Int J Parallel Prog (2016) 44:1028-1053 @ CroseMark
DOI 10.1007/510766-016-0407-8

Hierarchical Synthesis of Quantum and Reversible
Architectures

Archimedes Pavlidis'-? . Dimitris Gizopoulos!

Received: 22 October 2015 / Accepted: 14 March 2016 / Published online: 25 March 2016
© Springer Science+Business Media New York 2016

Abstract Reversible hardware finds application in emerging areas such as low power
circuit design, quantum computing, optical computing, and DNA computing. Intensive
research has recently focused on the synthesis of quantum and reversible architectures.
Quantum architectures often take advantage of reversible circuit synthesis methods
but in general they require dedicated synthesis approaches because they represent a
more general computing paradigm. Most of these quantum and reversible synthesis
approaches derive efficient or even optimal circuits with scalability being their major
drawback: they can only handle small circuits (up to a few hundred inputs for the
most promising ones). In this paper, we propose a graph-based hierarchical synthesis
method for large reversible and quantum architectures which can be combined with
any of the existing synthesis methods to deliver unlimited scalability in synthesizing
arbitrary large and irregular architectures. The specification of any complex function is
provided in the form of a sequential algorithm consisting of primitive pre-synthesized
operations available in a library. The components of the library may have been designed
by ad-hoc methods or synthesized by the known methods in the literature or even by
the proposed synthesis procedure. The synthesized architecture is represented as a
dependence graph whose nodes correspond to the available components of the library
and their respective inverses so as no garbage remains at the output. The method can
be recursively applied at multiple levels to build any complex reversible or quantum
architecture.

B Dimitris Gizopoulos
dgizop@di.uoa.gr

Archimedes Pavlidis
adp@unipi.gr
Department of Informatics and Telecommunications, University of Athens, Panepistimiopolis,

Ilissia, 157 84 Athens, Greece

Department of Informatics, University of Piraeus, 80, Karaoli & Dimitriou St., 18534 Piraeus,
Greece

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-016-0407-8&domain=pdf

Int J Parallel Prog (2016) 44:1028-1053 1029

Keywords Quantum circuits - Reversible circuits - Synthesis

1 Introduction

Reversible computation occurs when the information is not erased during the course
of the processing and the input can be retrieved from the knowledge of the output
[5]. Reversible computation can be modeled as a reversible circuit comprising of
primitive reversible gates [30]. Reversible circuit designs find application in emerging
technologies and computation paradigms, such as quantum computation [21], low
power design [30], optical computing [12], DNA computing [36], etc.

Number factoring is an example where a quantum algorithm, known as Shor’s
algorithm [28], finds the factors of an integer in polynomial time whereas the best
classical algorithm needs exponential time.

Quantum systems simulations and optimization problems are other examples where
quantum computation can become advantageous [11]. Quantum computers apply uni-
tary transformations on qubits and thus these transformations are inherently reversible.
For this reason the design of quantum circuits can exploit reversible circuit design
methodologies [21].

Low power consumption is one of the limiting factors affecting the trend towards
miniaturization of conventionally designed irreversible electronic circuits. Excluding
technology aspects of the circuit implementation there is a fundamental lower limit
(Landauer limit [14]) of power consumption and this is related to the loss of information
when information processing is done in an irreversible manner. For each bit of informa-
tion loss at least kTIn2 Joules of energy are dissipated, where T is the environment tem-
perature and & is the Boltzmann constant. Although today the power consumption due
to this fundamental limit is still much lower than the power consumption due to tech-
nology, some estimations show that in the next decade the Landauer limit will become
the dominant factor [7]. Therefore, general procedures for the design of arbitrary large
reversible circuits will support forthcoming conventional technology scaling.

We present a graph-based hierarchical synthesis methodology for arbitrary large
and irregular quantum and reversible architectures. An architecture is prescribed as a
sequence of elementary operations that correspond to existing quantum or reversible
components of a library. The library can be populated with new circuits synthesized
by the same or other methods in a multilevel hierarchical synthesis setup. We have
successfully applied our methodology to a recently proposed complex realization of
Shor’s factorization algorithm and results confirm the flexibility and scalability of the
proposed synthesis methodology. Our methodology can be applied to any important
quantum or reversible algorithm and target physical technology.

2 Background and Related Work
2.1 Reversible Circuits and Gates

A reversible circuit is a logic combinatorial circuit implementing a function f :
B" — B", where B = {0, 1}, n is the number of input and outputs and the func-

@ Springer

1030 Int J Parallel Prog (2016) 44:1028-1053

tion f is a bijection or equivalently a permutation. This means that there exists
the inverse function f~! : B” — B” such that for each x giving f(x) = y then
f~Y(») = x. A reversible circuit is constructed by combining logic reversible gates
selected from a reversible library. Usually, libraries used to build reversible circuits
contain some or all of the following reversible gates: NOT, CNOT and Toffolii.
Reversible circuits can be built with ad hoc techniques, e,g, “by hand”, or through
an automated synthesis method, when adequate specifications of the desired function
are given.

Sometimes the function to be implemented in a reversible circuit does not have
equal number of inputs and outputs or it is not bijective, thus it is irreversible. Such
an irreversible function has the form f : B" — B™ where m < n and/or there exist
k >1input vectors x; € B", i = 1...k mapped to the same output combination, that
is f (x1) = --- = f (xx). An irreversible function can be transformed to a reversible
one by embedding it into another constructed reversible function g: B"™¢ — B"+§
having ¢ additional inputs and g additional outputs. The reversibility requirement of
equal number of inputs and outputs leads to the relation n + ¢ = m + g. The n
inputs and m outputs are the primary ones, while the additional g outputs are the
garbage ones. The possible addition of constant variables due to the requirement of
the addition of garbage outputs leads to the increment of wires carrying these variables
in the implemented circuits. These wires are the ancillae of the circuit and they must
be reset back to a known constant state, usually the O state, in order to be reused
later as a constant input to a larger circuit. The number of the wires in a circuit
is a valuable resource, especially in the context of the quantum computation, and
for this reason effort must be done to reduce the ancilla used. Garbage qubits are
qubits which can’t be re-used as ancillae in subsequent computations. Our synthesis
algorithm eliminates garbage (except for the input arguments) without using excessive
ancillae.

2.2 Quantum Circuits and Gates

Implementations of quantum gates in various technologies are restricted to a small
set of elementary one-qubits or two-qubits only. Commonly used quantum gates are
the one qubit X, Y, Z gates, the Hadamard gate H the S and T gates and the two
qubits CNOT gate. An n-qubits quantum gate U can be decomposed [3,6,27,32] (or
approximated with arbitrary accuracy) into a sequence of elementary gates acting on
different qubits each instant of time.

While a reversible circuit operates on classical bits, e.g. on variables taking discrete
values 0 or 1, a quantum circuit operates on qubits taking values in a continuous range
(namely the surface of a sphere called Bloch’s sphere). Moreover, the reversible logic
gates are a subset of the quantum gates (the reversible gates can be described by matri-
ces having elements the integers O or 1). Nevertheless, quantum circuit synthesis can
exploit known reversible circuit techniques as many quantum algorithms use arith-
metic and logic operations (they are Boolean). An example is Shor’s algorithm whose
main parts are: (a) a modular exponentiation computation and (b) a quantum Fourier
transform (QFT). The former part can be described in integer arithmetic terms on the
computational basis and, therefore its construction can take advantage of reversible

@ Springer

Int J Parallel Prog (2016) 44:1028-1053 1031

synthesis techniques, something that cannot be applied to the latter part of the QFT. In
the former case a reversible circuit implementing the function can be invoked and then
a transformation to the quantum circuit can be applied using the available quantum
gates.

Among the different physical layer technologies that are being investigated, the
ones that will prevail for large-scale quantum circuit implementations will be those
that satisfy certain requirements. One of the stringent requirements is the scalability of
the technology with the number of qubits (e.g. memory size) required for a particular
algorithm. Qubits increase requires the employment of fault tolerance mechanisms
that will deal with the problem of decoherence. The ion-trap technology for the imple-
mentation of large quantum circuits has been studied in [2,13,19,20,29] and such
proposals of quantum architectures show that large scale quantum computers can be
feasible in the near future. The programming (e.g. sequence of quantum operations
or equivalently connections between quantum gates) on such large scale architectures
requires synthesis algorithms capable to handle large quantum circuits. Our work
contributes to this direction and is applicable to any physical technology that will
eventually be used in large-scale quantum computers.

2.3 Reversible and Quantum Synthesis

In general, the reversible synthesis methods can be divided in two families: (a) opti-
mal or asymptotically optimal and (b) heuristic. The former methods result in a circuit
that minimizes a particular cost factor which is usually the number of gates. Optimal
methods are practical for a few bits only (e.g. 3 or 4bits) as they demand exponen-
tially grown memory and time as a function of inputs [8,23,26]. Heuristic synthesis
methods behave better referring to the bits handling capacity at the cost of relax-
ing the optimality requirement. Transformation [17,18], search [10], cycle [25] and
Binary Decision Diagrams (BDD) [33] based methods fall under the latter category.
A thorough overview can be found in [24]. In general, most of the methods suffer
from limited scalability: they do not handle large circuits of more than 100 bits due to
restrictions of memory and runtime as they consume exponential resources in arbitrary
examples cases.

Quantum synthesis differs from reversible synthesis in the specifications and the
libraries used to synthesize the circuit. Boolean specifications in the computational
basis are adequate when the target circuit is an arithmetic one or logical one due to the
linearity and the superposition principle. Thus, reversible circuit methodologies can
be used and then library transformation can be applied to convert from the reversible
library to a quantum library. When the specifications are in the form of a unitary
matrix U of dimension 2" x 2" for a circuit consisting of n qubits then decomposition
methods can be applied [3,6,27,32]. In such methods the unitary U is decomposed in
a sequence of one-qubit and two qubit gates where the specific gates depend on the
library. Gates number is exponential in 7.

As discussed above the various existing quantum and reversible synthesis meth-
ods need exponential computing resources and thus they do not scale well for large
circuits. A step towards synthesis of large circuits would be the combined use of hier-
archical methods where the circuit, being reversible or quantum, is built level by level

@ Springer

1032 Int J Parallel Prog (2016) 44:1028-1053

using already synthesized functions of smaller blocks. These blocks can be ad-hoc
designed if they correspond to well known circuits involving regularity (e.g. adders
or other arithmetic circuits), automatically synthesized by a synthesis method chosen
by the user, or synthesized by the proposed method if a bottom up design is needed to
handle a complex specification. To our knowledge only a few hierarchical synthesis
method have been presented in the literature [1,9, 16,34,35]. Our hierarchical synthe-
sis method applies to both reversible and quantum circuits and eliminates intermediate
bits/qubits without excessive ancilla usage. It also supports unlimited circuit size han-
dling capability on an existing library of components. It applies to the quantum case

whenever a classically defined “oracle” arithmetic function must be embodied in the
quantum algorithm.

3 Methodology Basics

In this section, we present a set of interoperating algorithmic routines which synthesize
a complex reversible or quantum circuit using abstract functional blocks. Figure 1
outlines the basic steps of the methodology. The abstract blocks are part of a library
and are assumed to be already synthesized (using our method or other lower level
methods). The specifications of the target architecture come in the form of sequence
of arithmetic/logical instructions. The circuit is synthesized progressively in three
steps. In the forward synthesis part a directed acyclic graph representing the required
computations by the specifications is built by interconnecting various library blocks
and possibly by adding ancillae (whenever temporary variables are used), without

input c
Sequence of input y
Functions x=0

x=CMACa (x,y,C)
[q,r]=DIVN (x)

v

Forward
Synthesis

Deadlock 0 ™

Detection & . '
. ’
Prevention . L,

Specification

Reversing ©o © - E)I(_ It;r:gén
Synthesis 000 ©0 P
OO0 00O

Fig. 1 High level description of the proposed synthesis methodology

@ Springer

Int J Parallel Prog (2016) 44:1028-1053 1033

taking into account the resetting of the ancillae. Subsequently, possible deadlocks
which prevent the next step are detected and eliminated. The last step, reversing, is
the expansion of the graph so as to reset the ancilla states.

3.1 Initial Specifications and Library

We consider sequences of arithmetic and logical operations describing the reversible
circuit or the quantum oracle of the general form:

x = fi(x, D) (1)

Function f; affects only one of its two input variables x and b. Index i is an identifier
used to distinguish among the various available functions in the library. Variables x
and b are integers of n, and n, bits, respectively. We call variable x the affected
variable and b the control variable. There are special cases of elementary functions
that fall under the description of Eq. (1). In the simplest case there is no control variable
(np = 0) in the computation of a primitive assignment such as x = NOT(x). In other
cases the bits of the variables are partitioned into sets, where each set has its own index
as shown in Eq. (2).

[xl(om), o xlgo'”)] = f; ([xl(in), o x,(in)] , [b1, ...,bm]) (2)

In this case, output variable x (denoted as x®*))) is partitioned in k subsets of bits, each
one indexed as variable xi(o“t) ,i =1, ..., kand consists of ny, bits. Similar description
applies to variables x) and b. As an example consider the function of dividing a 2n
bits affected input variable by a constant integer resulting in an n bits quotient and an
n bits remainder whenever the quotient is less than 2”. In this case k = 2 and [= 1
and the bits representing the dividend become the quotient and remainder bits of the
output.

We assume that a library of quantum or reversible subcircuits implementing the
classical functions in the form of Egs. (1) or (2) like the one proposed in [15]
is available. This library can also be viewed as the instruction set of a quantum
arithmetic logical unit (QALU) and the result of our synthesis procedure can be
viewed as the sequence of executions of the quantum instructions to various quan-
tum registers of the QALU. An example quantum library of arithmetic and logical
functions is given in Table 1. Various quantum circuit representations of these func-
tions can be found in the literature or can be synthesized with known methods.
The library can be arbitrarily extended by including more complex functions or
even new functions synthesized by the algorithm described in this paper or other
methods.

Each function shown in Table 1 transforms the quantum state (input state) of a
qubits collection to another quantum state (output state). This transformation depends
on the state of some other qubits which remain unaltered. We call the qubits that get
transformed affected and the qubits that remain unaltered but influence the affected

@ Springer

1034 Int J Parallel Prog (2016) 44:1028-1053

Table 1 Example functions of a quantum library

Quantum function Affected qubits Control qubits
Input state Output state Size State Size
INP_F - 0orx n - 0
NOT X ~ X n - 0
CNOT X x@eb n b n
COPY x=0 0db=0>b n b n
ADDC, x x 4+ a (mod 2™) n - 0
CADDC, x x + ca (mod 2) n c 1
ADD x x + b (mod 2") n b n
CADD X x + ¢b (mod 2™) n b, c n, 1
MAC, x x + ab (mod 22) 2n b n
CMAC, x x + cab (mod 22") 2n b,c n 1
DIV, X x/a,x mod « 2n - 0
OUT_F X X n - 0

qubits control qubits, in correspondence to the affected and control variables of func-
tion f in Eq. (1), respectively. In Table 1, for each quantum function shown in the
first column the following columns show the number of affected qubits (size), their
initial state and the output (transformed) state. The last columns show the state and the
number of the control qubits. Since the state of the control qubits remains unaltered,
Table 1 does not distinguish between input and output states for these qubits. The
inverses of the functions of Table 1 (which are inherently reversible) are not shown,
but are also included in the library.

3.2 Quantum Dependence Graph

The synthesized quantum circuit is represented as a directional acyclic graph (Quan-
tum Dependence Graph or QDG) consisting of nodes corresponding to the quantum
subcircuits (blocks) of the library functions and of arcs corresponding to the individual
qubits or groups of qubits (qubit buses) connecting these blocks.

Figure 2 clarifies with an example the notation and the labels used in a QDG.
Figure 2a is a quantum addition circuit block in standard notation implementing the
function ADD (x,y). Qubits of input y remain unaffected at the output as the block is
reversible and thus they correspond to control qubits. Figure 2b is the same block in a
more compact form with the qubits organized in buses and connected in different ports.
Figure 2c represents the same block as a QDG node and its incoming and outgoing
arcs. Attached to the node are the type label which is equal to value ADD and the
id label (it depends on the relative position in a particular QDG). The bottom left arc
corresponds to the qubits carrying the x state and has three labels attached: The width
of the arc (width) which is equal to the number of the qubits n, the port destination
label dest which is =1 as there is only one affected input port for this block and
the port source information (source) which depends on other nodes of the QDG.

@ Springer

Int J Parallel Prog (2016) 44:1028-1053 1035

Fig. 2 Representation of a

quantum functional block in the y"_l. ‘-E

QDG notation. a Functional : 8 Yy
block showing all the qubits : £ 1
taking part in the operation : __g

along with their input and output RANER 5 8

states, b the same block with the Yo (| © <

qubits organized in buses X, a

connected to ports, and ¢ the . < -
abstract notation of the same : ‘.E §_ o+
block as a node with arcs and 8 = Y
their labels. The question marks X . £ ° n
mean that the respective label %o :1(:; 5
depends on the specific

connections of the node relative

to the other nodes of the QDG (a) (b)

source="?

width=0 source=1

dest=1 width=n
dest=?

type=ADD
id=?

source="?
width=n
dest=1

()

Similar remarks hold for the rest of the labels attached to the other two arcs (control
input arc and affected output arc).

The labels 1d and type can be represented by integers, for each type there is its
negative type which corresponds to the block performing the inverse function. Also,
the constant parameters of some of the blocks (e.g. parameter « of the function MACa)
are assumed to be included in the type label. Later, a third label named anc (integer
with values 1 or 0) will be used also.

The affected qubits (or affected qubit buses) transformed by a node are represented
by arcs incoming to and outgoing from that node. Each affected arc, either incoming or
outgoing, must also include the port source (arc tail connection) and port destination
(arc head connection) information, because some nodes may have more than one input
and/or output qubits buses and we need to distinguish the various possible ports of
each node.

Similarly, the input control qubit buses of a quantum function are represented as
incoming arcs to the corresponding node. Control arcs always have a width of 0 (no
matter their real qubits width) so as to be distinguished from affected arcs. The tail of
control arcs emerge from affected qubits output ports of an ancestor node. As control
qubits are not altered by any node they entered, there is no need to show their exit by
an outgoing arc. Similarly with the case of the affected qubits arcs, we need to include
in each control arc the port source and port destination information.

Input nodes of the graph represent initial qubit states (quantum variables passed
to the quantum algorithm represented by the QDG) or ancilla qubits initially set to a

@ Springer

1036 Int J Parallel Prog (2016) 44:1028-1053

Fig. 3 Mapping between the
standard notation (fop) and the
QDG notation (bottom). — A
Affected arcs have width > 0,
while control arcs have width=0

zero state. For both cases, a node with the special type INP_F is used in the graph.
Similarly, output nodes of the graph represent output qubits states (final results or
ancilla states). The ancilla states correspond to garbage qubits states or ancilla qubits
reset back to their initial zero state when the reversal procedure described later is
applied. The output nodes are represented with a node of the special type OUT_F
which acts as an identity node.

In some of the functions, the control qubits are grouped in different states variables.
The same applies for the affected qubits in some of the functions. As an example, the
controlled adder CADD has the two groups of control qubits b and ¢, of n qubits and
one qubit, respectively. Also, the divider function DIV has 2n qubits wide input state,
but the output state is grouped in two qubits buses of n qubits, namely the quotient
and the remainder. In general, we allow such qubit grouping in the functions of the
library because it facilitates the initial specifications.

The separation of the qubit buses into affected and control ones simplifies the
internal representation of the circuit and the workings of the synthesis algorithm,
especially the deadlocks detection developed later. The restriction that a node control
input does not exit the same node does not contradict the standard notation of a quantum
circuit; it is just a remapping of the notation shown in Fig. 3.

4 Forward QDG Synthesis
The first phase (see Fig. 1) of the QDG construction is dedicated exclusively to the

forward computations, without taking into account the resetting of the possible ancillae
qubits. This step is trivial and will be explained in short.

4.1 Representation of Classical Algorithm

Dependencies among the sequence of functions of the classical algorithm to be mapped
as a quantum oracle exist when a variable in the list of affected output variables of

@ Springer

Int J Parallel Prog (2016) 44:1028-1053 1037

a function is used as an input variable (affected or control) in a subsequent function.
These dependencies will be reflected in the QDG through the use of an arc connecting
two nodes. Initial values and input variables of the algorithm correspond to affected
output ports of INP_F nodes, while the variables giving the final results (desired
and garbage) of the algorithm correspond to affected input ports of OUT_F nodes.
Intermediate variables (temporary) used in the algorithm for the calculations of the
final results correspond mainly to ancilla qubits.

An arbitrary classical algorithm using elementary functions of the form of Eq. (2)
can be equivalently described by arrays of integers and arrays of lists of size L, where
L is the total number of functions comprising the algorithm. An integer array type
describes the type of each function, arrays of lists p, m and ¢ describe the lists of
affected output, affected input and control input variables, respectively. Another array
of integers, named w describes the number of bits used by each variable. Last, array
res will discriminate which of the variables used in the algorithm are the desired
final results and which are intermediate temporary variables. This last array definition
is crucial for the final phase of the synthesis algorithm whose purpose is to reset
intermediate garbage.

4.2 Forward Synthesis Algorithm

The main data structures used in the synthesis of the forward computations QDG are
the graph structure itself, named £ orwQDG, and the arrays type, p, m, ¢, wand res
describing the classical algorithm mentioned in the previous subsection.

The purpose of forward synthesis algorithm is to add nodes to the forwQDG (ini-
tially null), one for each function found in the classical algorithm and connect them
with affected and control arcs based on the dependencies between the variables. In
brief, the synthesis algorithm of the forward QDG consists of the steps shown in
Table 2 and explained below. An example of a part of forward QDG built by such an
algorithm is shown in Fig. 4.

The synthesis algorithm executes the for loop of size L (lines 1, 5). For each integer
1(1 = 1...L) the following steps build gradually the forward QDG:

Line 2 Add a new node in the forward QDG. This node has a type label equal to
the type of the function (type [11). A new node id is assigned sequentially for each
node added.

Table 2 Forward QDG

synthesis algorithm Operations
1: FOR each line 1 DO
2: Add node
3: Add incoming control arcs to node.
4: Add incoming affected arcs to node
5: END FOR
6: Add terminal (OUT_F) nodes
7: Record the terminal nodes carrying garbage in a list

@ Springer

1038 Int J Parallel Prog (2016) 44:1028-1053

Fig. 4 Part of an example
forward QDG node. Attached at
the tail of the solid arcs is the
output state and at the head of
the arcs is the width of the arc (0
for control arc). Inside the
circles of the nodes the port
numbers for each case of
affected input, affected output
and control input arcs are shown

forward QDG

Line 3 Scan the list of control input variables ¢ [1] of this function. Then for
each control variable in the list, find every function k that includes this variable in
its output variable list p [k] and connect with an arc the two respective nodes of the
QDG corresponding to these two functions, 1 and k. As the arc connecting the two
nodes is related to a control input connection add a width label of value O on the arc.
Add source and destination port labels reflecting the input and output ports that are
connected by this arc. The position of the variable in the lists p [k] and ¢ [1] is the
source and destination port number, respectively.

Line 4 Scan the list of affected input variables m[1] of this function. Then for
each affected input variable find every function that includes this variable in its output
variable list p [k] and connect with an arc the two QDG nodes which correspond to
these two lines, 1 and k. Add labels on this arc reflecting the number of the qubits
carried by this variable (w[m[1]]) and also the source and destination port similarly
to Line 3 above. If no line with such an output variable is found then add a new node
of type INP_F and make the required connection with the relevant labels (This means
that the input variable is an input argument to the classical oracle to be synthesized).

After the execution of the loop, two more steps are necessary to prepare the reversing
phase of the synthesis:

Line 5 For all unmatched affected output variables (this means that the variable is
a final desired result or an ancilla output) add a new node of type OUTP_F and make
the required arc connection assigning the relevant width and port labels.

Line 6 Record in alist (GarbageTermLi st), the terminal node ids of the forward
QDG which carry garbage results, that is non desired final results. This discrimination
is based on the array res mentioned in the previous subsection.

5 Reversible QDG Synthesis

The final phase of our synthesis algorithm transforms and expands the forward QDG
so as to reset all ancilla qubits back to their initial constant states.

@ Springer

Int J Parallel Prog (2016) 44:1028-1053 1039

Fig. 5 Inversion of node A of reversible QDG expansion
the example forward QDG

shown in Fig. 4. Legend of arc .
and node labels is similar as that R
of Fig. 4

5.1 Node Inversion

The un-computation of the state of ancilla qubits back to a constant state can be
achieved by successively inverting the states of ancilla qubits that appear at the output
of a terminal node through all the nodes up the respective input nodes affecting these
ancilla qubits. These terminal nodes have been recorded in GarbageTermList.

To understand the requirements and the procedure to invert the state of the affected
output qubits of a node in a QDG, we refer to Figs. 4 and 5 which represent a
segment of an example forward QDG and its expansion (called revQDG), respec-
tively. The purpose of the expanded QDG is to uncompute the garbage ancilla
states.

In Fig. 5, nodes A~L B!, Cc !, D! and H™! are the nodes required to invert the
output states of node A of the forward QDG in Fig. 4. Inverting states s, 52, 53 of the
output qubits of node A means to transform them into the states 1 and r». Figure 4
shows that node A receives as affected inputs two arcs (with widths n; and n7) from
nodes E and F being in states r; and r;, respectively. These are controlled by state
¢4 (arc of width 0 emerging from node G) and transformed into the output states sy,
52, s3. The inverse transformation is realized by another node of the reverse QDG,
namely node A~!, which is the inverse of node A (as we have previously mentioned,
the quantum library contains the inverse of every function as well). So, if the affected
input ports of node A~! are fed with the states s, 52, 53 and its control input is fed with
the state c4 it is obvious that the required inversed states r; and r become available
at the affected output ports of node A~

This inversion implies that states s1, s2, s3 and c4 must be available. In the example
we have shown for the forward QDG states s1, 52, s3 have already been processed
by the successor nodes of A (nodes B, C, D) and the state c4 has been processed by
node H. This necessitates the inversion of nodes B, C, D and H before the inversion of
node A.

The incoming arcs connections to node A~! are as follows. Node A has two ports
of affected input qubits, namely 1 and 2 of respective qubits width n; and 75, and a
unique control input port labeled as 1. Moreover, it has three affected output ports (1,

@ Springer

1040 Int J Parallel Prog (2016) 44:1028-1053

2 and 3) of widths n4, ns, and ne, respectively. The ports of the affected input qubits
of the inverted node A~! are the ports of the affected output qubits of node A and vice
versa. Control port 1 of A~! corresponds to the same port (number 1) of node A. When
connecting the incoming arcs of node A~! the algorithm needs the extra information
of which ports are engaged in these connections.

5.2 Global Considerations

The above per-node inversion procedure must be applied by taking global considera-
tions into account. Some prerequisites and constraints are the following:

e Selection of nodes which require inversion Only some of the forward computation
QDG nodes need to be inverted. The reversing algorithm must select and label
the nodes of the forward computation that need inversion (using label anc with
values 0 or 1 attached at each node). The reversing algorithm begins from the
nodes listed in GarbageTermList and recursively marks all the internal nodes
of the forward QDG that have a path connection to these leaf nodes as the nodes
that require inversion. These paths must comprise exclusively of affected arcs, i.e.
it marks only the ancestors of the output nodes that directly transform the final
ancilla state. The nodes which need inversion will be called ancilla nodes and
their anc label is set to value 1 (the rest of the nodes have a value 0 and will
be called non ancilla nodes). This prerequisite to mark the ancilla nodes of the
forward QDG will be taken into account later, at line 1 of the reversing algorithm
shown in Table 6.

e Sequence of inversion The algorithm must check that each candidate node for

inversion is ready and allowed for this operation. Only a subset of the ancilla
nodes is able to be inverted at each instance. This is due to the existence of data
dependencies between the various nodes. In the example of Fig. 4, node A can be
inverted only if its children nodes are already inverted (in case they were ancilla
nodes) because node N requires the states s1, 52, s3. These states are not available
as the forward computation has already transformed these states by applying nodes
B, Cand D. The readiness condition just described is given in line 8 of the reversing
algorithm in Table 6.
Even if an ancilla node is ready for inversion, a postponement of this action may
be necessary. This may happen if this blocks the inversion of other nodes. E.g. the
candidate node for inversion has a control arc connection towards another ancilla
node which is not yet inverted. The purpose of updating the GarbageTermList
in line 11 of Table 6 is exactly this.

e Tracking of intermediate states The inversion algorithm needs to keep track of
which forward QDG node output state corresponds to the new output states com-
puted by each new inverted node. Referring again to Fig. 5, when node A~! is
added to invert node A, the necessary information of where to find the states s7, 52,
s3 must have been recorded. These states have been computed in a previous step
of the algorithm when the inversion of nodes B, C and D took place, by adding
nodes B~!, C~! and D! and their corresponding arcs, so these latter nodes can
supply the required states s1, s2, $3.

@ Springer

Int J Parallel Prog (2016) 44:1028-1053 1041

Table 3 Node inversion

algorithm Operations

ADD New Node of type A~1in revoDG

2: ADD affected arcs in revQDG from nodes of
RevInfo(A) list towards node AL

3: FIND the ancestors Fi,...,Fy of node A that have
affected arc connections with A.

4: UPDATE the lists RevInfo(Fy),...,RevInfo(Fy)
with the new added node A~ 1.

5: FIND all the nodes CAy, ..., CAy, which control node
A..

6: ADD control arc connections in revQDG from nodes

CAl,...,CA, tonode A~

An array of lists named revinfo is used for this purpose. A list is assigned to
each node of the £orwQDG. Initially, the lists corresponding to the terminal nodes
of the forwQDG contain as records the same terminal nodes (meaning that the
output states of the terminal nodes are available at the nodes themselves), while
the revinfo lists of the internal nodes are empty (meaning that the states of the
internal nodes of the forwQDG are no longer available as the forward computation
has proceeded to the end). Additionally, the records of a list contain arcs infor-
mation such as the source port, destination port and width. During the inversion
of the nodes procedure, as the revQDG is expanded, states of internal nodes of
the forwQDQ gradually become available (new terminal nodes in the revQDG
appear) while states of other nodes are no longer available (they become internal
nodes of the revQDG). Therefore, the revinfo lists must be updated anytime a node
is inverted and this update becomes part of the node inversion algorithm shown in
Table 3.

e Deadlocks resolution There are cases where it is impossible to invert a given
forward computations QDG without applying a certain transformation on it. These
cases are again related to the data dependencies imposed between two nodes which
prevent the inversion of another node. Treatment of these situations is described
in detail in the following subsection.

5.3 Deadlocks Resolution

There are two possible cases that can lead to deadlock of the reversing algorithm. The
two cases are depicted in Figs. 6 and 7. In both cases we assume that we have already
marked all the nodes of the QDG as ancilla or non ancilla nodes.

The sequence of deadlock resolution algorithms is to first apply the algorithm for
the second type and afterwards the algorithm for the first type, as it is possible the
revocation of a second type deadlock to generate a first type deadlock, but not vice
versa.

Both deadlock resolution algorithm use additional ancilla bits/qubits and copy the
output port states of the nodes that cause the deadlocks to these new ancillae. This is a

@ Springer

1042 Int J Parallel Prog (2016) 44:1028-1053

INP_F

Ancilla

Fig. 6 First type of deadlock resolution. Nodes A and B are ancilla, nodes Cy and C, are non-ancilla and
M|.,M3,N1,N7,01 and O, are the nodes added to prevent the deadlock. Next to each arc is shown its width.
Ports are shown inside the circles of some nodes

Fig. 7 Second type of deadlock. Nodes A, E, F, G, H are non -ancilla whereas nodes B, C, D are ancilla.
Nodes M, N, O added to prevent the deadlock. Width of each arc is shown

bitwise copy operation which is simply performed with CNOT gates having as control
the bit state to be copied and as target the new ancilla in the zero state.

Although a real copy operation is not permitted in the quantum context due to the
“no-cloning” theorem, the purpose here is to reset an intermediate ancilla state back
to zero. If someone analyzes the global operation of the circuit he can see that as long
as the garbage states ends up in state O for every basis input state then the same holds
for every superposition of them. That is the garbage states become 0 and disentangled

@ Springer

Int J Parallel Prog (2016) 44:1028-1053 1043

from the other states. Consequently, the circuit operation is the desired one when
analyzed globally (see Sect. 7 for more details).

In both deadlock cases I and II the drawback of adding more ancilla qubits can be
counterbalanced by the reversing of other ancilla qubits which otherwise would be
garbage qubits and could not be reused. This point will be further analyzed in Sect. 7.

5.3.1 Deadlock Type 1

The handling of the first deadlock type is depicted in Fig. 6. Nodes A and B are marked
as ancilla and are connected by an affected arc (width greater than zero). Nodes C
and C, are marked as non-ancilla and the arcs connecting node A with them have
also a width greater than zero (n; and ny) and emerge from different ports of node
A, namely pj and p;. It is the affected arc between nodes A and B the fact that gives
the ancilla property to node A and consequently the necessity to invert it; its other
children connections are towards the non ancilla nodes C; and C,.

The deadlock condition then arises due to the fact that a node like A has affected
arc connections to both ancilla and non ancilla children. It is impossible to invert the
ancilla node A as this requires the prior inversion of nodes C; and C,, but these nodes
must not be inverted as they are non ancilla nodes and their output results must remain
unaltered up to the end of the computations. This kind of deadlock can be prevented
by “copying” the qubits emerging from ports p; and p> and thus releasing node A so
as its output states can be inverted as desired. The detailed required actions to revoke
such a deadlock case are described in Table 4 and Fig. 6.

5.3.2 Deadlock Type 11

The second type of deadlock is illustrated in Fig. 7. Node A which is non-ancilla
controls via an arc (width 0) emerging from port p; an ancilla node B. As the latter
node is an ancilla node it must be inverted. This inversion need means either that the
forward computations must not have proceeded beyond node A (towards nodes E, F,
G and H) or that the output state of port p1 of A must be available somewhere else in
the QDG.

The deadlock condition arises whenever a path like A - E — F - G — H (Path
1 in Fig. 7) consists exclusively of affected qubits arcs (width greater than zero), the
nodes belonging to the path are non-ancilla and simultaneously exists a second path
from B to H (Path 2 in Fig. 7) where the subpath B — D consists of affected arcs
while the last arc D — H is supposed to be a control arc. The nodes belonging to path
B-D are assumed to be ancilla nodes. Both paths must emerge from the same output
port (shown in Fig. 7 as p1) of node A.

If the last arc D — H wasn’t a control arc then this case could be handled by the
resolution of type I deadlock because in such case node D, being ancilla node, would
have another outgoing arc of width greater than zero leading to another ancilla node.
For the same reason, node A is supposed to be a non ancilla node, otherwise we would
face an ancilla node having both ancilla and non ancilla children connected through
affected arcs.

@ Springer

1044 Int J Parallel Prog (2016) 44:1028-1053

Table 4 Detection and resolution of deadlock I algorithm

Operations
1: FOR each ancilla node A of forwQDG DO

2: IF node A has affected arcs connections to both ancilla and
non anciila children nodes THEN

3: FOR each affected outgoing arc i emerging from node A
(port p;) and leading to a non-ancilla node C; DO
4: ADD a new node, M;, of type INP_F initializing »;
qubits in zero state. The number #; is the width of the
arc A—C;.
S: ADD a new node, N;, of type COPY whose purpose is

to copy the port p; output state of node A.

6: ADD an affectecd arc connection from node M; to
node N; of width »; (the number of qubits to be
copied). The port information attached to this arc is
trivial (1 for both the tail and head) as an INP_F node
has only one output port and a COPY node has only
one affected input port.

7: ADD a control arc connection (width 0) from node A
to node N;. The tail of this arc is port p; of node A and
the head is port 1 as a COPY node has only one
control input port.

8: ADD an affected arc connection from node N; to node
C;. Arc’s destination port is the destination port of arc
A—C; and its width is #;. The source port of this arc is
again 1 as only one output port exists on any COPY

node.

9: REMOVE the arc connecting node A with node C;.

10: ADD an OUT _F node.

11: ADD arc connection from port p; of node A to node
OUT_F.

12: MARK node OUT F as ancilla node.

13: END FOR

14: END IF

15: END FOR

This second deadlock condition can be justified for the following reasons. If the
inversion of node B is done prior the advancement of the forward computations beyond
node A (towards node H) then the output state of node D will not be longer available
and the computation on node H could not be done. On the other hand as explained
above, if the forward computation has advanced up to node H (so as node D can be
inverted) then the inversion of node B cannot be done as the output state of node A is
no longer available.

An algorithm for detection of second type of deadlocks has been developed and
is briefly described in Table 5. A detected deadlock can be revoked with similar
actions as those of the first deadlock case, that is addition of nodes M, N, O and some

@ Springer

Int J Parallel Prog (2016) 44:1028-1053 1045

Table 5 Detection of deadlock II algorithm

Operations
FOR each non-ancilla node A of the forwQDG DO

—

2: Generate a list LO with the non ancilla children of A

3: Generate a list L1 with the ancilla children of A

4: FOR each node C1 of forwQDG in L1 DO

S: FOR each node CO of forwQDG in LO DO

6: IF source(arc(A,C1))=source(arc(A,C0)) THEN

7: nonAncS=DFS1(C0); p=source(arc(’,C0)

8: FOR each S in nonAncS DO

9: path2=FindPath(C1,S)

10: IF path2#NULL AND all arcs of path2 are
affected except the last one THEN

11: Deadlock 2 found at port p of node A

12: END IF

13: END FOR

14: END IF

15: END FOR

16: END FOR

17: END FOR

rearrangement of arcs as depicted in Fig. 7. Detailed resolution operations are not
exposed in Table 5 due to the similarity with first case.

The detection of the second type is as follows: Every non ancilla node A is checked
for engagement in a possible deadlock (lines 1, 17). For each such node a list, L0,
consisting of its non ancilla children is built (line 2) and another list, L1, consisting of
its ancilla children is also built (line 3). The purpose of the double loop defined in lines
4,16 and 5, 15 is to check if two arcs emerge from the same port p of node A towards
an ancilla and a non ancilla node (lines 6, 14). This is a prerequisite for the deadlock of
the second kind and this condition corresponds to the arcs A—E and A— B in Fig. 7.
If such a condition is fulfilled then another list, nonAncsS, that contains non ancilla
nodes is built (line 7). This list contains only the non ancilla successor nodes of node
C0 and a modified Depth First Search procedure can be applied for this retrieval. This
modified search procedure traverses only the affected arcs (the ones with their width
greater than zero). Now, every path from node A to each node S of the list nonAncS
corresponds a path similar to Pathl in Fig. 7. The final check is to find if a second
path exists from node C1 to any of the nodes recorded in list nonAncsS (lines 8—13).
This path must be composed of affected arcs only except the last one (line 10) and
this could correspond to Path 2 in Fig. 7. If this final condition is true (line 11) then a
procedure similar to that one exposed in Table 4 is applied to port p of node A which
causes the second kind of deadlock.

@ Springer

1046 Int J Parallel Prog (2016) 44:1028-1053

5.3.3 Uniqueness of the Two Deadlock Conditions

The previous two deadlock types are the only ones that can arise. This can be justified
if we examine all the possible connection cases of an ancilla node, e.g. B, which must
be inverted. The necessary conditions to invert node B are: (1) its incoming control
states be available at the instance of inversion and (2) its outgoing output states be also
available, as explained previously.

The first condition means to investigate the possible cases of ancestor nodes of B
that have control arcs connected to it. There are two cases: (1a) an ancestor node A is
a non ancilla node and (1b) an ancestor node A is an ancilla node. Case 1a is covered
by the type II deadlock. Case 1b means that at least one of the successors of A, e.g.
C, with affected arc connection from node A is an ancilla node. If such a connection
emerges from the same port as the arc A — B then node B can be inverted only if node
C can be inverted so as this case is reduced to recursively check if node C is engaged
in any deadlock. On the other hand if such a connection emerges from another port of
node A then we can see that we fall back in a type I deadlock.

The second condition can be separated in the following subcases: (2a) All the
successors of node B are ancilla nodes. This means that this condition can be reduced
to assure recursively that the successors are not engaged in any deadlock. (2b) At least
one of the successors is a non ancilla node and this case is handled again by the type
I deadlock.

Therefore, all the necessary conditions to invert an ancilla node are covered by
preventing just the two deadlock cases described previously.

5.4 Reversing Algorithm

The actions described previously to reset the garbage states are collected together in
Table 6. The initialization actions already described are the marking of ancilla nodes
of the forward QDG (line 1, Sect. 5.2), the application of the two deadlock resolution
algorithms (lines 2, 3, Sects. 5.3.1 and 5.3.2) and the initialization of the revinfo
lists (Sect. 5.2).

The forwQDG already modified by the two deadlock resolution procedures is then
copied (line 5) to a second QDG called revQDG. New nodes will be progressively
added to revQDG, while at the same time ancilla nodes will be deleted from £ orwQDG.
The final synthesis product will be the revQDG graph.

The circular list, GarbageTermList, is used to store the ids of garbage terminal
nodes of forwQDG. This list is initialized during the construction of the forward QDG
(Sect. 4.2) and contains all the terminal nodes of the graph that carry non desired
results, that is it initially contains the terminal nodes carrying garbage. This list is
updated during the reversion algorithm by removing ancilla node ids just inverted and
by adding ancilla node ids which became terminal nodes after the removal of inverted
nodes in the forwQDG. The algorithm scans in a circular manner this list until it
becomes empty (lines 6, 7, 13).

Each node id found (curNode) in the circular list is checked if it is ready for
inversion in the forwQDG (lines 8, 12). This has been explained in Sequence of

@ Springer

Int J Parallel Prog (2016) 44:1028-1053 1047

Table 6 Reversing algorithm

Operations
1: MARK ancilla nodes of forwQDG

CALL Deadlock 2 Detection and Resolution procedure

CALL Deadlock 1 Detection and Resolution procedure
INITIALIZE revinfo[] lists

COPY forwQDG to revQDG

WHILE GarbageTermList Not Empty DO

FIND next curNode in GarbageTermList

A A

IF there are no children of curNode in the forwQDG with
affected arcs THEN

9: CALL the node inversion procedure of Table 3 for
curNode on revQDG

10: REMOVE curNode and its arcs from forwQDG
11: UPDATE GarbageTermList

12: END IF

13 END WHILE

Inversion bullet in Sect. 5.2. In such a case, a new node with inverse type and its
relevant arcs are added in the revQDG (line 9). These steps have been described in
detail in Sect. 5.1.

We then remove this curNode from the £orwQDG graph (line 10). This removal
is necessary as it may release some other ancilla nodes of the forwQDG with their
ids contained in the GarbageTermList to become ready for inversion in the next
execution of the loop. Thus, this removal will be taken into account in the updating
of the GarbageTermList in line 11. The procedure of updating this list is (i) to
remove the curNode and (ii) to add all the ancilla parent nodes of curNode on
the condition hey have no children (this is equivalent that they indeed have become
terminal nodes after the removal of the curNode from the forwQDG).

A last post-processing step that rearranges some of the control arcs is not shown
in Table 6. This rearrangement changes the tail connections of some control arcs so
as to emerge from the new added nodes instead of the original ones and it is based on
the revinfo lists.

6 Synthesis Example

This section presents a simple but complete arithmetic circuit synthesized by the
proposed algorithm to clarify the previously described procedures. The circuit is a
controlled modular multiplier which is an integral part of the modular exponentiation
computation for Shor’s algorithm. Various proposals exist for the implementation
of this circuit, most of them based on the construction of a modular adder [4,31].
The example presented is based on a recent efficient design of Shor’s algorithm [22]

@ Springer

1048 Int J Parallel Prog (2016) 44:1028-1053

Table 7 Specifications of a controlled modular multiplier

Algorithm Initial conditions
Line 1 Function typell] pll] m[1] c[1]
1 input ¢ INP_F 1 - -
2 input y INP_F 2 - -
3 x=0 INP_F 3 - -
4 x = CMACq(x, y,c) CMACy 4 3 1,2
5 [g,r] = DIVN(x) DIVN 5,6 4 -

where the building blocks are a multiplier/accumulator by constant and a divider by
constant. The example serves only to present the scalability of the proposed method
to automatically build hierarchically large circuits given its specification in a classical
algorithm and not to evaluate the resulting circuit in terms of quantum gates, circuit
depth or qubits count, as these aspects depend on the components used in the library
and consequently on the low level synthesis methods employed to generate them.

A controlled modular multiplier calculates the function x = cay mod N where a
and N are constants of n bits. Control variable ¢ is O or 1, x is 2n bits wide and y
is n bits wide. If a multiplier accumulator by constant « (CMAC «) and a divider by
constant N (DIVy) are available in a synthesis library like that of Table 1 then the
computation of the above function can be done as in Table 7.

The second column of Table 7 is the sequence of the elementary functions while
the last four columns are the initial conditions passed in the synthesis algorithm in
the form of array of lists as described in Sect. 3.2. Additional to these initial condi-
tions and not depicted in the table are the array of the variables width and the array
defining the final results. These are initialized as follows : w = [n, n, 2n, 2n, n, n] and
res=[0,0,0,0,0,1]; variables assigned the values 3 and 4 have a width of 2n qubits
while the desired result is the remainder » which is numbered as the 6th variable.

The synthesized QDG is depicted in Fig. 8. It consists of the forward part at the
left and the reverse part at the right. Three INP_F nodes are used in the forward part
to represent the initial states ¢,y and x = 0 with width 1, n and 2n, respectively.
Nodes OUT_F with id 6 and 7 are the output nodes added by the forward synthesis
algorithm and carry the garbage quotient state g and the desired state of the remainder
r =cay mod N.

The purpose of the reverse part of the synthesis is to reset the garbage state g back
to a constant zero state. This means reversing node with id 6 and all its ancestors nodes
(1, 2, 3, 4 and 5). All these nodes have been marked as ancilla nodes by the forward
synthesis algorithm, but nodes 1, 2 and 3 did not need reversion since they are INP_F
nodes. A checking for possible deadlocks must be made before initiating the reverse
algorithm. As can be seen in the figure, a deadlock of type I is found at node 5 as it
is an ancilla node connected through affected arcs to ancilla node 6 and non-ancilla
node 7. The actions of the deadlock algorithm is to add nodes with ids 8, 9 and 10, add
some arcs as described in Sect. 5.3 and remove the arc 5 — 7. After these actions take
place nodes 1, 2, 3,4, 5, 6 and 10 become ancilla. Reversion algorithm results in the
right part of Fig. 8. Nodes with ids 11, 12, 13 and 14 are the inverses of 10, 6, 5 and 4,

@ Springer

Int J Parallel Prog (2016) 44:1028-1053 1049

forward

reverse

Fig.8 Quantum or reversible architecture result in the form of QDG (forward and reverse) for the controlled
modular multiplier. Inside each node the function type and the id are shown. Next to each arc the state it
carries is shown. Thick and thin arcs are affected and control, respectively. Ports numbering is shown inside
the node, when necessary

respectively. Subsequently, the complete QDG calculates the desired function and the
resulted circuit is identical to controlled modular multiplier accumulator proposed in
Fig. 19 of [22].

7 Features and Comparisons

In general, a direct comparison of a hierarchical synthesis method to flat (low-level)
synthesis methods in terms of quantum cost, qubits count and circuit depth is not
meaningful because a hierarchical synthesis is based on a previously synthesized
library and the results depend on the particular low-level synthesis methods used to
build the library. As for the execution time of the proposed hierarchical synthesis
algorithm, it is obvious that the hierarchical technique of dividing a large circuit to
smaller parts, gives a scalability advantage over a low-level strategy to handle a large
and complicated circuit by a flat method.

A rough complexity analysis for the synthesis algorithm in terms of the number of
lines L of the specifications follows. It is assumed that the number of input/output ports
of a node is constant and much smaller than L (a reasonable assumption as shown in
Table 1). The number of nodes of the forward QDG is L while that of the final reverse
QDG is double. With the above assumptions we can estimate that the arcs number is
O(L). We concentrate on the reversing part as the forward part is easily shown to have
a complexity O(L) by investigating Table 2. The main part of the reversing algorithm
consists of operations in lines 7-11 with constant complexity nested in a while loop
scanning the ancilla nodes. Thus it has a O(L) complexity. It can be seen that the most
computation intensive part is the deadlock II resolution procedure. The algorithm of
Table 5 consists of two nested loop each of complexity O(L) (line 1 and 8); the other
loops have a constant complexity due the above assumptions. Combining the nesting
of the FindPaths procedure which has a linear complexity too, we conclude that the
complexity of deadlock II detection is O(L?). This is the dominant complexity for the
whole synthesis algorithm

@ Springer

1050 Int J Parallel Prog (2016) 44:1028-1053

Below is presented another kind of analysis that is related to the garbage generation
and indirectly related to the ancilla requirement. A top level view of a reversible or
quantum circuit U with its respective input and outputs signals is shown in the left
part of Fig. 9. Input bits/qubits are discriminated in argument input x and ancilla input
initially in a constant state, usually zero. The ancilla qubits are used internally to assist
the computation. On the other hand, output bits/qubits are discriminated in the desired
output f(x), thatis the target of the computation, ancilla output which is usually part of
the ancilla input being reset back to its initially state and the garbage output g(x) which
depends on the input argument x and thus is not constant as the ancilla output. The
garbage output contains intermediate results of the computation. When the function
embedded in U is not invertible (for example, the addition of two non-constant integers
is not invertible) the elimination of the input argument is impossible [5].

The garbage output is an undesired effect of the computation which is dependent on
the input argument. This means that in the case we refer to a classical reversible circuit
it cannot be simply “erased” as this would contradict the notion of a reversible circuit.
On the other hand, in the quantum circuit case the garbage output is entangled with
the desired output and a possible quantum measurement to “erase” it would affect the
useful desired output. The repeated use of a circuit such as that of U then would require
an accumulation of ancilla wires usage. On the other hand, if all the ancilla input wires
emerge as ancilla output wires then they could be reused on successively usage of the
circuit block. Consequently, it is important to eliminate the ancilla usage as much as
possible because this means lower cost in terms of wires which is an important factor
especially in the quantum circuit design domain.

A well known technique (Bennett’s trick [5]) to eliminate the garbage, excluding
the input argument, is depicted in Fig. 9. The output wires of U are copied onto new
ancilla wires and then the inverse circuit U ~! is applied to the outputs (desired, garbage
and ancilla) of U. The final result of this processing eliminates any garbage g(x) as
shown below and leaves only the input argument x:

(x,0,0) > (£(x), g(x),0,0) % (F(x), gx), 0, F(x) > .0, fx)) (3)

In the above formula, x belongs to an orthonormal set (e.g. computational basis) and
the same applies for the states f(x) and g(x) as f and g are unitary transformations

= - 1) f@) =
— U e g U —
p— Y 0 0 —
0 AT
o
Lcopy U

Fig. 9 Input and output wires definitions of a reversible/quantum circuit U [input argument x, ancilla
input and output 0, desired output f (x) and garbage output g(x)] and garbage elimination (except the input
argument) using Bennett’s trick of copying the output and applying the inverse U -1

@ Springer

Int J Parallel Prog (2016) 44:1028-1053 1051

in the quantum case. Although the no-cloning theorem does not allow a general copy
operation for arbitrary states, it allows such an operation for orthonormal states, in
our case f(x). Consequently, as we can eliminate with this method the garbage state
g(x) for every input state x in the computational basis, the same hold for an arbitrary
superposition of input.

Bennett’s method to eliminate intermediate garbage doubles the cost in the number
of gates and depth as the inverse U~ !circuit must be added. Another feature is that
as many ancilla wires as the desired output wires are required to hold the copy this
output. This is an important disadvantage especially in the cases where the number
of garbage wires to be eliminated are smaller the number of the desired output wires.
This can happen when a circuit is broken down in multiple levels of hierarchy for
reason already explained.

In contrast, the proposed method selectively copies only the wires that are engaged
in the two kinds of deadlocks described in Sect. 5.3. Essentially, it applies Bennett’s
trick locally on wires that cause deadlocks to the inversion procedure, instead to apply it
globally on the total number of desired output wires. A study of the conditions leading
to deadlocks shows that the total number of ancilla wires needed for the deadlocks
resolution is always less than or equal compared to original globally applied Bennett’s
trick. Even if there is no gain in the ancilla usage, it is obvious that there is gain in
terms of the circuit size and its depth, as there is no need for the application of the
whole inverted circuit U ~! but only addition of locally inverted nodes.

The proposed synthesis algorithm has been implemented (initially in MatLab) and
successfully applied on various examples, including complex and irregular circuits
such as the divider by constant used in a recent implementation of Shor’s factorization
algorithm [22]. In this specific example no gain has been observed in terms of the
qubits size (6n qubits required for an n bits constant divider) due the presence of a
deadlock. But compared to the standard Bennett’s trick the quantum cost and depth is
reduced by about 25 %.

Studying other hierarchical methods appeared in the literature as part of integrated
platforms we can see that the drawback of RevKit [34,35] is the excessive generation of
garbage bits for intermediate results which are not reset back to constant value [7]. The
approaches of [1] (CTQG part of ScaffCC) don’t reduce ancilla significantly and the
connections between the modules must be done by the user in a description language
(structural synthesis approach as opposed to our behavioral synthesis approach). On
the other hand, Chisel-Q [16] and Quipper [9] exploit the globally applied Bennett’s
method on each block of the hierarchy and thus in general it requires more ancilla
qubits.

8 Conclusions

We have presented a generic hierarchical method for the synthesis of arbitrary large
and irregular arithmetic and logical quantum and reversible architectures. The archi-
tecture is specified as a sequence of elementary operations that correspond to existing
quantum or reversible components of a library. The library can be populated with
circuits synthesized by the proposed method, or by any other method, permitting mul-

@ Springer

1052 Int J Parallel Prog (2016) 44:1028-1053

tilevel hierarchical synthesis of any depth. Parts of the library could be the synthesis
output results of tools like [34,35] for the reversible case or tools like [1,9,15,16] for
the quantum case by invoking these tools as back-end and passing them the parameters
of the required parts (function type, input and output size). Another option could be
the integration of the proposed method in the above mentioned tools.

Hierarchical synthesis methods for quantum and reversible architectures offer sev-
eral advantages compared to flat gate level methods in the following aspects: (a)
easier description of complex circuits, (b) efficient handling of arbitrary large size
circuits and (c) short synthesis run-time even for significantly large circuits. Our hier-
archical synthesis method, when combined with other low-level synthesis methods
delivers architectures in very short time, and compared to previous hierarchical syn-
thesis approaches it has the important advantage that it does not pollute the synthesized
architecture with many ancilla wires.

References

1. Abhari, A.J., Patil, S., Kudrow, D., Heckey, J., Lvov, A., Chong, ET., Martonosi, M.: ScaffCC: a
framework for compilation and analysis of quantum computing programs. In: Proceedings of the
ACM 11th Conference on Computing Frontiers, Art. 1 (2014)

2. Balensiefer, S., Kreger-Stickles, L., Oskin, M.: An Evaluation Framework and Instruction Set Archi-
tecture for Ion-Trap based Quantum Micro-architectures, 32nd ISCA, pp. 186-196 (2005)

3. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin,
J., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457-3467 (1995)

4. Beckman, D., Chari, A.N., Devabhaktuni, S., Preskill, J.: Efficient networks for quantum factoring.
Phys. Rev. A 54(2), 1034-1063 (1996)

5. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525-532 (1973)

6. Cybenko, G.: Reducing quantum computations to elementary unitary operations. Comput. Sci. Eng.
3(2), 27-32 (2001)

7. Drechsler, R., Wille, R.: Reversible circuits: recent accomplishments and future challenges for an
emerging technology. In: 16th International Symposium VDAT, pp. 383-392 (2012)

8. Golubitsky, O., Maslov, D.: A study of optimal 4-bit reversible Toffoli circuits and their synthesis.
IEEE Trans. Comput. 61(9), 1341-1353 (2012)

9. Green, A.S., Lumsdaine, PL., Ross, N.J.: Quipper: A Scalable Quantum Programming Language,
ACM PLDI 13 (2013)

10. Gupta, P,, Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic circuits. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 25(11), 2317-2330 (2006)

11. Jones, N.C., Whitfield, J.D., McMahon, P.L., Yung, M.-H., Van Meter, R., Aspuru-Guzik, A.,
Yamamoto, Y.: Faster quantum chemistry simulation on fault-tolerant quantum computers. New J.
Phys. 14, 115023 (2012)

12. Kotiyal, S., Thapliyal, H., Ranganathan, N.: Mach—Zehnder Interferometer Based Design of all Opti-
cal Reversible Binary Adder, DATE (2012)

13. Kreger-Stickles, L., Oskin, M.: Microcoded architectures for Ion-tap quantum computers. In: 35th
ISCA, pp. 165-176 (2008)

14. Landauer, R.: Irreversiblity and heat generation in the computing process. IBM J. Res. Dev. 5, 183-191
(1961)

15. Lin, C-C., Chakrabarti, A., Jha, N.K.: QLib: Quantum Module Library, ACM JETC, vol. 11(1), Art. 7
(2014)

16. Liu, X., Kubiatowicz, J.: Chisel-Q: Designing quantum circuits with a scala embedded language. In:
31st ICCD, pp. 427-434 (2013)

17. Miller, D.M., Maslov, D., Dueck, G.W.: A Transformation Based Algorithm for Reversible Logic
Synthesis, DAC, pp. 318-323 (2003)

18. Maslov, D., Dueck, G.W., Miller, D.M.: Techniques for the synthesis of reversible Toffoli networks.
ACM Trans. Des. Autom. of Electron. Syst. 12(4), 42:1-42:28 (2007)

@ Springer

Int J Parallel Prog (2016) 44:1028-1053 1053

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

Metodi, T.S., Chong, F.T.: Quantum Computing for Computer Architects. Morgan and Claypool Pub-
lishers, San Rafael (2006)

Metodi, T.S., Thaker, D.D., Cross, A.W., Chong, E.T., Chuang, I.L.: A quantum logic array microar-
chitecture: scalable quantum data movement and computation. In: 38th ISCA (2005)

Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University
Press, Cambridge (2011)

Pavlidis, A., Gizopoulos, D.: Fast quantum modular exponentiation architecture for Shor’s factoring
algorithm. Quantum Inf. Comput. 14(7&8), 0649-0682 (2014)

Prasad, A K., Shende, V.V., Markov, I.L., Hayes, J.P., Patel, K.N.: Data structures and algorithms for
simplifying reversible circuits. ACM JETC 2(4), 277-293 (2006)

Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits—a survey. ACM J. Comput.
Surveys 45(2), 21 (2013)

Saeedi, M., Zamani, M.S., Sedighi, M., Sasanian, Z.: Reversible circuit synthesis using a cycle-based
approach. ACM JETC. 6(4), Art. 13 (2010)

Shende, V.V., Prasad, A K., Markov, L.L., Hayes, J.P.: Synthesis of reversible logic circuits. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 22(6), 710-722 (2003)

Shende, V.V., Bullock, S.S., Markov, L.L.: Synthesis of quantum logic circuits. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 25(6), 1000-1010 (2006)

Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM J. Comput. 26(5), 1484—1509 (1997)

Thaker, D.D., Metodi, T.S., Cross, A.W., Chuang, I.L., Chong, E.T.: Quantum memory hierarchies:
efficient designs to match available parallelism in quantum computing. In: 33rd ISCA, pp. 378-390
(2006)

Toffoli, T.: Reversible computing, MIT/LCS/TM-151 (1980)

Van Meter, R., Itoh, K.M.: Fast quantum modular exponentiation. Phys. Rev. A 71, 052320 (2005)
Vartiainen, J.J., Mottonen, M., Salomaa, M.S.: Efficient decomposition of quantum gates. Phys. Rev.
Lett. 92(17), 177902 (2004)

Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: ACM/IEEE
DAC, pp. 270-275 (2009)

Wille, R., Drechsler, R.: Towards a Design Flow for Reversible Logic. Springer, Berlin (2010)

Wille, R., Offermann, S., Drechsler, R.: SyReC: A Programming Language for Synthesis of Reversible
Circuits, Forum on Specification and Design Languages (FDL), pp. 184—189 (2010)

Wood, D.H., Chen, J.: Fredkin gate circuits via recombination enzymes. Congr. Evol. Comput. II,
1896-2000 (2004)

@ Springer

	Hierarchical Synthesis of Quantum and Reversible Architectures
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Reversible Circuits and Gates
	2.2 Quantum Circuits and Gates
	2.3 Reversible and Quantum Synthesis

	3 Methodology Basics
	3.1 Initial Specifications and Library
	3.2 Quantum Dependence Graph

	4 Forward QDG Synthesis
	4.1 Representation of Classical Algorithm
	4.2 Forward Synthesis Algorithm

	5 Reversible QDG Synthesis
	5.1 Node Inversion
	5.2 Global Considerations
	5.3 Deadlocks Resolution
	5.3.1 Deadlock Type I
	5.3.2 Deadlock Type II
	5.3.3 Uniqueness of the Two Deadlock Conditions

	5.4 Reversing Algorithm

	6 Synthesis Example
	7 Features and Comparisons
	8 Conclusions
	References

