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Abstract Climate data have been dramatically increasing in volume in recent years.
This huge volume of climate data poses considerable challenges for data storage,
archiving and sharing. In this paper, we propose a lossless compression algorithm for
climate data, named czip. We efficiently eliminate data redundancy through several
new methods, including adaptive prediction, eXclusive OR differencing, multiway
compression and static regions. To utilize the multiple cores available on modern
computers, czip is implemented in parallel. Experimental results show that czip can
achieve outstanding compression ratios as well as deflating and inflating through-
puts; czip can achieve 800 MB/s deflating throughputs and over 2600 MB/s inflating
throughputs on a server with 16 cores.
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1 Introduction

The volumes of global climate data collected from climatemodels, satellites, radar and
other observational instruments have been increasing at an unprecedented speed and
scale in recent years. These data are crucial for understanding the past and predicting
the future of our planet. Overpeck et al. [1] project that the volume of global climate
data holdings for climate models will increase to 100 petabytes (PB) by 2018. This
huge volume of climate data poses considerable challenges for physical data storage
and archiving as well as for the ease of data sharing among the climate research
community.

Data compression is useful for mitigating these challenges by reducing the required
data storage space and transmission capacity. Data compression can be either lossless
or lossy. Lossless schemes reduce data volume by eliminating statistical redundancy,
and no information is lost. Lossy schemes reduce data volume by identifying unnec-
essary information and removing it. For the climate research community, lossless
compression is generally preferred for the pre-processing or post-processing of cli-
mate data.

Climate data are typically defined over space-time dimensions and presented
as multidimensional arrays of high-precision floating-point numbers. Thus, there
are fundamental differences between climate data and common text, image and
video data. A standard form for these multidimensional arrays is (X,Y, Z , T ) →
(V1, V2, . . . , Vn), where X,Y, Z and T represent longitude, latitude, altitude and time.
V i(i = 1, 2, . . . , n) represents a physical attribute, such as wind, pressure, temper-
ature, or humidity. A significant feature of climate data is their temporal and spatial
correlations, i.e., the fact that values in neighboring ranges tend to be numerically
close to each other.

Several universal compression algorithms [2–6] operating on byte granularity are
excellent for byte-oriented formats. However, they are inefficient for the floating-
point format because they split the floating-point numbers into bytes and ignore the
physical meaning of the floating-point format. Most existing compression algorithms
[7–9] for floating-point numbers treat continuous floating-point numbers as a stream
so that they can compress the exponential part of the floating-point format. These
stream-oriented algorithms do not make full use of the temporal and spatial locality
of climate data. Certain multidimensional compressors, such as fpzip [10] and ndims
[11], do not distinguish the time dimension from the spatial dimensions, and they
cannot adaptively select prediction schemes to decouple the correlations for different
climate variables. In addition, most current compression algorithms are serial, and
thus, they cannot comply with the needs of the epoch of big data.

In this paper, we propose a fast lossless compression algorithm for climate data,
called czip (Climate ZIP). The underlying concept of czip is to attempt to elimi-
nate data redundancy by exploiting the correlations among multidimensional climate
data. The compression process can be divided into three phases. First, we sample
several time slices of an array and learn the features of the array by evaluating sev-
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eral different prediction schemes along the time dimension; thus, we can select the
prediction scheme that can best express the correlations among the values in the
array. In the case that none of the prediction schemes can express the correlation
sufficiently precisely, no prediction scheme will be chosen. For climate data, it is
generally true that the values of certain regions do not change along the time dimen-
sion. For instance, the numerical results for land regions do not change when the
temperatures of ocean regions are computed. These regions are identified during the
learning step, and the constant values of these regions are compressed using a byte-
oriented compressor (e.g., zlib). Second, if one of the prediction schemes is chosen,
XOR differencing will be applied for each value based on its predicted value obtained
from the previously selected prediction scheme. After this phase, the correlations
within the multidimensional arrays are decoupled. As the final step, we send each
byte of each residual from the XOR differencing operation, or the original value if
no prediction scheme was selected in the learning phase, to another byte-oriented
compressor. We implement the czip algorithm in parallel to efficiently utilize the
multiple cores available on modern computers. The experimental results show that
czip exhibits superior performance in most testing scenarios in terms of compres-
sion ratios, deflating throughputs and inflating throughputs. It can achieve 800 MB/s
deflating throughputs and over 2600 MB/s inflating throughputs on a server with 16
cores.

The reminder of this paper is organized as follows. Section 2 summarizes the
related work. Section 3 introduces the czip algorithm in detail. Section 4 describes the
implementation of czip in parallel. Section 5 evaluates the performance of czip and
compares it with that of state-of-the-art compressors. Section 6 concludes the paper.

2 Related Work

According to the level on which each compression method understands the structure
of the data to be compressed, current compression methods can be broadly classified
into three categories.

The first category is byte stream methods. Compressors on this level treat the
input as an unstructured byte stream and attempt to identify data redundancy within
the 1D linear byte stream. Many traditional general-purpose compression methods
[2–4,12,13] operate at this level. Compression algorithms on this level have been
extensively studied.Whereas some of them emphasize high throughputs [5,13], others
attempt to strike a balance between compression ratio and throughput [2–4]. However,
because most climate modeling output data are floating-point numbers, compressors
at this level generally cannot find long repetitive byte strings and thus cannot achieve
high compression ratios for climate modeling output data.

Compressors in the second category have prior knowledge of the data type in
the input stream, and compressors at this level are often specially designed for a
certain type of data. For example, szip [14] is designed to compress scientific data.
fpc [8,15] can compress double-precision floating-point data with high throughputs.
lcfp [7] breaks the bytes of floating-point data into sign, exponent and mantissa and
compresses these three types of information separately via context-based arithmetic
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coding. Because floating-point compressors at this level can recognize the floating-
point format and process the input stream in 4-byte granularity (or 8 bytes for double-
precision floating-point data), they can typically achieve better compression ratios
than general-purpose compressors when compressing climate modeling output data.
However, compressors at this level still treat the input data as a linear stream; thus,
they cannot exploit the multidimensional features of climate modeling output data to
remove redundancy.

Methods in the third category have even more priori knowledge of the input
stream than do the compressors at the previous two levels. Compressors at this level
not only know the data type, but also have some knowledge of the relationships
among the values in higher dimensions. Therefore, these compressors can compress
the multidimensional data more efficiently [10,11,16–20]. However, some of them
treat multidimensional data simply as geometric structures without distinguishing the
time dimension from the spatial dimensions [10,11,20]. Although other methods can
achieve even better compression ratios by exploiting the temporal redundancy between
spatial data splices [16–19], the throughputs of these compressors are not high enough
to handle the huge volumes typical of climate data.

3 Design of Czip

Before we present the technical details of czip, we must define two basic concepts:
static regions and dynamic regions. In a global climate model simulation, there are
certain regions of the global grid that are not involved in the simulation, and thus, the
values of these regions do not change. For example, an earth system model includes at
least an atmospheric component, an oceanic component, a land component and a sea
ice component. When the oceanic component is running, the sea surface temperature
is varying in time within the ocean regions. However, the values for the continental
regions remain constant at their default settings. Figure 1 shows that the sea surface
temperature (SST) varies with the dimensions of both space (vertical layers, in units of
layer) and time (in units of simulated days) in an ocean simulation. There are obvious
similarities evident in this data set. In other words, the SST values in neighboring
ranges in the space-time dimensions tend to be numerically similar to each other. We
also observe that the SST values in continental regions do not vary in the space-time
dimensions. Therefore, we define the static regions as the grid points whose values
do not change, and the remaining grid points in the climate data set are defined as
dynamic regions. In our oceanic case, the continental regions are static regions and
the ocean regions are dynamic regions.

As shown in the flow chart of czip presented in Fig. 2, we learn the features of
a multidimensional array by sampling several time slices of the array, and then we
individually test several different prediction schemes along the time dimension. Based
on the results, we can select the prediction scheme that can best express the correlations
among the values in the array. If none of the prediction schemes can express the
correlation sufficiently precisely, we do not use any prediction scheme. If one of the
prediction schemes is suitable, then XOR differencing will be applied to each value
based on its predicted value. Thereby, the correlations between the multidimensional
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Fig. 1 The values for ocean regions in the results from an ocean simulation are time-varying (dynamic
regions). However, the values of the land regions (blue regions) do not change along the time dimension.
These regions are called static regions (Color figure online)
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Fig. 2 The flow chart of czip

arrays will be decoupled. As the final step, we send each byte of each residual from the
XOR differencing operation, or the original value if no prediction schemewas selected
in the learning phase, to a byte-oriented compressor. We have also designed a simple
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method to determine the static regions, and we apply several existing professional
compression methods to address the values of those static regions.

3.1 Learning

Prediction is a useful technique for compressing data streams. Many of the existing
compression algorithms for floating-point numbers adopt prediction-based differenc-
ing to achieve favorable compression ratios, including lcfp [7], ndims [11], fpzip [10]
and etc. [18,19,21]. In an ideal case, the predicted value is exactly equal to the real
value and the differencing residues are all zero bits.

Amajor challenge facing prediction techniques is that there is no “master key” for all
types of climate data. Different climate variables in a climate data set are associated
with different physical rules and processes. Thus, different prediction schemes are
needed to decouple the correlations of numerous climate variables. Our solution is to
first learn the features of the multidimensional data and then adaptively select the best
prediction scheme from among a pre-defined set of prediction schemes based on the
learning results.

The primary purpose of the learning phase is to determinewhether prediction can be
successfully applied to the data and if so, which predictor ismost suitable. The learning
phase proceeds as follows. For each multidimensional (usually 3D or 4D) array, we
distinguish the time dimension from the spatial dimensions (usually 2D or 3D) and
treat the multidimensional array as values in the spatial dimensions that are evolving
along the time dimension. From among a pre-defined set of prediction schemes, the
accuracy of each predictor is evaluated over several consecutive time steps, and the
predictor that offers the most accurate predictions for the array is selected.

3.2 Prediction

Predictor design and selection are key to czip. An efficient predictor for climate data
must achieve a higher compression radio than common predictors. We developed a
set of predictor candidates for climate data. This predictor set exploits the correlations
among values to predict the next value to be encoded based on a set of previously
encoded values. The optimal predictor is selected based primarily on accuracy and
speed. The differencing residual between the real value and its predicted result will be
smaller if the predicted result is more accurate. Moreover, users cannot tolerate slow
speeds for the compression of data.

Table 1 lists a set of predictor candidates designed based on our known knowl-
edge of physical climate processes and existing work [11]. There are three categories
of predictors available in czip. The first category addresses spatial correlations, and
the second category addresses time correlations. For each dimension, we use the
simple yet effective first-order and second-order polynomial predictors provided by
[20,22,23]. Furthermore, to exploit the potential correlations of nearby values in higher
dimensions, we include a third category of predictors named Lorenzo predictors [11],
which are general-purpose predictors for multidimensional arrays [10,20]. In an n-
dimensional cube, the Lorenzo predictor computes the predicted value of a corner from
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Table 1 Predictor candidates:
each predictor attempts to
exploit the correlations along
one dimension or among several
dimensions (by means of
Lorenzo predictors)

Correlation Predictors

Latitude Pn = Xn−1; Pn = 2Xn−1 − Xn−2

Longitude Pn = Yn−1; Pn = 2Yn−1 − Yn−2

Altitude Pn = Zn−1; Pn = 2Zn−1 − Zn−2

Time Pn = Tn−1

Combo Pn = Lorenzo(X, Y );

Pn = Lorenzo(X, Y, Z);

Pn = Lorenzo(X, Y, Z , T )

Fig. 3 In an n-dimensional
cube, the Lorenzo predictor
computes the predicted value at
a corner from the scalar values at
the other (2n − 1) corners
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the scalar values of the other (2n − 1) corners. As shown in Fig. 3, in the 2D case,
i.e., Lorenzo(X,Y ), we can add the scalar values of the two green “a” corners and
subtract the value of the red the “b” corners; in the 3D case, i.e., Lorenzo(X,Y, Z),
we can add the values of the “a” corners, subtract the values of the “b” corners, and
add the values of the “c” corner; in the 4D case, i.e., Lorenzo(X,Y, Z , T ), we can
add the values at the first and third degree neighbors and subtract the values of the
second and fourth degree neighbors [11].

Because the number of values accessed by the Lorenzo predictors increases expo-
nentially with the number of dimensions, the computational cost of the Lorenzo
predictors is much higher than that of the other predictors. In czip, low-cost pre-
dictors are preferred if they can achieve comparable accuracy to that of the Lorenzo
predictors. We implement the predictor selection phase of czip in the following three
steps.

First, we assign a predictor to each of the grid points in each sampled time step.
We measure the absolute error, whose value is the differencing residual between the
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predicted result and the real value. A smaller absolute error indicates a more accurate
predictor.

Second, we decide whether to use the predictor. Our principle is that if the value
predicted by the candidate predictor is sufficiently close to the real value of the grid
point, we assign the predictor to czip. Otherwise, we abandon the attempt to use a pre-
dictor for this grid point and mark it as an unpredictable point. The key is to determine
how to evaluate the meaning of “sufficiently close”. Our method is to compute the
relative error of the result from the candidate predictor. If the relative error is smaller
than a given threshold, we consider the predicted result to be “sufficiently close” to
the real value. Based on a number of experiments, we set this threshold to 2−8 for
32-bit single-precision floating-point values in czip.

Finally, we count how many times each predictor has been assigned by counting
its corresponding grid points among the samples. The predictor that has been chosen
the largest number of times is selected as the final predictor for the array. The number
of grid points marked as unpredictable also must be counted. If the number of unpre-
dictable points is too large, it means that the data cannot be predicted effectively by
any of the given predictors. The data will then be compressed without predication-
based differencing encoding. Furthermore, if several predictors have similar numbers
of selections, the predictor with the lowest computational cost will be chosen for the
purpose of speed.

The process of predictor selection incurs some overhead. Fortunately, this process
is invoked only once for the entire array. For arrays with several hundreds or thousands
of time steps, the samples will consist of only 100 time steps. The overhead for this
process is a very small portion of the entire compression process. The key advance
regarding predictor selection in our algorithm is its flexibility, and this feature lays a
strong foundation for czip to achieve high compression ratios for different types of
climate data.

3.3 Prediction Based XOR Differencing

Differencing is performed between the predicted value and the real value, and then
the residual of the differencing operation is sent to the multiway compressor. Because
floating-point operations may cause underflows, with irreversible loss of information,
the computation of the residual between two floating-point numbers is typically per-
formed through integer operations instead of floating-point operations. One common
method is integer subtraction operation [10,20]. This method maps the two floating-
point numbers to integers and computes the difference between the two integers. To
make the absolute value of the residual smaller, absolute integer subtraction is applied,
and the sign of the residual is tracked explicitly.

Another simple XOR operation method is differencing between the two numbers
after they are mapped to integers [8]. Because of the standard format used to represent
floating-point numbers, floating-point numbers in close proximity will often have
identical bit patterns in their most significant bits. Therefore, the XOR residual will
be close to zero, with leading zero bits.

123



1256 Int J Parallel Prog (2016) 44:1248–1267

Byte A Byte B Byte C Byte D Float 1

Float 2

Float 3

Byte C

Byte C

Byte C

Byte D

Byte D

Byte D

Byte B Byte C Byte D

Byte A Byte B Byte C Byte D

Byte A

Byte Stream

zlib zlib zlib lz4

Byte A

Byte A

Byte A

Byte B

Byte B

Byte B

Fig. 4 The multiway compressor splits the bytes of each floating-point number or residual and compress
them separately

Although the subtraction-based approach can produce more leading zero bits in
certain cases, it is more complex and slower than the simple XOR-based approach
because the sign must be tracked and compressed separately. Our czip method does
not rely on leading-zero-count-based encoding [8,10], so we chose XOR differencing
for residual computation because of its superior performance.

3.4 Multiway Compressing

As shown in Fig. 4, themultiway compressor operates on the basic concept of rearrang-
ing the four bytes of a series of IEEE 32-bit single-precision floating-point numbers or
their XOR differencing residuals. The rearranged byte stream can make better use of
the advantages of byte-stream-oriented compressors, such as zlib [4] and lz4 [5]. The
compressor first reads in a chunk (6 MB in czip) of 32-bit floating-point numbers and
splits each number into four bytes. Thereafter, it appends each byte to its correspond-
ing byte stream. Finally, it inputs the rearranged data chunk into byte-stream-oriented
compressors, including zlib and lz4 in current czip.

The multiway compressor can operate efficiently for both residual streams and
original floating-point streams. In the case that an accurate predictor can be selected
for XOR differencing, the higher bytes of each residual will contain more zero bits,
whereas the lower bytes will contain more random bits. The multiway compressor
can separate the easily compressible bytes from the more difficult-to-compress bytes.
Thus, better compression ratios can be expected.

For original floating-point streams (without XOR differencing), the multiway com-
pressor can still function because of the spatial-temporal similarity of climate data.
Floating-point values of the same variable in the same array tend to be of the same
order of magnitude. Thus, the sign and exponent bits should be similar.

In addition, the multiway compressor can achieve a good trade-off between com-
pression ratio and throughput. For easily compressible bytes streams, zlib is adopted
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to achieve good compression ratios, whereas for difficult-to-compress byte streams,
lz4, which offers high throughputs, is used to achieve better performance without a
significant sacrifice in compression ratio.

3.5 Static Regions

For the detection of static regions, we compare the value of each grid point in the
current time step with its value from the previous time step in the learning process.
If the values are the same, this grid point is marked as belonging to a static region.
False positives may occur when the values of a grid point happen to remain identical
for only two time steps. To reduce the occurrence of false positives, consecutive time
steps are used to verify that the values of the regions marked as static do not change.
If the value of any of the identified static regions changes, then that static region is
once again flagged as a dynamic region. A table structure is used to record the grid
points that are marked as static regions. Because the table is stored in bitmap format,
the storage overhead of the flag table is negligible, especially when there are hundreds
of time steps in the multidimensional array.

We simply use time-predictor-based XOR differencing to compute the residuals of
the static regions in czip. The residuals of the static regions will all be zeros, which can
be easily compressed. However, if the residuals of these regions were to be interleaved
with the residuals of the dynamic regions, itwould bemore difficult for the compressors
to find and remove the redundancy because of the interleaving of the zero residuals
of the static regions with the non-zero residuals of the dynamic regions. Therefore, to
achieve better compression ratios, we separate the residuals of the static regions from
the residuals of the dynamic regions and then use zlib to compress the residuals of
the static regions. For the purpose of speed, the static regions are processed separately
only when the proportion of static regions is higher than a certain threshold (10% in
current czip).

4 Parallelization

The compression and decompression processes in czip run in parallel. They can be run
on multi-core computers at high speed. We split each array into several chunks along
the time dimension, such that each chunk contains a certain number of time steps.
After the initial learning phase, czip assign all threads in a thread pool to the chunks
in the front of the queue. Once a thread has compressed a chunk completely, it will
be collected by the thread pool and wait for its next assignment. There is a process
called a manager that is designed to check the thread pool. Once a thread returns,
the manager assigns it to the top chunk in the waiting queue. Additionally, there is a
collector that collects the compressed chunks in the order in which they were placed
in the waiting queue. The collector combines the collected chunks into a stream to be
written to the disk. The decompression process is similar to the compression process.
After the data are read, we decompress the chunks in parallel and merge the results
by means of a collector.
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Table 2 Overview of the two data sets (size in GB)

Data set Atmosphere Ocean Land Sea-ice Land-ice Total

LASG 70.3 53.0 18.6 12.0 2.2 156.1

BNU 66.2 46.0 15.1 10.0 10.0 147.3

The chunk size should be carefully chosen. If the data chunks are too large, the
concurrency may be affected. If the data chunks are too small, the compression ratio
may decrease. Based on a large number of experiments, we set the default chunk size
to 6 MB.

5 Experiments and Evaluations

In this section, we will evaluate the performance of czip and compare it with other
lossless compression methods.

5.1 Data Sets

We will use two climate model data sets submitted to the fifth phase of the Climate
Model Intercomparison Project (CMIP5) [24]. CMIP5 provides a freely available
state-of-the-art multi-model data set for examining climate change and improving
the ability of models to predict future climate states. At present, 19 institutes have
contributed 41 model data sets to CMIP5. CMIP5 requires that each modeling group
submit at minimum 2300 years of model output [24]. Therefore, most of the output
data include many time steps and thus are suitable for czip.

For this paper, two CMIP5 data sets from China were chosen to evaluate the effec-
tiveness of our proposed compression method. One data set is from the output of the
BNU-ESMmodel created by Beijing Normal University (BNU), and the other is from
the output of the LASG-CESS model developed by the Chinese Academy of Sciences
and Tsinghua University. These data sets are in NetCDF [25] format, following the
CMOR standard [26], and can be accessed through the Earth System Grid Federation
(ESGF) [27].

As shown in Table 2, both models contain five different components: atmosphere,
ocean, land, sea ice and land ice. Because of the different physical processes driving
them, the data generated for these different components exhibit different compressibil-
ities [28]. These data sets include different variables, such as relative humidity, wind,
sea surface temperature, and so on. These variables are recorded with different fre-
quencies, e.g., monthly, daily, every 6h, and every 3h. We will show in the following
experiments that czip functions well for these diverse data sets.

5.2 Experiment Setup

Wewill first compare czip with other popular compressors, including general-purpose
compressors at the first level (zlib [4], lz4 [5], lz4hc [5]), level (zlib [4]), floating-
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Table 3 The percentages of the prediction schemes that are selected for the LASG data set, as well as the
proportions of the static regions in the data set

Components Prediction schemes (%) Static regions (%)

Spatial Time Lorenzo None Bytes fnum

Atmosphere 10.34 25.93 0.0 63.73 0.12 0.16

Ocean 0.0 0.0 82.64 17.36 35.12 100.0

Land 0.0 96.88 2.68 0.44 68.63 100.0

Land-ice 14.29 0.0 0.0 85.71 74.42 100.0

Sea-ice 2.63 0.0 0.53 96.84 84.63 100.0

point-oriented compressors at the second level (szip [29], lcfp [7]), and a third-level
compressor (fpzip [10]). We will also compare czip with another parallel compressor,
pigz [30].

The version of the zlib compressor used is 1.2.7. The lcfp compressor was down-
loaded from Isenburg’s source code [31]. The szip compressor is szip-2.1 [32], with
BITS_PER_PIXEL set to 32, PIXELS_PER|_BLOCK set to 32, and SCANLINE set
to 128. The compression level for zlib is set to 6, and MEMORY_USAGE for lz4 and
lz4hc is set to 14. The experimental platform is a Red Hat 4.4.5-6 X86-64 server, with
two Intel Xeon E5-2650 2.0 GHz CPUs with 8 cores and 32 GB of main memory.
Therefore, we had 16 cores in total.

5.3 Benefits of Adaptive Prediction and Static Regions

The four prediction columns of Table 3 show the selection percentages for each
prediction scheme for the different components of the LASG data set. The spatial
scheme includes six predictors along each spatial dimension, X, Y, and Z, as listed in
Table 1. The time scheme is the Time predictor, and the Lorenzo scheme refers to the
three Lorenzo predictors listed in Table 1. The “none” scheme indicates that none of
the predictors is selected and that the array is compressed without prediction-based
differencing.

According to the prediction columns in Table 3, we find that the data associated
with different components exhibit different behaviors. The Lorenzo scheme is the best
choice for most of the ocean data (82.64%). The time prediction scheme is the best
choice for land data in most cases (96.88%). However, neither of these two prediction
schemes can provide sufficiently precise predictions for the data associated with the
sea-ice, land-ice and atmosphere components. For these data, it is better to compress
the data without any prediction.

We also notice that even for data corresponding to the same component, different
prediction schemes may be selected. For example, of the arrays associated with the
atmosphere component, the time prediction scheme is preferred for approximately
25.93%, and the spatial scheme is chosen for 10.34% of the arrays, whereas for the
remainder, no prediction scheme is preferred. We can conclude that it is necessary
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Fig. 5 The impacts on the compression ratio of the adaptive prediction and static regions options

to apply adaptive prediction individually to each array to achieve better compression
ratios.

The two static regions columns of Table 3 present the proportions of static regions
contained in the data set. The bytes column shows how many bytes belong to these
static regions, and the fnum column shows how many files contain static regions.
From the fnum column of Table 3, we can see that with the exception of those for
the atmosphere data, all of the files contain some static regions. Moreover, according
to the bytes column, significant proportions of the data belong to static regions for
the ocean, land, land-ice, and sea-ice components. In fact, arrays associated with the
same component typically contain similar proportions of static regions. Because the
values in the static regions remain constant along the time dimension, we can simply
apply XOR differencing based on their values in the previous time step, yielding zero
bytes. The compression ratios can be improved by identifying the static regions in
each array.

To evaluate how much benefit we can gain from exploiting adaptive prediction and
static regions, we compare the compression ratios achieved using czip in three scenar-
ios: (1) neither: both the adaptive prediction and static regions options are disabled;
(2) non-static version: with the static regions option disabled, the data are compressed
without distinguishing static regions from dynamic regions; (3) non-adaptive version:
with the adaptive prediction option disabled, all data are compressed using the Lorenzo
predictor only; and (4) czip: the data are compressed with both the adaptive prediction
and static regions options enabled.

Figure 5 presents the results for the compression ratios achieved using these four
approaches. The compression ratios achieved by the adaptive-prediction compressor
are superior to those achieved by the non-adaptive compressor for all five data compo-
nents. The improvement for the atmosphere data is themost significant. This is because
the Lorenzo predictor offers the least precise prediction for atmosphere data, and thus,
applying Lorenzo prediction can increase the entropy, resulting in worse compression
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ratios. Therefore, the atmosphere data can benefit the most from adaptive prediction.
The improvement for the ocean data is the least significant because Lorenzo predic-
tion is the best choice for most of the ocean data. The improvement achieved through
adaptive prediction for all data components indicates that czip can successfully adapt
to the data to be compressed and select appropriate prediction schemes to achieve
better compression ratios.

With regard to the consideration of static regions, we can compare the compression
ratios achieved by czip with the compression ratios of its non-static version. From
Fig. 5, we can see that the compression ratios of the non-static compressor are signif-
icantly worse than those of the czip compressor. This remarkable degeneration in the
compression ratios can be explained from two perspectives.

One reason is that the inclusion of the static regions may hamper the adaptive pre-
diction ability of the non-static version in many cases. Because static regions account
for large proportions of the data for the ocean, land, land-ice and sea-ice components
and the best prediction scheme for these static regions is the time scheme, when the
static regions are not distinguished from the dynamic regions, the non-static compres-
sor will always choose the time scheme for the prediction of data associated with these
four components. However, the time scheme is the worst prediction scheme for the
data of the ocean, land-ice, and sea-ice components, according to Table 3. Thus, the
false predictions generated by the time scheme can lead to an increase in entropy for
the dynamic regions, thereby resulting in worse compression ratios. Another reason
for the degeneration of the compression ratios is the interleaving of the zero byte
streams of the residuals from the static regions with the non-zero byte streams from
the dynamic regions. It would be easier for the entropy compressors to compress these
two different types of byte streams separately.

For the atmosphere data, there is little difference between the compression ratios
achieved by czip and by the non-static version because most of the atmosphere arrays
do not contain static regions. Therefore, the static regions do not affect the prediction
scheme selection nor significantly disturb the byte streams.

5.4 Comparisons with the State-of-the-Art Compressors

To gain a better understanding of the effectiveness of our compression method, let us
compare czip with other state-of-the-art compressors. The effectiveness of a compres-
sion method can be measured from two perspectives: its data compression ratios and
its throughputs for deflating and inflating.

5.4.1 Compression Ratios

Figures 6 and 7 present the compression ratios of czip and other state-of-the-art com-
pressors for the two different data sets. From these two figures, we can see that the
proposed compressor can achieve compression ratios comparable to the best achieved
by the state-of-the-art compressors. For example, for the ocean, land and land-ice
components of both data sets and the sea-ice component for the BNU data set, our
proposed compressor can achieve the best compression ratios. Even if it is not the best
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Fig. 6 Comparison of compression ratios for the LASG data set. Smaller values are better
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Fig. 7 Comparison of compression ratios for the BNU data set. Smaller values are better

for the data associated with the other components, czip achieves close performance
with lcfp in terming of compression ratios. However, as seen from the throughput
evaluations presented below, the throughputs of lcfp are much lower (by at least a
factor of 3) than those of czip. For the atmosphere data, czip cannot achieve bet-
ter compression ratios than those of the lcfp compressor. This is because none of
the prediction schemes can provide sufficiently precise predictions for most of the
atmosphere data (approximately 64%, according to Table 3) and the proportion of
static regions in the atmosphere data is typically small. Therefore, czip cannot effec-
tively leverage these two factors to boost the compression ratios for the atmosphere
data.

123



Int J Parallel Prog (2016) 44:1248–1267 1263

0

50

100

150

200

250

czip fpzip lcfp szip

atmosphere ocean land land-ice sea-ice

Fig. 8 Deflating throughputs (MB/s) for the LASG data set. Higher values are better

5.4.2 Compression Throughputs

High deflating and inflating throughputs are important features of a good compressor,
especially given the rapidly expanding and already extremely large volume of climate
data sets. In this section, we will compare the throughputs of czip with those of other
compressors for the LASG data set. According to Fig. 6, only the fpzip and lcfp
compressors can offer compression ratios comparable to those of czip; therefore, we
will mainly compare the throughputs of these three compressors in this section.

To ensure a fair comparison, Fig. 8 presents the single-thread deflating throughputs
of all five compressors for the data of the five components. Among fpzip, lcfp and
czip, czip can achieve outstanding deflating throughputs for the atmosphere, ocean
and land data. For the atmosphere data in particular, which is especially difficult to
compress, the deflating throughput of czip is significantly higher than those of the
other two compressors.

One phenomenon apparent in Fig. 8 is that the deflating throughputs for most of the
compressors tend to increase with increasing compressibility of the data. However,
the throughput of czip for the land-ice data is an exception. This is because each array
associated with the land-ice component is too small (3.5 MB on average). Therefore,
the relative overhead of the learning step is correspondingly increased. Thus, we
believe that the throughput of czip for land-ice arrays could be higher if the arrays
were larger.

Figure 9 shows the inflating throughputs of all five compressors for the five data
components. According to this figure, the inflating throughputs of czip are significantly
higher than those offered by lcfp and fpzip. Once again, for the atmosphere data, the
throughput of czip is remarkably higher than those of the other two compressors. The
adaptive prediction capability is the primary reason that czip can achieve significantly
higher throughputs when deflating and inflating atmosphere data than those of fpzip.
Because of its adaptive prediction capability, czip either does not apply prediction
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Fig. 9 Inflating throughputs (MB/s) for the LASG data set. Higher values are better
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Fig. 10 Parallelized deflating throughputs of czip on a server with 16 cores

for the atmosphere data or performs only simple temporal or spatial prediction. By
contrast, fpzip always applies Lorenzo prediction when compressing the atmosphere
data. The Lorenzo predictor needs to access more values (7 for 3D arrays), thereby
increasing the prediction overhead. Furthermore, the generation of false predictions
by the Lorenzo predictor increases the entropy of the data and makes it more difficult
for the fpzip entropy encoder to remove redundancy. As a result, fpzip is much slower
than czip for the atmosphere data.

5.4.3 Parallelized Throughputs

For comparison with a parallel method, we chose pigz, which is a parallel implementa-
tion of gzip using zlib and pthread, to test against czip on a serverwith 16 cores because
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Fig. 11 Parallelized inflating throughputs of czip on a server with 16 cores

we possess two 8-core Intel Xeon E5-2650 CPUs. Figures 10 and 11 show the deflat-
ing and inflating throughputs, respectively, of czip and pigz for the atmosphere and
ocean data. It is obvious that czip offers better performance and scalability than pigz.
The throughputs of czip increase linearly, and it offers the highest overall throughputs
(approximately 800 MB/s when deflating and 2600 MB/s when inflating). Because
pigz uses only one thread to inflate data, its inflating throughputs do not vary with
the number of threads. It should be noted that the deflating and inflating processes are
computationally intensive. When we use a number of threads greater than the number
of CPU cores, such as 24, 28, or 32 threads, the resource competition among these
virtual threads will become severe. Therefore, the deflating and inflating throughputs
cannot be further improved with the addition of more threads.

6 Conclusions

In this paper, we designed and implemented a lossless compression method, named
czip, for application to large volumes of climate modeling output data. By distin-
guishing the time dimension from the spatial dimensions in the climate arrays, czip
can adaptively select the most appropriate prediction scheme to detect the correlations
among the values in a multidimensional array. Once a suitable prediction scheme is
selected, XOR-based differencing is applied between the original and predicted values
to reduce data redundancy. The bytes of each residual from the XOR operation are
further split into different streams, and a byte-oriented compressor compresses each
stream. In climate modeling output data, there are usually several static regions, whose
values remain constant along the time dimension. In czip, the values of these static
regions are compressed separately to achieve better compression ratios. We used two
climate data sets fromCMIP5 to test the performance of czip. The experimental results
show that czip could achieve outstanding compression ratios as well as deflating and
inflating throughputs in most of the test cases.
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