
could be inserted just after the Map phase. Combiners are useful for reducing network
communication cost without changing the result. The use of Combiner has beenwidely
discussed including the model by Lämmel [15]. We basically omit the discussion of
Combiner from the functional models in the paper.

4 Low-Level Model of Hadoop MapReduce

In this section, we develop a functional model from the implementation of Hadoop
MapReduce. In Hadoop MapReduce, there are a lot of parameters to control the
execution and performance of MapReduce. Here, we will discuss some that mainly
affect the computation (results).

4.1 Overview

The most important two classes inMapReduce programs are Mapper and Reducer,
which specify the main computation inMapReduce programs.We start by giving their
types.
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Fig. 3 Nested input-data model in Hadoop: Data are put on DFS

In Hadoop MapReduce, a large input file is divided in two stages (Fig. 3). Firstly,
the whole of the data is divided into splits of a size that a single computer can deal
with, and then each split is divided into smaller records (e.g. by lines). Splits often
correspond to data chunks on the DFS; we cannot take care of the order among them.
In contrast, a split is processed on a single computer, so we can mind the order among
the records. This is the first key point in our model: we use a list for a set of records
but a bag for a set of splits.

A mapper (Mapper) takes a split for its input: a list of key-value pairs. The output
of the mapper is a list of key-value pairs where the types of keys and/or values may
differ from those of the input.

mapper :: [(k1, v1)] → [(k2, v2)]

Before the Reduce phase, values of the same key are arranged into a list (we will
discuss later how these keys are evaluated andmerged). In a similar way to themapper,
some of the intermediate results will be given to a reducer: the input type of the reducer
becomes a list of pairs of a key and a list of values. The output of the reducer is also
a list of key-value pairs with types that may be different.

reducer :: [(k2, [v2])] → [(k3, v3)]

Other important parameters in Hadoop MapReduce programs are those for
controlling the Shuffle phase. We can specify three classes (functions) through
setPartitionerClass, setSortComparatorClass, and setGrouping
ComparatorClass. Hereafter, we denote the three functions set by the above three
functions as hashP, compS, and compG, respectively. Note that the Partitioner
class should have a function getPartition whose signature is3:

int getPartition(KEY k, VALUE v, int n),

and the other two Comparator classes should have a function compare whose
signature is4:

int compare(byte[] b1, int s1, int l1,
byte[] b2, int s2, int l2).

3 The function getPartition (hashP) can take a value as well as a key. The author found hardly any
applications in which the function uses the value. In the high-level model given in Sect. 5, we do not use
the value for partitioning.
4 Triples (b1, s1, l1) and (b2, s2, l2) represent two values to be compared and stored on byte streams.
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mapReduceL :: ([(k1, v1)] → [(k2, v2)]) -- mapper
→ ([(k2, [v2])] → [(k3, v3)]) -- reducer
→ ((k2, v2) → Integer) -- hashP
→ (k2 → k2 → Ordering) -- compS
→ (k2 → k2 → Ordering) -- compG
→ Bag [(k1, v1)] -- input
→ Bag [(k3, v3)] -- output

mapReduceL mapper reducer hashP compG compS input
= let aftMap = mapB mapper input

bfrRed = shuffleMR hashP compG compS aftMap
in mapB reducer bfrRed

Fig. 4 Low-level model of MapReduce computation: mapReduceL

In accordance with these signatures, we specify the type of those functions as follows.

hashP :: (k2, v2) → Integer

compS :: k2 → k2 → Ordering

compG :: k2 → k2 → Ordering

With these parameter functions, we give a rough model of the computation of
Hadoop MapReduce as shown in Fig. 4. The following are the key points in this
model.

– A Hadoop MapReduce program takes five parameter functions.
– The input and output consist of a bag of splits (unordered), and a split consists of
a list of key-value pairs (ordered).

– The computation in Hadoop MapReduce consists of three phases, each given in
each line in the definition.

– The twomapB’s represent the possibility of parallelism: since we do not care about
the order among splits, we can compute in parallel.

In the following two subsections, we will give the details of the definitions of
shuffleMR, mapper, and reducer.

4.2 Shuffle Phase

In the Shuffle phase, basically the key-value pairs that are output from mapper are
grouped together based on their keys. In the implementation of this grouping, the key-
value pairs are sorted by their keys. In fact, the Shuffle phase in Hadoop MapReduce
consists of the following three subphases in this order.

1. Partitioning: For each key-value pair, the index of the reducer task that will receive
it is computed using the parameter function hashP.

2. Sorting: All the key-value pairs in the same reducer task are sorted with respect to
the comparison function compS.

3. Grouping: After the sorting, the key-value pairs that have the same keywith respect
to the comparison function compG are grouped together.
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shuffleMR :: ((k2, v2) → Integer) -- hashP
→ (k2 → k2 → Ordering) -- compS
→ (k2 → k2 → Ordering) -- compG
→ Bag [(k2, v2)] -- input
→ Bag [(k2, [v2])] -- output

shuffleMR hashP compS compG input
= let aftP = grpByID $ mapB (applyW hashP) $ flattenB input

aftS = mapB (sortByKey compS ) aftP
in mapB (grpByKey compG) aftS

grpByID :: Eq α ⇒ Bag (α, β) → Bag (Bag b)
grpByIDNilB = NilB
grpByID(ConsB a x) = let (xa, xo) = partitionB (\b → fst a == fst b) x

in ConsB (mapB snd (ConsB a xa)) (grpByID xo)

sortByKey :: (k2 → k2 → Ordering) → Bag (k2, v2) → [(k2, v2)]
sortByKey compS = sortByB (\(k, v)(k , v ) → compS k k )

grpByKey :: (k2 → k2 → Ordering) → [(k2, v2)] → [(k2, [v2])]
grpByKey compG [ ] = [ ]
grpByKey compG ((k, v) : x) = grpByKey compG [ ] k [v] x
grpByKey compG rs k vs [ ] = rs ++ [(k, vs)]
grpByKey compG rs k vs ((k , v ) : x)

| compG k k == EQ = grpByKey compG rs k (vs ++ [v ]) x
| otherwise = grpByKey compG (rs ++ [(k, vs)]) k [v ] x

Fig. 5 Low-level definition of Shuffle phase: shuffleMR

Figure 5 shows a definition of shuffleMR. In the first line that computes aftP, we
compute the reducer index by hashP with which we group the key-value pairs. Then,
in the following two lines, we apply sorting and grouping. Note the following three
details.

The implementation of grpByID is different from that in Hadoop. In the real
implementation, we know the number of reducer tasks, and we directly put the key-
value pairs into the slot of the corresponding reducer index. Instead, our definition of
grpByID is generic so that it can be used again later.

There is only one sorting subphase. Even when we would like to use so-called
secondary sorting, sorting is executed only once and is executed before grouping. We
will discuss this matter in the next section.

Our definition of grpByKey follows the implementation in Hadoop. Grouping by
grpByKey assumes that the data are correctly sorted in advance. If not or if the com-
parison functions for sorting and grouping are inconsistent, then key-value pairs may
not be fully merged. In addition, the last key is used for the next comparison, so we
should be careful when we use a comparison function that does not satisfy transitivity
(this is possible in real Hadoop). 5

5 If we use the definition a ≡ b ⇐� |a − b| < 2, then the list [3, 4, 5, 7] will be grouped as [3, 4, 5] and
[7], not [3, 4] and [5] and [7]. In Haskell, there is a function Data.List.groupBy :: (α → α → Bool) →
[α] → [[α]] that has similar functionality, but it returns [[3, 4], [5], [7]] for this case.
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4.3 Map and Reduce Phases

In Hadoop MapReduce programs, users develop the mapper function by inheriting
the following Mapper class.

public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
protected void setup(Context context) { ... }
protected void map(KEYIN key, VALUEIN value,

Context context) { ... }
protected void cleanup(Context context) { ... }

}

In the computation of Mapper, the three functions are called:

– setup is called once for each split before processing the key-value pairs.
– map is called for each key-value pair.
– cleanup is called once for each split after processing the key-value pairs.

Usually and in the simplest case, users only provide the map function (we denote
it as fmap to avoid confusion). In this case, the computation of themapper is specified
by the following function mkMapper1.

mkMapper1 :: ((k1, v1) → [(k2, v2)]) -- fmap
→ [(k1, v1)] → [(k2, v2)] --input/output

mkMapper1 fmap = flatten ◦ map fmap

We can include attributes when we inherit the Mapper class, and here we may
want to use the attributes for the computation. More concretely, we set the initial
value in the setup function, then update the value of attributes at every call of the
map function, and finally output the accumulated value in the cleanup function.
Such a computation can be specified using the foldl function on lists. The following
function mkMapper2 takes three parameter functions corresponding to setup, map,
and cleanup and performs the computation using the attributes.

mkMapper2 :: att -- fsetup
→ (att → (k1, v1) → att) -- fmap

→ (att → [(k2, v2)]) -- fcleanup
→ [(k1, v1)] → [(k2, v2)] --input/output

mkMapper2 fsetup fmap fcleanup = fcleanup ◦ foldl fmap fsetup

We can also combine these two. We use attributes for accumulating some informa-
tion through the list of key-value pairs, and at the same time output key-value pairs
from the map function. The results of fmap are the updated attributes and intermediate
results added to the result list6. Here, the types of intermediate results from fmap and

6 Readers who know Haskell well would write the definition with a state-monadic function.
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fcleanup should be the same [(k2, v2)].
mkMapper3 :: att -- fsetup

→ (att → (k1, v1) → (att, [(k2, v2)])) -- fmap

→ (att → [(k2, v2)]) -- fcleanup
→ [(k1, v1)] → [(k2, v2)] --input/output

mkMapper3 fsetup fmap fcleanup xs

= let a = fsetup
(a′, ys) = aux fmap a [ ] xs

in ys ++ fcleanup a
′

where aux fmap a ys [ ] = (a, ys)

aux fmap a ys (kv : xs) = let (a′, ys′) = fmap a kv

in aux fmap a
′ (ys ++ ys′) xs

We can develop the reducer function in the same manner as that for the mapper
function, except for the type of freduce that takes a pair of a key and a list of values.

freduce :: (k2, [v2]) → [(k3, v3)]
Here, we only show the most simple case mkReducer1 that generates the reducer

function from the parameter function freduce. Note that we can easily extend it to
mkReducer2 or mkReducer3 in the same way as we did for mapper.

mkReducer1 :: ((k2, [v2]) → [(k3, v3)]) -- freduce
→ [(k2, [v2])] → [(k3, v3)] --input/output

mkReducer1 freduce = flatten ◦ map freduce

4.4 Including Combiner

In MapReduce programming, a combiner can be inserted between the Map phase and
the Shuffle phase. It merges some key-value pairs from the preceding Mapper and
improves the performance by reducing the amount of intermediate data communicated
through the network.

We can embed the combiner into our model just by the function composition of
mapper and combiner; mapper′ = combiner ◦ mapper. To support this, the type of
combiner should be as follows.

combiner :: [(k2, v2)] → [(k2, v2)]
Here is a simplified definition of mkCombiner1 that shows the computation with

combiner. To make the definition simple, we assume that we can check the equality
of keys. In the real implementation, this grouping is executed with Comparators as
in shuffleMR.
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mkCombiner1 ::Eq k2
⇒ ((k2, [v2]) → [(k2, v2)]) -- fcombine

→ [(k2, v2)] → [(k2, v2)] --input/output

mkCombiner1 fcombine input = flatten $ map fcombine $ grpByID′ input

grpByID′ ::Eq k ⇒ [(k, v)] → [(k, [v])]
grpByID′ [ ] = [ ]
grpByID′ ((k, v) : x) = let (xa, xo) = partition (\(k′, v′) → k == k′) x

in (k, v : map snd xa) : grpByID′ xo

4.5 Word Count Example on Low-Level Model

Here, we briefly show the program for a well-known word-count application. In
this simple application, we can develop a MapReduce program using the simple
mkMapper1 andmkReducer1. For the partitioning, we gather the intermediate data on
a single reducer task (partitionWC always returns 1). For the sorting and grouping,
we need nothing special (we used a normal compare function for [Char]).

wc ::Bag [(Int, [Char])] → Bag [([Char], Int)]
wc = mapReduceL mapperWC reducerWC

partitionWC compare compare --for Shuffle phase

mapperWC = mkMapper1 (\(−, w) → [(w, 1)])
reducerWC = mkReducer1 (\(w, as) → [(w, foldl (+) 0 as)])
partitionWC (−,−) = 1

5 High-Level Model of Hadoop MapReduce

The model in Sect. 4 was developed based on the implementation of Hadoop
MapReduce. Its Shuffle phase, however, is not easy to handle for two reasons. The
first reason is that we require one hash function and two comparison functions, compS
and compG, for a single key, and they should be consistent:

compS a b = EQ �⇒ compG a b = EQ , and

compG a b = EQ �⇒ hashP (a,−) = hashP (b,−).

The second reason is the order of subphases: sorting followed by grouping. It is more
intuitive and easier to understand if the three subphases are executed as:

1. We partition the whole data for reducer tasks,
2. We then group the key-value pairs inside a single reducer task, and
3. Finally we sort the key-value pairs inside each group.
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These steps of execution are often called secondary sorting. Note that in the imple-
mentation of HadoopMapReduce, there is no sorting subphase after the grouping, and
thus there is a gap between the above steps of execution and the real implementation.

In this section,wepropose anothermodel for theShuffle phase (and forMapReduce)
to bridge the gap. The key idea is to introduce three keys instead of using a single
key k2 for intermediate data: kP for partition, kG for grouping, and kS for sorting.
Therefore, now we assume that the intermediate data passed from mapper to reducer
are in the form ((kP , kG , kS), v2). Here, we assume that kP belongs to theEq class and
kG and kS belong to the Ord class. The following are three functions used to extract
the keys.

getP ((kP , kG , kS), v2) = kP
getG ((kP , kG , kS), v2) = kG
getS ((kP , kG , kS), v2) = kS

With the extended key-value pairs, we can develop a new definition for the Shuffle
phase in Fig. 6. Note that we have the key-value pairs sorted after the grouping in this
definition. There are two sortings in this definition: one is for sorting the groups and
the other is for sorting inside the groups.

This shuffleMR2 can work as a high-level model of the Shuffle phase because we
can derive the functions required in the low-level model as follows.

hashP2 ((kP , kG , kS), v2) = toInt kP
compS2 (kP , kG, kS) (kP ′, kG ′, kS′) | kG == k′

G = compare kS k
′
S

| otherwise = compare kG k′
G

compG2 (kP , kG , kS) (kP ′, kG ′, kS′) = compare kG k′
G

Here, the function toInt converts a value kP into an integer. Note that the comparison
functions satisfy the consistency condition: compS a b = EQ �⇒ compG a b = EQ
(the condition for hashP should be guaranteed by the user).

shuffleMR2 :: Eq kP ⇒ Ord kG ⇒ Ord kS -- (requirements)
⇒ Bag [((kP , kG, kS), v2)] -- input
→ Bag [((kP , kG, kS), [v2])] -- output

shuffleMR2 input
= let

aftP = grpByID $ mapB (applyW getP) $ flattenB input
aftG = mapB (sortByB compGS ◦ grpByID ◦ mapB (applyW getG)) aftP

where compGS = comparing (getG ◦ headB)
in mapB (map sortMerge) aftG

where sortMerge xs = let ss = sortByB compSS xs
in (fst $ last ss,map snd ss)

compSS = comparing getS

Fig. 6 High-level definition of Shuffle phase: shuffleMR2
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mapReduceH :: Eq kP ⇒ Ord kG ⇒ Ord kS -- (requirements)
⇒ ([(k1, v1)] → [((kP , kG, kS), v2)]) -- mapper
→ ([((kP , kG, kS), [v2])] → [(k3, v3)]) -- reducer
→ Bag [(k1, v1)] → Bag [(k3, v3)] -- input / output

mapReduceH mapper reducer input
= let aftMap = mapB mapper input

bfrRed = shuffleMR2 aftMap
in mapB reducer bfrRed

Fig. 7 High-level model of MapReduce computation: mapReduceH

Ahigh-level functional model of HadoopMapReduce is given with this shuffleMR2
as shown in Fig. 7. In this model, we have requirements of type classes but fewer
parameters are required than in the low-level model.

Here, we briefly show the program for a well-known word-count application. The
mapper and reducer are almost the same as those for the low-level model. Since we
explicitly need three keys, the fmap function sets (1, w, 1) for the key of intermediate
results.

wc2 ::Bag [(Int, [Char])] → Bag [([Char], Int)]
wc2 = mapReduceH mapperWC2 reducerWC2

mapperWC2 = mkMapper1 (\(−, w) → [((1, w, 1), 1)])
reducerWC2 = mkReducer1 (\((−, w,−), as) → [(w, foldl (+) 0 as)])

6 Implementing List Scan on MapReduce Model

Scan (prefix sums) is an accumulative computation on lists. It not only has a lot of
direct applications [6] but also plays an important role in calculating programs [12].
It is thought to be hard to implement it on MapReduce due to the following reasons:

– The data to manipulate are in a list. We need not only to put an index on each
element but also to know how data are manipulated, which is concealed in the
conventional MapReduce model.

– The computation also depends on the order among the elements.UsualMapReduce
computation takes an associative and commutative operation but the computation
of scan is inherently noncommutative.

In this section, two algorithms are developed on the functional model proposed in
Sect. 5.

6.1 Two Well-Known Algorithms of Scan

There are several parallel algorithms of scan [6]. Here, we introduce two well-known
ones.
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][ [3, 1, 4], [1, 5, 9], [2, 6, 5]
↓ reduce (+) ↓ reduce (+) ↓ reduce (+)local reduce

][ 8, 15, 13
↓ scan (+) 0global scan

][ 0, 8, 23

][ [3, 1, 4], [1, 5, 9], [2, 6, 5]
↓ scan (+) 0 ↓ scan (+) 8 ↓ scan (+) 23local scan

][ [0, 3, 4], [8, 9, 14], [23, 25, 31]

Fig. 8 Scan algorithm with three phases: scanDist

][ [3, 1, 4], [1, 5, 9], [2, 6, 5]
↓ reduce (+) ↓ reduce (+) ↓ reduce (+)

][ 8, 15, 13
1st
superstep

][ [], [8], [8, 15]

↓ reduce (+) ↓ reduce (+) ↓ reduce (+)
][ 0, 8, 23

][ [3, 1, 4], [1, 5, 9], [2, 6, 5]2nd
superstep ↓ scan (+) 0 ↓ scan (+) 8 ↓ scan (+) 23

][ [0, 3, 4], [8, 9, 14], [23, 25, 31]

Fig. 9 Scan algorithm on BSP model: scanBSP

The first one is often used on distributed-memory environments. The computation
consists of three phases: local reduction, global scan, and local scan (Fig. 8).

scanDist :: (a → a → a) → a → [[a]] → [[a]]
scanDist (⊕) e xss

= let ys = map (foldl (⊕) ι⊕) xss --local reduce

zs = scan (⊕) e ys --global scan

in map scanl′ (zip xss zs) --local scan

where scanl′ (xs, z) = scan (⊕) z xs

The second one is a well-known algorithm on the BSP (bulk synchronous parallel)
model [24]. It consists of two supersteps (Fig. 9). In the first superstep we apply local
reduce and send the results to all the processors on the right; in the second superstep
we reduce the received results and apply a local scan. In the following specification
of scanBSP, p is the number of processors used. Note that the computation of zss
corresponds to the communication in the first superstep.

scanBSP :: (a → a → a) → a → I nt → [[a]] → [[a]]
scanBSP (⊕) e p xss
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scanDistMR (⊕) e input
= letConsB [(−, gs)] − = mapReduceH mapper1 reducer1 input

in mapReduceH (mapper2 gs) reducer2 input
where
mapper1 = mkMapper2 (0, ι⊕) -- fsetup

(\(l, s)(k, v) → (k, s ⊕ v)) -- fmap
(\(l, s) → [((1, 1, l), s)]) -- fcleanup

reducer1 = mkReducer1 (\(−, ss) → [(1, scan (⊕) e ss)])
mapper2 gs = mkMapper3 ι⊕ -- fsetup

(\s(k, v) → let p = div k 3 -- fmap
v = (gs !! p) ⊕ s

in (s ⊕ v, [((p, k, 1), v )]))
(\s → [ ]) -- fcleanup

reducer2 = mkReducer1 (\((−, k, −), vs) → [(k, head vs)])

Fig. 10 Two-Pass MapReduce implementation for scanDist

= let ys = map (foldl (⊕) ι⊕) xss

zss = map (λp. take p ys) [0..(p − 1)] --1st superstep

in map scan′ (zip xss zss) --2nd superstep

where scan′ (xs, zs) = scan (⊕) (foldl (⊕) e zs) xs

6.2 Two-Pass MapReduce Implementation for scanDist

To represent a list with a bag, it is a common technique to pair a value with its index.
We assume that the input is a bag of lists of key-value pairs, whose key is a (global)
index and the value is an element. We also assume that consecutive elements are put
in a list in order. For example, the nested list in Fig. 8 may be given as follows. Note
that the splits can be out of order. In this section, we denote bags with { } for better
readability.

{ [(3, 1), (4, 5), (5, 9)], [(6, 2), (7, 6), (8, 5)], [(0, 3), (1, 1), (2, 4)] }

For these inputs, we can compute the list scan by two-passMapReduce computation
(Fig. 10).

The Map phase in the first MapReduce corresponds to the local reduce, which
generates (after flattening)

{ ((1, 1, 5), 15)), ((1, 1, 8), 13)), ((1, 1, 2), 8) } .

These key-value pairs are grouped together by the first two keys and sorted by the
third key, generating ((1, 1, 8), [8, 15, 13]). The Reduce phase in the first MapReduce
corresponds to the global scan, which results in {(−, [0, 8, 23])}. Let the value part be
bound by gs.
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scanBSPMR (⊕) e pp xb
= mapReduceH mapper reducer xb

where
mapper = mkMapper3 fsetup fmap fcleanup
fsetup = (0, ι⊕)
fmap (−, s) (k, v) = let p = div k 3

in ((p, s ⊕ v), [((p, 1, k), v)])
fcleanup (p, s) = map (\p → ((p , 1, −1000 + p), s)) [p + 1..pp − 1]
reducer = mkReducer1 freduce
freduce ((p, −, −), vs) = let zs = take p vs

xs = drop p vs
in zip [(3 ∗ p)..(3 ∗ p + 2)]

(scan (⊕) (foldl (⊕) e zs) xs)

Fig. 11 One-Pass MapReduce implementation for scanBSP

TheMap phase in the secondMapReduce corresponds to the local scan. Here, each
map task selects the value in gs based on the index of the input. The result of this Map
phase is

{ [((1, 3, 1), 8), ((1, 4, 1), 9), ((1, 5, 1), 14)],
[((2, 6, 1), 23), ((2, 7, 1), 25, ((2, 8, 1), 31)],

[((0, 0, 1), 0), ((0, 1, 1), 3), ((0, 2, 1), 4)] }

The Reduce phase in the second MapReduce just retrieves the index and the result
value.

6.3 One-Pass MapReduce Implementation for scanBSP

We show another MapReduce algorithm for the scan algorithm on the BSP model. We
assume that the input is in the same form as in the case of MapReduce implementation
for scanDist.

The implementation of the BSP-inspired scan algorithm is shown in Fig. 11 where
the parameter pp is the number of BSP processes. We hard-coded the number of key-
value pairs to be 3 for simplicity, but we can resolve it by using a hash table etc. for
indices. The implementation consists of a single MapReduce. The Map phase corre-
sponds to the local computation in the first superstep, the Shuffle phase corresponds
to the communication in the first superstep, and the Reduce phase corresponds to the
second superstep.

In the Map phase, intermediate values are generated from both fmap and fcleanup.
Those from fmap correspond to the data of the original array and are needed since we
cannot read the input data in the Reduce phase. Those from fcleanup correspond to the
result of local reduction and will be sent to all the reducer tasks with a larger ID. For
example, the mapper processing [(0, 3), (1, 1), (2, 4)] generates
– [((0, 1, 0), 3), ((0, 1, 1), 1), ((0, 1, 2), 4)] for the reducer task 0 and
– [((1, 1,−1000), 8), ((2, 1,−1000), 8)] for the reducer tasks 1 and 2.
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After the Shuffle phase, we will have the following input for the reduce phase.

{ [((1, 1, 5), [8, 1, 5, 9])], [((2, 1, 8), [8, 15, 2, 6, 5])], [((0, 1, 2), [3, 1, 4])] }

Each reducer task takes a singleton list of a key-value pair whose value includes all
the information needed. By applying the computation corresponding to the second
superstep in the BSP algorithm, we obtain the result. The final zip function is for
assigning the global index.

{ [(3, 8), (4, 9), (5, 14)], [(6, 23), (7, 25), (8, 31)], [(0, 0), (1, 3), (2, 4)] }

7 Related Work

7.1 Modeling MapReduce

As far as the author knows, the first functional specification of MapReduce was
formulated by Lämmel [15], and it has been referred to the most. It provides a
good abstraction of MapReduce, where discussion of types of parameter functions
and input/output models are appropriate. Berthold et al. [3] developed a Haskell
implementation (model) of MapReduce where the basic model followed Lämmel’s
model and lacked the detailed Shuffle phase with sorting. Since the paper was pub-
lished before the open-source implementation of Hadoop became widely available,
there are some points included in Hadoop but excluded in the model. This was
the first motivation with which the author started formalizing the models in this
paper.

Some researchers discussed the models of the MapReduce computation from an
algorithmic point of view [11,14]. They focused on specifying the class of algo-
rithms that can be dealt with efficiently by MapReduce and had a deep interest in
the space/time complexity. Their models were very abstracted from the MapReduce
implementations, so it is not straightforward to apply them directly to program devel-
opment. Recently, a more realistic model [20] was discussed in relation to the BSP
(bulk synchronous parallel) model [24]. The BSP model and MapReduce computa-
tion have some common points. In Sect. 5, we saw the relation between BSP and
MapReduce with an example of implementing scan.

One important application of the functional models is proof of correctness or some
other properties. For example, Dörre et al. [9] developed a type-checking system that
finds type errors that have not been caught at the compilation of Hadoop MapReduce
programs. Ono et al. [19] used the Coq proof assistant for the proof of correctness.
Using the code-generator mechanism in the Coq proof assistant, certified MapReduce
programs are given from proved specifications. There is also a study on the proof
system for the correctness of the use of the Combiner function [23].

Another important application of the functional models includes cost models. With
cost models, we can find performance bugs and optimize programs before execution
or after little profiling. Such a cost model was also given by Dörre et al. [10].
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There have been other studies that specify the MapReduce computation on more
formal models. Two such studies were done on communicating sequential processes
(CSP) [26] and with the Event-B method [21].

7.2 Differences from Previous Work

Among several studies, two studies by Lämmel [15] and Dörre et al. [10] gave detailed
functional models of MapReduce computation.

The former [15] first pointed out the difference between map/reduce (tasks) in
MapReduce and map/reduce (functions) in functional programming and introduced
the idea of map (dictionary) data structure. Although the idea behind MapReduce
was clearly stated, the model assumed that the data are divided in a single stage. As
we modeled in this paper, the MapReduce framework combines unordered parts with
ordered parts for parallelism and performance.

The latter [10] was the most detailed model of MapReduce and included the par-
titioner, comparator, and grouping mechanisms in Hadoop. They used nested lists
for input/output data to follow the data model in Hadoop, and the unordered property,
which is important for parallelism, was not addressed well. It would be no problem for
the cost model, but for proving the correctness of programs, this property is important.

In this paper, we started from the implementation in Hadoop MapReduce, and
we also discussed the relationship between the secondary-sorting technique and the
sorting in the implementation. As far as the author knows, there is no formal model
that discusses this secondary-sorting technique.

8 Conclusion

In this paper, we have proposed two functional models of Hadoop MapReduce. The
low-level model was developed based on the implementation of Hadoop MapReduce,
and the high-level model provides a better understanding of the Shuffle phase. As
shown in the implementation of scan algorithms, our model can be used to develop
a nontrivial algorithm on Hadoop MapReduce. As far as the author knows, the last
MapReduce implementation of BSP-inspired scan algorithm was not published.

As we discussed in the introduction, functional models are important for several
applications. Among them, we would like to develop a formal model using the Coq
proof assistant based on these models in this paper and prove the correctness of several
nontrivial applications on Hadoop.
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