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Abstract This paper presents an optimization algorithm for transactional memory
with lazy conflict detection. The proposed optimization attempts to minimize the exe-
cution time of restarted transactions. Minimizing happens during restart, by avoiding
the re-execution of a section of a transaction that is unaffected by the restart. The pro-
posed optimization builds on previous research and differs in that it eliminates the need
for the prediction of conflicting accesses and introduces incremental context saving.
Moreover, the paper introduces analytical models for estimating the execution time of
transactions, with and without the restart optimization, that are developed using the
continuous-time model. A critical evaluation comparing analytical models with the
simulation results is discussed in the paper.

Keywords Transactional memory · Restart optimization · Analytical modeling ·
Continuous-time modeling · Performance analysis

1 Introduction

The goal of transactional memory is to simplify multi-core concurrent programming
[1]. A programmer demarcates a section of source code as a transaction while the
transactional memory provides run-time support. This support includes atomicity,
concurrency, and isolation.

Transactional memory achieves data consistency for transactions executing con-
currently by providing conflict resolution. A conflict situation arises when two or
more transactions access a shared data item, and at least one of them modifies it [2].
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Version management defines whether modifications perform directly to the shared
data (eager version management), or are buffered as speculative writes (lazy version
management). Speculative writes become visible in shared data at commit time after
conflict resolution. The conflict detection strategy, depending on detection time, may
also be eager or lazy. Eager conflict detection tends to prevent possible conflicts by
introducing synchronization mechanisms that stall the offending transactions. Lazy
conflict detection tends to react to consequences of the conflicts afterwards by aborting
and restarting the offending transactions.

An implementation of transactional memory may be in software, hardware, or
both. Hardware implementations provide low overhead by keeping transactions’ inter-
nal states in cache memory [3–5], but suffer from possible resource limitations [6].
Software implementations offer the flexibility to run on existing hardware and use
operating memory as an unlimited resource to keep transactions’ internal states, but
reduce performance [7,8]. Hybrid implementations attempt to find a compromise by
bringing together low overhead and unlimited resources [9,10].

Transactional memory Coherence and Consistency (TCC) is an example of hard-
ware implementation of transactional memorywith lazy versionmanagement and lazy
conflict detection [11]. The TCC executes transactions on multiple cores with sepa-
rate level one (L1) caches that use level two (L2) cache as a shared memory. For each
transaction, during execution, TCC buffers transactional writes locally as speculative
writes. During the commit time of a transaction, TCC commits speculative writes of
the transaction to shared memory atomically, and simultaneously broadcasts them to
other transactions in the system. The other transactions snoop broadcasts to maintain
cache coherence, while TCC aborts and restarts all transactions that accessed data
modified by the committing transaction.

A transaction aborts by discarding all speculative writes and restarts by switching to
the context corresponding to the transaction start. The main disadvantage of the abort
and restart of a transaction is that all progress made in the transaction before a restart
occurred is wasted. This paper presents an optimization that attempts to diminish
the effects of a restart by reducing the time necessary for re-execution of the restarted
transaction. Re-execution time of the restarted transaction can be reduced by exploiting
the progress made before the restart occurred. Instead of switching to the start, the
transaction switches to the last valid state. The last valid state corresponds to the
context of the transaction just before the first access to the shared data that caused the
restart. In order to reduced memory requirements for retaining all necessary contexts
the proposed optimization saves the contexts incrementally.

In addition to proposing the restart optimization, this paper introduces analytical
models for transactional memory with lazy conflict detection. The models cover trans-
actional memories both with and without restart optimization. The analytical models
study system performance independently from the time between consecutive memory
accesses inside of a transaction by estimating the restart probability, execution time,
relative performance gain, and spatial complexity. The model shows that introduc-
tion of the restart optimization, may bring the expected relative gain up to 0.33 for
transactions that have been restarted at least once.

This paper has the following structure. Section 2 gives an overview of hardware
transactional memory from the aspect of this paper. Section 3 describes principles of
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the proposed optimization, and explains the usage of additional hardware resources
and algorithms behind these principles with the TCC example. Section 4 presents the
proposed analytical model for restart probability, execution time, relative performance
gain, and spatial complexity of TCC with restart optimization. A critical evaluation
comparing analytical models with simulation results is discussed in Sects. 5, and 6
reviews the conclusions of this research.

2 Related Work

Restart optimization for lazy version management can be achieved through various
activities in execute, commit, and abort phase of a transaction. Execute phase encom-
pass saving initial context, running transaction, and in some cases saving additional
contexts for purpose of restart optimization. During commit phase speculative writes
are broadcasted and conflicts are detected.Resolutionof detected conflicts is conducted
in abort phasewhere offended transactions are aborted and restarted by returning to the
appropriate context. Most of work related to the restart optimization suggests either
saving intermediate contexts during execute phase of a transaction or by optimizing
commit/abort phase of a transaction as shown in Table 1 that gives an overview of solu-
tion space for improving lazy conflict detection for analyzed hardware transactional
memories.

Table 1 Overview of solution space for improving lazy version management

Solution Execute phase Commit phase Abort phase

Waliullah and
Stenstrom [12]

Saving entire context
when accessing
predicted memory
locations

Return to an
appropriate context

Waliullah and
Stenstrom [13]

Saving entire context
when accessing
predicted memory
locations + removing
conflicts

Return to an
appropriate context

Ceze et al. [14] Reduce commit time by
using block signature

Quislant et al. [15] Reduce commit time by
using asymmetric block
signature

Tomic et al. [16] Keeping track of
offending transactions

Fast return to the
beginning of a
transaction

Lupo et al. [17] Storing speculative and
non-speculative values
in different cache levels

Fast return to the
beginning of a
transaction

Ros et al. [18] Reduce commit time by
reducing core-to-core
traffic
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The research presented in [12] suggests saving entire context of a transaction during
execute phase each time the transaction accesses to shared data for which there is a
prediction that a conflict may occur. Prediction is created according to the history of
previous executions of the transaction. The approach presented in this paper eliminates
the need for the prediction of conflicting accesses by suggesting saving the contexts
before any first access to shared data. The new problem that may arise is a number of
contexts that need to be saved. In order to reduced memory requirements for retaining
all necessary contexts the approach proposes saving the contexts incrementally.

Most of other relatedwork is complementary to the approach presented in this paper
and attempts to either remove conflicts when possible [13] or to optimize commit/abort
phases of a transaction to improve the overall execution time of a set of transactions.
A possible optimization of a commit/abort phase can occur by reducing the conflict
detection time with the introduction of memory block signatures as in Bulk [14],
or when dealing with asymmetry in transactional data sets [15], or by using early
conflict detection combined with lazy conflict resolution [16]. Introduction of a new
transactional memory coherency protocol, FasTM, which uses the L1 cache to save
state before a transaction starts, may also optimize the abort phase [17]. In the case of
many-core chip multiprocessors, a commit phase could be optimized by introducing a
newcache coherence protocol (DiCo-CMP) aimed at reducing core-to-core traffic [18].

In addition to extending previous research regarding restart optimization, this paper
introduces analytical models for transactional memory with lazy conflict detection.
Other analytical frameworks for performance modeling of software transactional
memory [19–24] are based onMarkov chainmodels. Themodel presented in this paper
observes a transaction execution as a continual process represented with a continuous-
time model.

3 Restart Optimization

The main principle of the proposed optimization is avoiding re-execution of a section
of a transaction that is not affected by a restart. The restarted transaction continues
execution from the place where first access to the shared data that caused the restart
occurred. Figure 1 gives an example of two transactions labeled T1 and T2 (Fig. 1a),
and their schedules on TCC (Fig. 1b) and TCC with restart optimization (RO-TCC)
implementations (Fig. 1c). Transaction T1 uses data A, B,C , and D, while transaction
T2 uses only C . The example shows that after commit of transaction T2, transaction
T1 aborts and restarts. After the restart, transaction T1 starts from the beginning in
the case of TCC implementation. In the case of RO-TCC, transaction T1 does not re-
execute the section not affected by the committing dataC , and starts from the moment
when the data C is first accessed. Execution time of a transaction that has no restarts
is the same on both TCC and RO-TCC implementations.

Enabling the proposed restart optimization requires certain modifications within
TCC. Themodifications encompass changes in behavior of the existing TCC hardware
and additional hardware resources. The essence of the algorithm behind additional
hardware resources is that a processor state has to be saved before the first access to
each shared cache line. If a conflict on a shared cache line causes a restart, then a
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T1 T2
Start Start
Read(A) Read(C)
Read(B) C = C + 1
A = A + B Write(C)
Write(A) Commit
Read(C)
A = A + C
Write(A)
Commit

Time T1 on Core1 T2 on Core2
t0 Start Start
t1 Read(A)
t2 Read(B)
t3 A = A + B Read(C)
t4 Write(A) C = C + 1
t5 Read(C)
t6 A = A + C Write(C)
t7 Write(A)
t8 Abort Commit
t9 Read(A)
t10 Read(B)
t11 A = A + B
t12 Write(A)
t13 Read(C)
t14 A = A + C
t15 Write(A)
t16 Commit

Time T1 on Core1 T2 on Core2
t0 Start Start
t1 Read(A)
t2 Read(B)
t3 A = A + B Read(C)
t4 Write(A) C = C + 1
t5 Read(C)
t6 A = A + C Write(C)
t7 Write(A)
t8 Abort Commit
t9 Read(C)
t10 A = A + C
t11 Write(A)
t12 Commit

(a) (b) (c)

Fig. 1 An example of a two transactions and their schedules on b TCC and c RO-TCC implementations

valid state of the processor needs to be restored. The valid state is defined as the state
immediately before the first access to the cached line that caused the restart. The state
consists of a core’s context and the content of the corresponding L1 cache. The core’s
context is saved each time in its entirety, while the content of the L1 cache is saved
incrementally by creating copies of appropriate cache lines. A copy of a cache line is
created when an access for a write operation is performed, but only if a fetch of some
other cache line is performed between the current access and previous access to the
cache line. Such situations can be detected using a counter.

For supporting restart optimization, TCC hardware needs additional resources for
storing multiple valid states during the entire lifetime of a transaction, as shown on
Fig. 2. After each new cache line fetch, a core’s context is added to the Context
Buffer. Incremental storing of the content of the L1 cache can be implemented using
the Version Cache for keeping track of speculatively modified cache lines. Moreover,
identifying when a new version needs to be created can be done with a counter and it
can be implemented with an additional line Id field in a tag of each cache line.

The algorithms explaining the behavior of RO-TCC hardware when performing
read, write, and restart operations during transaction are shown on Fig. 3. The read
operation in case when L1 hit occurs requires only reading data from appropriate L1
cache line, as shown on Fig. 3a. If L1 miss occurs then the Version Cache is checked.
The Version Cache may contain multiple versions of the same cache line and therefore
in the case of Version Cache hit the most recent version (the version with the highest
Id) of the requested line is copied to L1 cache and then accessed. When the Version
cache miss occurs, the counter i is incremented and the requested line is fetched from
memory and stored in L1 cache with the line Id tag field set to the value of counter i.
In the same time while fetching data from memory, the core’s context is saved in the
entry i of the Context Buffer.

Thewrite operation, as shown on Fig. 3a, in casewhen L1 hit occurs checkswhether
the Id tag field of the requested line is equal or smaller (it cannot be higher) than the
value of counter i. If equal (meaning that the requested line is the last fetched line or
that it has been modified since the last line had been fetched) then the cache line is
updated without modifying the Id tag field. If smaller (meaning that the requested line
is neither the last fetched line nor it has been modified since the last line had been
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Core

Attrib Tag Data

Context
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Broadcast Bus

Data 
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Cache
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new line fetch

Cache line Id number
defining order in which 

cache lines were modified

Different versions of 
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modified cache lines 

3 2

Context
Buffer

1

Fig. 2 The data cache organization for transactional memory with restart optimization

fetched) then the cache line is copied to the Version Cache, the Id tag field of the line is
set to the value of counter i and the line is updated. If L1 miss occurs then the Version
Cache is checked. In the case of Version Cache hit the most recent version (the version
with the highest Id) of the requested line is copied to L1 cache and then the same steps
are performed as when L1 hit occurs. When the Version cache miss occurs, the same
steps are performed as when read operation Version Cache miss occurs with addition
that the fetched line is updated.

The restart operation first determines the value of the Id tag field of the oldest
line containing the offending address that caused the restart, as shown on Fig. 3b.
The determined Id corresponds to the core’s context created when the first access to
the offending address occurred and therefore it needs to be restored. Moreover, all
cache lines, from both L1 and Version Cache, with Id tag field greater or equal to
the determined Id (created after the first access to the offending address) have to be
invalidated. At the end, the counter i is set to determined Id.

4 Analytical Model

Instead of the explicit-modeling concurrent execution of many transactions, the ana-
lytical model presented in this paper characterizes the representative behavior of a
single transaction and the influence that the rest of the concurrently executed trans-
actions have on it. The impact of the other transactions is captured by computing the
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Receive address 
for memory access

is L1 HIT?
no yes

Increment counter i

Read a line from memory
Set the line id to value i

Get core’s context
Save core’s context into entry i of Context Buffer

is write?

Write to the line

yes

Read the line from 
L1 cache

is write?

is the line id < i?

Save a copy of the line in Version Cache
Set the line id to value i

yes

yes

no

no

no

is Version Cache HIT?
no

Copy the line from 
Version Cache

yes

Write to the line

Receive an address 
that caused restart

Determine id of the oldest line 
containing the address

Restore the core’s context saved 
in entry id of the Context Buffer

Remove all cache lines and 
core’s contexts newer than id

Set counter i to id

(a) (b)

Fig. 3 Algorithms for performing a read, write, and b restart operations on RO-TCC implementation

appropriate parameters. The described approach assumes that all transactions have a
similar probabilistic behavior.

The model relies on the following three assumptions:

1. Restart probability does not depend on where a transaction is, or whether the
transaction has already been restarted.

2. Moments at which a transaction accesses memory locations for the first time are
uniformly distributed within the transaction.

3. Moments at which a transaction accesses memory are uniformly distributed within
the transaction (both first and subsequent access).

The model is defined with nine input parameters:

– The average transaction execution time L , in the absence of restarts.
– The average time between transactions V .
– Access-set size K (data accessed whether for read, write, or both).
– Write-set size Kw.
– Read-set size Kr .
– Number of subsequent read and write operations B (possibly repeatedly with the
same data) that a transaction needs to successfully finish before it commits.

– Working-set size U , representing the total number of available transactional data.
– Probability that an access is a write operation Pw, or a read operation Pr = 1−Pw.
– The number of cores N .

4.1 Transaction Restart Probability Model

The execution time of a set of transactions depends on how often they restart. The
average number of times a transaction retries before it successfully commits could be
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modeledwith the appropriate restart probability R. This section develops the analytical
model for calculating R using the input parameters and given assumptions.

Let us consider transaction A that accesses n different memory locations during
the interval x . The interval x ranges from 0 to L and represents the time passed from
the start of transaction A assuming that no restarts occurred. If in the same moment x
some other transaction B with a write-set Kw commits, a conflict will not occur if all
n memory locations fall into the set U − Kw. The probability fnr(n) that transaction
A will not detect a conflict is determined with the number of different ways that n can
be chosen from the set U − Kw, divided by the number of different ways that n can
be chosen from the entire set U :

fnr(n) =

(
U − Kw

n

)
(
U
n

) = (U − n)! · (U − Kw)!
U! · (U − n − Kw)! (1)

Probability that transaction A accessed to exactly n different memory locations
during interval x can bemodeled as a Poisson random variable P(n)with distribution:

P(n) = e−n · (n)
n

n!
Using assumption 2, the average number of different memory locations accessed

during interval x is:

n = K · x
L

Let fnr(x)be the probability that transaction Awill not restart at amoment x atwhich
transaction B commits. The probability fnr(x) can be expressed using the probability
that transaction A has accessed exactly n different memory locations P(n) and the
probability that transaction A will not restart if it has accessed n memory locations
fnr(n). Taking into consideration all possible values for n, the expression for fnr(x)
is:

fnr(x) =
+∞∑
n=0

P(n) · fnr(n) =
+∞∑
n=0

e−n · (n)
n

n! · (U − n)! · (U − Kw)!
U! · (U − n − Kw)!

Let us consider the event where transaction A executes during interval x in which
s other independent transactions commit in the moments x1, …, xs. The conditional
probability that transaction A will not restart until moment x if it does not restart in
any moment x1, …, xs is:

Pnrs(x1, x2, . . . , xs|x) = fnr(x1) · fnr(x2) · . . . · fnr(xs)
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The mathematical expectation that transaction A will not restart until moment x is:

Pnrs(x) = E(Pnrs(x1, x2, . . . , xs|x))

=
+∞∫

−∞
. . .

+∞∫
−∞

g(x1, x2, . . . , xs |x) · Pnrs(x1, x2, . . . , xs|x)dx1dx2 . . . dxs

where g(x1, …, xs|x) is the distribution density function of moments at which other s
transactions commit. Following assumption 1 and assuming s independent transactions
it can be stated that:

g(x1, x2, . . . , xs|x) = g(x1|x) · g(x2|x) · . . . · g(xs|x)
g(xi|x) ∼ Unif(0, x)

Combining the last three expressions:

Pnrs(x) =
⎛
⎝

x∫
0

1

x
· fnr(x1)dx1

⎞
⎠ · . . . ·

⎛
⎝

x∫
0

1

x
· fnr(xs)dxs

⎞
⎠

=
⎛
⎝1

x
·

x∫
0

fnr(x1)dx1

⎞
⎠

s

=
(
Fnr(x)

x

)s

where Fnr(x) represents probability function that transaction A will not restart until
moment x .

The probability that exactly s other transactions commit during interval x can be
modeled as a Poisson random variable P(s) with the distribution:

P(s) = e−s · (s)
s

s!
where s is the average number of committed transactions during interval x . The value of
the parameter s depends on the number of cores N , the average transaction execution
time E(T ), and the average time between transactions V . During the time interval
E(T )+V all N concurrently executed transactions will commit. Among N concurrent
transactions, besides transaction A, there are N − 1 other concurrently executing
transactions. The expression for the average number of committed transactions during
interval x is:

s = (N − 1) · x

E(T) + V
= (N − 1)

E(T)
L + V

L

· x
L

Let Pnr(x) be the probability that transaction A will not restart until the moment x .
The probability Pnr(x) can be expressed using the probability Pnrs(x) that transaction
A will not restart during interval x until exactly s other transactions commit and the
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probability P(s) that exactly s other transactions commit without conflicting with
transaction A. Taking into consideration all possible values for s, the expression for
Pnr(x) is:

Pnr(x) =
+∞∑
s=0

P(s) · Pnrs(x) =
+∞∑
s=0

e−s · (s)
s

s! ·
(
Fnr(x)

x

)s

= e−s ·
+∞∑
s=0

(
s·Fnr(x)

x

)s
s!

= e−s · e s·Fnr (x)
x

The probability that transaction A will restart, R, is a complement of the event that
transaction A will not restart during entire execution time, L , with probability Pnr(L),
which gives:

1 − R = Pnr(L)

furthermore:

R = 1 − e
− (N−1)

E(T)
L +V

L

·
(
1− Fnr (L)

L

)
(2)

4.2 Transaction Execution Time Model for TCC

This section develops the analytical model for calculating the expected transaction
execution time, E(T ), for TCC implementation using the input parameters and the
given assumptions. The expected execution time of a transaction can be calculated
using:

E(T) =
+∞∑
i=0

pi · T̂i (3)

where pi is a probability that the transaction restarts exactly i times, and T̂i is the
expected execution time of the transaction, if it restarts exactly i times.

Using assumption 1, the probability pi that the transaction restarts exactly i times
can be modeled with the geometric distribution with a parameter 1−R. The parameter
1 − R is the success probability in a sequence of Bernoulli trials and represents the
probability that the transaction finishes without further restarts:

p0 = (1 − R)

p1 = R · (1 − R)

. . .

pi = Ri · (1 − R) (4)

An expected execution time T0 of a transaction that does not restart corresponds to
the input parameter L:
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T0 = L

In the case of a transaction restart, the execution time includes the additional time
spent during unsuccessful trials. When a transaction restarts exactly once at a location
x1 where the restart occurred corresponds to a random moment within the transaction
and is in the interval from 0 to L . An expected execution time T1 includes the time L
needed for the successful completion of the transaction in the absence of restarts and
the time interval x1 spent during the unsuccessful trial:

T1 = x1 + L

For a transaction that restarts exactly i times during an expected execution time Ti
includes the time L needed for the successful completion of the transaction in the
absence of restarts and all i time intervals spent during unsuccessful trials:

Ti = x1 + x2 + · · · + xi + L = L +
i∑

j=1

xj

All time intervals xj correspond to restart moments within the transaction and are
in the interval from 0 to L . The intervals xj are random variables and according to
the assumption 1 are mutually independent with uniform distribution. The expected
execution time of the transaction, if it restarts exactly i times can be calculated:

T̂i = E(Ti) = L +
i∑

j=1

E(xj)

xj ∼ Unif(0,L)

E(xj) =
L∫

0

xj
L

· dxj = 1

L
·

L∫
0

xj · dxj = L

2

E(Ti) = L +
i∑

j=1

L

2
= L + i · L

2
= L ·

(
1 + i

2

)
(5)

Combining Eqs. (3), (4), and (5) the expression for the expected transaction exe-
cution time E(T ) is:

E(T) =
+∞∑
i=0

Ri · (1 − R) · L ·
(
1 + i

2

)

E(T) = 2 − R

2 · (1 − R)
· L (6)
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4.3 Transaction Execution Time Model for RO-TCC

This section develops the analytical model for calculating the expected transaction
execution time, E(T ), for RO-TCC implementation using the input parameters and
given assumptions. In both cases, TCC and RO-TCC, the probability pi that the trans-
action restarts exactly i times is the same. In the case of RO-TCC, E(T ) differs in
calculation of the expected execution time T̂i of the transaction, if it restarts exactly i
times.

As in TCC, the expected execution time T0 of a transaction that does not restart
corresponds to the input parameter L:

T0 = L

In the case of a transaction restart, the execution time includes the additional time spent
during the unsuccessful trials. When a transaction restarts exactly once, the location
x1 where the restart occurred corresponds to a random moment within the transaction
and is in the interval from 0 to L . Contrary to the TCC, where the transaction restarts
from the beginning, in the case of RO-TCC a location y1, where the transaction restarts
from is a random moment within the time interval of the unsuccessful trial and is in
the interval from 0 to x1. The expected execution time T1 includes the time interval x1
until a restart and the time L needed for the successful completion of the transaction
in the absence of restarts diminished for y1 from where the transaction continued with
execution after the restart:

T1 = x1 + L − y1 = x1 − y1 + L

In the case of a transaction restarting exactly twice, at a location x1 where the first
restart occurs and at a location y1 from where the transaction continues with the
execution, are determined in the same way as the case of the transaction restarting
exactly once. After the first restart, the transaction does not execute a section of the
transaction that comes before y1 and therefore the location x2 where the second restart
occurs has to be after y1. After the second restart, the location y2 where the transaction
restarts from is a random moment within the time interval from 0 to x2.

T2 = x1 + x2 − y1 + L − y2 = x1 − y1 + x2 − y2 + L

For a transaction that restarts exactly i times, the expected execution time Ti includes
time L needed for the successful completion of the transaction in the absence of restarts
and all i time intervals during the unsuccessful trials:

Ti = x1 + x2 + · · · + xi + L − y1 − y2 − · · · − yi

Ti = L +
i∑

j=1

(xj − yj)
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All time intervals xj and yj are mutually dependent random variables and are modeled
with uniform distributions on the defined interval. The expected execution time of the
transaction, if it restarts exactly i times can be calculated:

T̂i = E(Ti) = L +
i∑

j=1

(E(xj) − E(yj))

x1 ∼ Unif(0,L)

y1 ∼ Unif(0, x1)

· · ·
xi ∼ Unif(yi−1,L)

yi ∼ Unif(0, xi) (7)

The mathematical expectations for the random variables xi and yi can be calculated
as:

E(xi) =
L∫

0

1

L

x1∫
0

1

x1
· · ·

L∫
yi−1

xi
L − yi−1

dx1dy1 . . . dxi

E(yi) =
L∫

0

1

L

x1∫
0

1

x1
· · ·

L∫
yi−1

1

L − yi−1

xi∫
0

yi
xi
dx1dy1 . . . dxidyi (8)

Solving Eq. (8) for variable yi shows a dependency between the mathematical expec-
tations for xi and yi:

E(yi) =
L∫

0

1

L

x1∫
0

1

x1
· · ·

L∫
yi−1

1

L − yi−1

⎛
⎝

xi∫
0

yi
xi
dyi

⎞
⎠ dx1dy1 . . . dxi

E(yi) = 1

2
·

L∫
0

1

L

x1∫
0

1

x1
· · ·

L∫
yi−1

xi
L − yi−1

dx1dy1 . . . dxi

E(yi) = 1

2
· E(xi) (9)

Solving Eq. (8) for variable xi shows a dependency between the mathematical expec-
tations for xi and yi−1:

E(xi ) =
L∫

0

1

L

x1∫
0

1

x1
· · ·

xi−1∫
0

1

xi−1

⎛
⎝

L∫
yi−1

xi
L − yi−1

dxi

⎞
⎠ dx1dy1 . . . dyi−1

E(xi ) =
L∫

0

1

L

x1∫
0

1

x1
· · ·

xi−1∫
0

1

xi−1

(
1

L − yi−1
·
(
L2

2
− y2i−1

2

))
dx1dy1 . . . dyi−1
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E(xi ) = 1

2
· L ·

L∫
0

1

L

x1∫
0

1

x1
· · ·

xi−1∫
0

1

xi−1
dx1dy1 . . . dyi−1

+ 1

2
·

L∫
0

1

L

x1∫
0

1

x1
· · ·

xi−1∫
0

yi−1

xi−1
dx1dy1 . . . dyi−1

E(xi ) = 1

2
· L + 1

2
· E(yi−1) (10)

Combining Eqs. (9) and (10) results in a difference equation expressing the recur-
rence relation between the mathematical expectations for xi and xi−1:

E(xi) = 1

2
· L + 1

4
· E(xi−1)

Solving the difference equation results in an expression for the mathematical expec-
tation of random variable xi:

E(xi) = 2

3
·
(
1 − 1

4i

)
· L (11)

According to Eq. (7), and using results from Eqs. (9) and (11) it can be calculated:

E(Ti) =
(
8

9
+ i

3
+ 1

9 · 4i
)

· L (12)

CombiningEqs. (3), (4), and (12), the expression for the expected transaction execution
time E(T ) on a RO-TCC system:

E(T) = (2 − R)2

(1 − R) · (4 − R)
· L (13)

4.4 Model for Expected Relative Performance Gain

This section combines the results for the expected transaction execution time for
TCC and RO-TCC with the aim to calculate the expected performance gain after
the introduction of restart optimization. The calculation considers the execution time
E(TR) of those transactions that restart at least once during the execution. The expected
execution time, E(T ), of a transaction is equal to L in the case of the successful
completion of the transaction in the absence of restarts, while in the opposite case,
when the transaction restarts at least once, the execution time is equal to E(TR). The
probability that the transaction restarts, R, is a complement of the event that the
transaction does not restart during entire execution time with the probability 1 − R.
The relation between E(TR) and E(T ) can be expressed with:
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Fig. 4 The expected relative performance gain in a function of the restart probabilities

E(T) = (1 − R) · L + R · E(TR)

that in the case of TCC can be combined with Eq. (6) to give:

E(TR−TCC) = 3 − 2 · RTCC

2 · (1 − RTCC)
· L

or in the case of RO-TCC can be combined with Eq. (13) to give:

E(TR−ROTCC) = 5 − 5 · RROTCC + R2
ROTCC

(1 − RROTCC) · (4 − RROTCC)
· L

The expected relative performance gain is calculated as the relative difference of the
expected execution times of those transactions that restart at least once during the
execution for TCC and RO-TCC:

δR = E(TR-TCC) − E(TR-ROTCC)

E(TR-TCC)

A possible consequence of restart optimization is the difference of restart probabilities
between TCC and RO-TCC. The difference comes from the fact that, after a restart
in RO-TCC, the access buffer is not empty, and it can lead to new restarts occurring
sooner, making the restart probability higher. However, after a restart in RO-TCC, a
restarted transaction has less work to perform before it commits, leaving less time for
new restarts to occur, making the restart probability lower. Based on the analytical
model for the expected execution times E(TR-TCC) and E(TR-ROTCC), Fig. 4 shows
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the expected relative performance gain δR for different values of restart probabilities
R-TCC and R-ROTCC. Performance degradation could be expected in the case when
the restart probability of RO-TCC is substantially higher than the restart probability
of TCC.

Assuming that restart probabilities are approximately the same, an approximation
that RTCC = RROTCC = R can bemade. The approximation would enable easy assess-
ment of the expected gain after the introduction of the proposed restart optimization
into existing transactional memory systems with an experimentally determined restart
probability. With the approximation, the expected performance gain δR is:

δR = 2 − R

(3 − 2 · R) · (4 − R)
(14)

The results for δR demonstrate that in cases when the restart probability remains the
same after the introduction of restart optimization, the expected relative gain for trans-
actions that have been restarted at least once is a monotonically increasing function
with values in a range from 0.17 to 0.33 for R ranging from 0 to 1. Even though Eq.
(14) does not demonstrate a strong sensitivity to small variations in R, Eqs. (6) and
(13) imply that for higher values of restart probability even small variations lead to a
large deviation in calculation of the expected transaction execution time and relative
gain.

4.5 Spatial Complexity Model

Assessing restart optimization effectiveness depends on the complexity of the imple-
mentation. The complexity can be viewed from two aspects, temporal and spatial.
Temporal complexity is defined as the time needed to store/restore the proper context,
while spatial complexity is defined as the space required to store different versions of
core’s contexts and cache lines. The influence of time complexity can be disregarded
if the time needed for storing/restoring core’s context into/from Context Buffer is less
than the time needed for fetching a cache line during a miss.

The spatial complexity is determined by Context Buffer size and Version Cache
size. Context Buffer size depends on a number of core’s contexts that need to be stored
and is equal to a product of access-set size K and size of a core’s context. VersionCache
size depends on a number of versions created for speculatively modified cache lines.
A new version of a cache line is created when a write to an older cache line occurs.
The worst case for the spatial complexity is when each fetch of a new cache line is
followed by write accesses to all cache lines that are already present in the cache, thus
requiring new versions for each write. In the average case it can be expected that write
accesses are done only to some cache lines. The probability Pwr for a write access to
a cache line that is already present in the cache can be calculated using probability
Pw that an access is a write operation. The write probability Pw can be expressed as a
ratio between the number of write operations Bw, and the number of subsequent read
and write operations that a transaction needs to successfully finish before it commits
B:
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Pw = Bw

B
= Bfw + Bnfw

B
= B′

fw + B′′
fw + Bnfw

B

The number of write operations Bw can be expressed as the sum of write miss Bfw and
write hit operations Bnfw. Write miss operations can be divided into B ′

fw operations
that write data that will never be read from within the current transaction (e.g., result
data), and B ′′

fw operations that write data that may be read from or written to with
the probability Pwr again within the current transaction (e.g., intermediate data). Bfw
operations are divided into B ′

fw and B ′′
fw operations because read-set Kr and write-set

Kw can overlap (0≤ Kr ≤ K ; 0≤ Kw ≤ K ; K ≤ Kr + Kw):

B′
fw = K − Kr

B′′
fw = Pwr · (Kr + Kw − K)

Bnfw = Pwr · (B − K)

Therefore the expression for the probability Pwr for a write access to a cache line that
is already present in the cache is:

Pwr = Pw · B − (K − Kr)

B − 2 · K + Kr + Kw

The required space for holding different versions can be estimated by determining
the number of new versions added during a period between two cache misses. The
number of new versions can be calculated as the number of different cache lines that
are written to during the period excluding the cases of writes to the data that caused
the cache miss. Assuming that the cache contains n valid lines during the period, the
number of new versions m(n, w) added after w write operations can be calculated
according to the Generalized Birthday problem:

m(n,w)=n ·
(
1 −

(
1 − 1

n

)w)
−

(
1 −

(
n − 1

n

)w)
=(n − 1) ·

(
1 −

(
1 − 1

n

)w)

The probability that the transaction has performed exactlywwrites between two cache
misses while the cache contains n valid cache lines can be modeled as the Poisson
random variable P(w) with the distribution:

P(w) = e−w · (w)
w

w!
The average number of write operations w between twomisses can be calculated using
the probability Pwr for the write access to a cache line that is already present in the
cache, the number of ‘cache hit’ accesses B − K , and the number of ‘cache miss’
accesses K . The expression for the average number of write operations is:

w = Pwr · B − K

K
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Let m(n) be the average number of new versions added between two cache misses in
the case when the cache contains n valid cache lines. The number m(n) is calculated
by using the probability P(w) that there is exactly w write operations between two
misses and the average number of new versions added in the case when there are
exactly w operations while the cache contains n valid lines m(n, w):

m(n) =
+∞∑
w=0

P(w) · m(n,w)

The size can be expressed as the sum of all new versions that are added between the
two misses:

m =
K∑

n=1

m(n)

The expression for calculating m can be simplified using the set of approximations:

m(n) ≈ m(n,w) = (n − 1) ·
(
1 −

(
1 − 1

n

)w
)

≈ (n − 1) ·
(
1 −

(
1 − w

n

))

m ≈ Pw · B − (K − Kr)

B − 2 · K + Kr + Kw
· (B − K) (15)

5 Results of Evaluation

The evaluation of the proposed RO-TCC and comparison with TCC were completed
with a simulationbasedon themodel described inSect. 2, and the appropriate analytical
models from Sect. 3. The simulation also served the purpose of verification of the
proposed analytical models. In all experiments, the simulation parameters were set to
values of a magnitude as they might occur in typical benchmark applications [25,26].
Table 2 shows the value ranges and default values for all simulation parameters. Each
experiment varied only one simulation parameter, while other parameters were set to
default values. This section presents experiments that characterize the essence of the
proposed solution.

As opposed to the proposed analytical model, which models one transaction and
its interaction with the rest of the system, the simulation model implements N trans-
actions explicitly as concurrent processes. Each simulated transaction initially selects
a sequence of B memory read and write accesses, with the write probability Pw. The
sequence ismaintained throughout the lifetimeof the transaction and even after a restart
the transaction retries the identical sequence of operations. The memory accesses are
uniformly distributed over the entire duration of the transaction L . The moments when
a transaction accesses data for the first time is important from the aspect of RO-TCC.
For the purposes of the simulation, the moments were uniformly distributed over the
entire duration of the transaction. After a commit of a transaction, the core that exe-
cuted the transaction starts a new transaction after the expiration of the period, V .
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Table 2 Value ranges and default values for all simulation parameters

Parameter Name Typical rangea Default valueb

Time outside of a transaction V/L 0.03–32.3 0.1

Access set K 20–800 600

Read set Kr 10–800 400

Write set Kw 10–800 300

Number of memory accesses B 15–220,000 6000

Working set U 10,000–3,000,000 40,000

Write probability Pw 0.05–0.49 0.3

Number of cores N 2–32 4

a Typical range in benchmark applications
b Default value in the experiments

Fig. 5 Analytical and simulation results for restart probability depending on the number of cores for three
different values of the parameter V/L

New transactions start until the number of restarts does not become sufficient for a
confidence level of 95% and a relative error of 5%.

Beside a simulation based on the model described in Sect. 2, this section also
presents an experiment that uses an architectural simulator. The architectural simu-
lation enables characterizing the behavior of the proposed solution by executing the
benchmark tests using configurable cache memory and servers a purpose of reevalu-
ation.

5.1 Simulation Analysis of the Transaction Restart Probability Model

The analytical model shows that the transaction restart probability, R, depends on the
number of parameters including the number of cores, the percentage of time a core
spends in transactions, the size of working, access, write, and read sets. In order to
validate the analytical model, the experiments were conducted, varying all parameters.
The simulation shows that the predominant parameter for the restart probability calcu-
lation is the number of cores. Increasing the number of cores leads to greater congestion
that results in an increased number of restarts. In the experiments, the number of cores
ranged from 2 to 32 while all other parameters had default values as given in Table 2.

Figure 5 demonstrates how the restart probability for TCC and RO-TCC depends
on the number of cores. The bars correspond to the simulation results, while the
lines correspond to the analytical results. The figure shows that the analytical model
accurately reflects the behavior of simulated systems with an average relative error
of 1%. The figure also shows that the restart probability enters saturation. In the case
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Fig. 6 Analytical and simulation results for normalized execution time depending on the number of cores
for three different values of the parameter V/L

of parameters that correspond to the average load, the saturation occurs when the
number of cores approaches 16. The difference between the simulation results for
restart probability, R, obtained for TCC and RO-TCC indicates that in some cases the
approximation RTCC = RROTCC = R can be used.

5.2 Simulation Analysis of the Transaction Execution Time Model

The analytical expression obtained in Sect. 3 represents a dependency between
expected transaction execution time E(T ) and the transaction restart probability, R.
Similar to the simulation analysis of the transaction restart probability, the predomi-
nant parameter is the number of cores. Figure 6 shows how the expected transaction
execution time for TCC and RO-TCC depends on the number of cores. The transac-
tion execution time overhead resulting from the transaction restarts has approximately
linear dependency on the number of cores in the examined range (from 2 to 32).
The analytical model accurately reflects the behavior of the simulated system with a
relative error of less than 10%.

5.3 Simulation Analysis of the Expected Performance Gain

Relative gain, δ, represents the expected performance gain after the introduction of
restart optimization in TCC system. The relative gain is directly dependent on the
expected transaction execution time. Section4.2 demonstrates that the analyticalmodel
for E(T ) has a relative error of up to 10%, which results in calculating the relative
gain with a relative error below 20%. Calculating relative gain depends not only on
effects of the superposition of the errors of two models (TCC and RO-TCC), but also
on the fact that the transaction restart probability is not the same in these two models.

Figure 7 shows how the expected relative gain depends on the number of cores.
Regardless of the differences between the experimental and analytical models, the
figure shows that restart optimization brings a relative gain of around 10%. A similar
conclusion about the relative gain can also be derived from Fig. 8, which shows the
dependency between the relative gain and the working set size.

5.4 Simulation Analysis of Spatial Complexity

Restart optimization depends on keeping track of multiple versions during transaction
execution making space a critical resource for achieving the expected performance
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Fig. 7 Analytical and simulation results for relative gain depending on the number of cores for three
different values of the parameter V/L

Fig. 8 Analytical and simulation results for the relative gain depending on the working set size for three
different values of the parameter V/L

Fig. 9 Analytical and simulation results for the required space depending on the write probability for three
different values of the parameter Kw

Fig. 10 Analytical and simulation results for the required space depending on the number of memory
accesses for three different values of the parameter Kw

gain. The analytical model shows that the spatial complexity depends on the number
of parameters including the number of memory accesses, write probability, and size
of access, write, and read sets. Figures 9 and 10 show how the required space depends
on the write probability and the number of memory accesses. Both figures show
approximately linear dependency, which in the case of Fig. 9 can be explained by the
fact that the access set size is almost equal to the sum of the write and read set sizes.
The analytical model accurately reflects required space and has a relative error of less
than 1%.
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Table 3 Configuration used for
simulation with the architectural
simulator

Parameter Value

L1 data cache size 8 KB

L1 data cache block size 32-Byte blocks

L1 associativity 4-Way associative

Main memory miss penalty 96 cycles

Version cache hit time 1 cycle

5.5 Reevaluation with Architectural Simulation

The reevaluation, performed as a separate experiment, aims to revisit previous find-
ings. In the contrast to the previous experiments, where the model simulator was used,
the reevaluation is conducted by using an architectural simulator. The architectural
simulator consists of the X86 processor and the configurable cache memory simu-
lator. The X86 processor is part of the JPC simulator that simulates full PC-based
system at the behavior level [27]. The JPC full system simulator includes the proces-
sor, motherboard, disk controller, graphics controller and user interface, but for the
purpose integration with the configurable cache memory only the processor is used
[28]. The configurable cache memory simulator operates at the register transfer level,
provides statistical data, and logs complete memory access trace. For the purpose
of the reevaluation the configurable cache memory simulator has been modified to
support TCC and RO-TCC.

The architectural simulations were conducted using the STAMP benchmark with
parameters set to default values. The benchmark programs were compiled in debug
mode using MS Visual Studio 6.1. The simulations used the configuration of the
architectural simulator given inTable 3.During simulations, the sizes ofContextBuffer
and Version Cache were unlimited in order to determine the maximal performance
gain.

Figures 11 and 12 show the relative gain depending on the benchmark test and a
number of cores used in simulation. The relative gain is calculated according to exe-
cution time spent in all transactions (Fig. 11) and execution time spent in transactions
that restarted at least once (Fig. 12). Regardless of the differences between the model
and architectural simulation, Fig. 12 shows that results are within expected ranges.
The differences can be attributed to the fact that the transactions in benchmark tests
may have different distributions than the one used in analytical model. The results
obtained in case of ssca2 test show that the execution time for TCC and RO-TCC had
negligible differences due to the fact that the test had low contention level and that
all restarts required re-execution from the beginning of transactions. The experiment
also showed that RO-TCC had more restarts than TCC, which confirms that a possible
consequence of the restart optimization can be a higher restart probability. However,
in case of Intruder test although the restart probability was almost double in case
of RO-TCC, the restart optimization brought the relative gain of 29% when observ-
ing all transactions, or 49% when observing only transactions that restarted at least
once.
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Fig. 11 Architectural simulation results for relative gain according to execution time spent in transactions
depending on the benchmark test and a number of cores

Fig. 12 Architectural simulation results for relative gain according to execution time spent in transactions
that restarted at least once depending on the benchmark test and a number of cores

5.6 Threats to Validity

The correctness of the proposed analytical model depends on the justification of the
adopted assumptions. For example, assuming that the locations within a transaction
where the restart occurred andwhere the transaction restarts from are randommoments
with uniform distributions on the defined interval may not model real situations
adequately and consequently limits the generalizability of the findings. Similarly, a
workload chosen for evaluation purposes was based on the STAMP benchmark, which
even though widely used, may not represent the proper choice for some applications.
Moreover, the evaluation was based on the results gained with a model simulator,
which does not produce a fine level of information, and therefore may represent a
threat to the accuracy of the findings. Although the reevaluation with an architec-
tural simulator confirmed that relative gains are in expected ranges, the usage of the
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architectural simulator based on JPC that represents a single architecture may also be
considered as a threat to validity of the findings.

6 Conclusion

The goal of transactionalmemory is to simplifymulti-core concurrent programming.A
programmerdemarcates a transactionwhile the transactionalmemoryprovides conflict
resolution for all concurrently executing transactions. This paper has introduced an
optimization for transactional memory with lazy conflict detection. The proposed
optimization builds on previous research and differs in that it eliminates the need for
the prediction of conflicting accesses and introduces incremental context saving. The
application of the proposed optimization on the TCC was analytically modeled using
a continuous-time model.

The comparison of the analytical results with the results of simulations demon-
strated both the accuracy and the capability of the proposed analytical model to reveal
the trend behavior of transactions with and without the restart optimization as well as
their relative performance. The simulation results indicate that the optimization does
not have a significant influence on the value of the restart probability. However, at
higher values of restart probability even small variations lead to large deviations in the
calculation of the expected transaction execution time and relative gain. The results for
the analytical model show that in cases when the restart probability remains the same
after the introduction of restart optimization, the expected relative gain for transactions
that have been restarted at least once is amonotonically increasing functionwith values
ranging from 0.17 to 0.33. Even though the proposed optimization and its analytical
model were developed to fulfill the specific requirements of the hardware transactional
memory with lazy conflict detection, the generality of the presented approach allows
its applicability to other types of transactional memory with lazy version management
regardless of the conflict detection strategy.
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