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Abstract With the development of information technologies, we have entered the era
of Big Data. Google’s MapReduce programming model and its open-source imple-
mentation in Apache Hadoop have become the dominant model for data-intensive
processing because of its simplicity, scalability, and fault tolerance. However, sev-
eral inherent limitations, such as lack of efficient scheduling and iteration computing
mechanisms, seriously affect the efficiency and flexibility of MapReduce. To date,
various approaches have been proposed to extend MapReduce model and improve
runtime efficiency for different scenarios. In this review, we assess MapReduce to
help researchers better understand these novel optimizations that have been taken to
address its limitations. We first present the basic idea underlying MapReduce para-
digm and describe several widely used open-source runtime systems. And then we
discuss the main shortcomings of original MapReduce. We also review these MapRe-
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duce optimization approaches that have recently been put forward, and categorize
them according to the characteristics and capabilities. Finally, we conclude the paper
and suggest several research works that should be carried out in the future.

Keywords MapReduce · Hadoop · Cloud computing · Big data · Scalability

1 Introduction

The rapid development of the Internet has led to massive volumes and variety of
data becoming available, as well as the rate at which the data are being generated
is increasing exponentially [1]. These characteristics are acknowledged as essential
of Big Data [2]. The computing capabilities of multi-core computers have become
remarkably sophisticated, but inevitable bottlenecks in their performance and scala-
bility still limit the possibilities for handling large-scaled data in a centralized context.
The “scale-up” optimization strategy, in which computations performed by a single
machine should be changed to a distributed computing context with a “scale-out”
feature, has therefore been comprehensively acknowledged. It has now become par-
ticularly important to determine the effective way of achieving efficient and scalable
storage and computation of big data, and this work represents a considerable challenge
[3].

In recent years, cloud computing technologies have received a great deal of atten-
tion from researchers in the information technology industry and academia. The US
National Institute of Standards and Technology has defined cloud computing as “a
model for enabling convenient, on-demand network access to a shared pool of config-
urable computing resources (e.g., networks, servers, storage, applications and services)
that canbe rapidly provisioned and releasedwithminimalmanagement effort or service
provider interaction” [4]. The development of cloud computing has been evolutionary
rather than revolutionary, via a merging of several conventional technologies, includ-
ing virtualization, grid computing, utility computing, and autonomic computing [5].

Of the cloud computing technologies that are currently in use,Google’sMapReduce
paradigm [6], which is built on the Google File System (GFS) [7], has become the
prominent parallel programming model in the cloud computing community because
of its simplicity, scalability, and fault tolerance [8]. Several open-source frameworks
have been released to make MapReduce available for the public. And one of these,
Hadoop MapReduce [9] well improves scalability of large-scaled data processing. It
also enables programmers to focus on computational logic rather than those low-level
programming details, such as data partitioning, task scheduling, load balance, and fault
tolerance. Nowadays,MapReduce is extensively used to solve data-intensive problems
in various fields, lots of algorithms that were originally designed for the singlemachine
context have been parallelized to be suitable forMapReduce. For example, Yahoo uses
MapReduce to meet its big data analysis requirements [10]. Apache Mahout Project
[11] provides several MapReduce-based scalable machine learning libraries. Urbani
et al. [12] developed a MapReduce-based inference engine WebPIE to implement
scalable ontology reasoning for the Semantic Web [13]. Work [14] described the
efficient Skyline query processing of massive data, and the method they used was also
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Fig. 1 The Number of indexed papers related to MapReduce from 2007 to 2014

based on MapReduce. Figure 1 shows the number of indexed papers related to the
term “MapReduce” inWeb of Science and EI Compendex databases where the X-axis
denotes publication years from 2007 to 2014, the Y-axis represents the corresponding
indexed number.

However, several inherent limitations seriously affect the efficiency of original
MapReduce. For instance, the fundamental computing unit in MapReduce, a job, is
performed in twophases:map and reduce, but it is difficult to implementmulti-iteration
algorithms in a single job. Hadoop provides a job chain mechanism, but running
multiple MapReduce jobs is still computationally expensive. In addition, the batch
processing characteristic of original MapReduce is notoriously difficult to use when
handling large-scale data in real time and interactive context. Numerous optimization
approaches have been released to tackle the challenges in recent years. Therefore,
a systematic review of these novel MapReduce optimization solutions is much in
demand.

Until now, several relevant works that survey MapReduce have been presented.
For example, Doulkeridis et al. [15] reviewed the state-of-the-art in improving the
performance of parallel query processing using MapReduce, although some impor-
tant optimizations like hardware acceleration and performance tuning of MapReduce
were not listed in detail. Li et al. [16] surveyed the distributed data management and
processing approaches using MapReduce. However, their work focused on reviewing
the high level languages and database-related operators for MapReduce, some exten-
sions of MapReduce programming model were not discussed. In 2011, Lee et al. [17]
gave a survey of MapReduce data processing, but some novel improvements and fea-
tures of MapReduce runtimes such as YARN resource management framework were
not described.

Different from above works, we intend to focus on the efficiency and flexibility
improvements of MapReduce, and provide a more comprehensive review of state-of-
the-art methods for optimizing the MapReduce programming model and its runtime
system. We will first identify the major drawbacks of original MapReduce paradigm.
We will then provide an in-depth analysis of the optimization approaches with aspect
to their different objectives and capabilities such as job scheduling optimization, pro-
gramming model extension and hardware-based acceleration, etc.

The remainder of this paper is organized as follows. Section 2 gives an overview
of the basics of Google’s MapReduce paradigm, its high-level abstractions, as well
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as some well-known open-source implementations. Section 3 contains a discussion
and analysis of the major drawbacks to MapReduce that affect its performance and
efficiency. Based on that, Sect. 4 contains a detailed review of the state-of-the-art
improvements that have been undertaken to MapReduce related to these drawbacks.
In Sect. 5, we conclude the whole paper and suggest the future work that are required.

2 Basics of MapReduce Paradigm

As the basis of other runtime implementations, Google’s MapReduce programming
model was designed to process huge amounts of data in a cluster of commodity
machines [18]. The key ideas behind the design of this model are the principle of
“divide and conquer”, and the strategy of “moving computing instead ofmoving data”.
To help programmers focus on implementing computational logic in a large distrib-
uted cluster, researchers also developed distributed and parallel computing functions
in their MapReduce runtime that hide the programming details of load balancing, net-
work communication and fault tolerance. However, the source code of their runtime
system is not available to the public because of Google’s privacy policy.

In this section, we first describe the basics of Google’s MapReduce programming
model and introduce some existing open-source implementations. We then present a
short review of some well- known high-level abstractions of MapReduce. The char-
acteristics of these MapReduce systems are also compared to help users to choose the
appropriate tool for their particular requirements.

2.1 MapReduce Programming Model

The basic design idea of Google’s MapReduce is inspired by the Map and Reduce
functions in classical functional programming languages like Lisp [19]. In its master–
slave architecture, data stored in the GFS are converted into key–value pairs and
processed in a job consisting of a map phase and a reduce phase. A batch of jobs can
also be formed into a chain to cope with complex computing tasks. Data must meet
a basic requirement to be suitable for MapReduce computations, that the datasets
should be decomposable into many small independent sub-datasets for processing in
a particular task.

In a MapReduce job, the master node first partitions input data into M indepen-
dent chunks (where M is the number of Map tasks) and passes them to the mapper
nodes. Each map task is independently executed in a mapper node. Afterwards, in
the map phase, each mapper accepts data chunks and then generates a series of inter-
mediate key–value pairs according to a user-defined Map function. The MapReduce
runtime system then automatically sorts and merges these intermediate key–value
pairs depending on the key. The intermediate data with the same key are divided into
R segments (where R is the number of reducer nodes) using a hash function. Finally,
after being notified of the location of the intermediate data in the reduce phase, each
reducer accepts a set of intermediate key–value pairs and merges all the data with the
same key value, then generates a series of key–value pairs according to a user-defined
Reduce function. Figure 2 illustrates the processes involved in one MapReduce job.
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Fig. 2 Google’s MapReduce paradigm

Table 1 Sample of word count pseudo-code that can be used in MapReduce

Map function pseudo-code Reduce function pseudo-code

Map(String key, String value): Reduce(String key, Iterator values):

//key: file name //key: one word

//value: contents in one row //values: a list of counts

for each word w in value: int result = 0;

Emit_Intermediate(w, “1”); for each v in values:

result += StringToInt(v);

Emit(key, IntToString(result));

The formal expressions describing the Map and Reduce functions are given below,
and in the [vi ] represents a list of values with respect to k2, i ≥ 0. Programmers can
follow the pseudo-code of Map and Reduce functions as shown in Table 1 to count
the number of occurrences of words in a collection of files using MapReduce.

Map : 〈k1, v1〉 → [〈k2, v2〉]
Reduce : 〈k2, [vi ]〉 → [〈k3, v3〉]

As shown in Table 1, the Map function running in one map task takes a particular
file or a portion of multiple files as input. Each time map task encounters word w, it
produces intermediate key–value pairs in which w is the key, and the value (assigned
to “1” in Table 1) is the number of occurrences of wordw. The MapReduce run-
time system then automatically divides these intermediate data into several partitions
according to the number of reduce tasks, and each partition is assigned to the appro-
priate reduce task after the data are sorted to group all of the key–value pairs with the
same key. Finally, the Reduce function takes the sorted data as its input, and for each
value v it encounters, it sums all the counts produced for word w.

2.2 Open-Source Implementations of MapReduce

To date, several open-source runtimes that implement Google’s MapReduce model
have been presented to solve data-intensive computing problems for different usage
scenario or deployment environments.
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QTConcurrent [20] is a C++ library for multi-threaded applications within the QT
project [109], providing functional programming style APIs for parallel processing,
including a MapReduce implementation for shared-memory systems. Different from
Google’s MapReduce, QT Concurrent can only be executed in non-distributed envi-
ronment. The number of threads used in a QT program is automatically adjusted
depending on the number of processor cores available.

Phoenix [21] implements MapReduce by using multi-core chips and shared-
memorymulti-processors. It comprises of a parallel programmingAPI and an efficient
runtime that automatically manages thread creation, dynamic task scheduling, data
partitioning, and fault tolerance for all of the processors. A C++ re-implementation of
Phoenix, called Phoenix++ [22] has recently been released.

Disco [23],which utilizesErlang language, is a lightweight, open-source framework
for distributed computing, and is also built on top of Google’s MapReduce paradigm.
Profiling and debugging MapReduce jobs and random access to petabyte-scale data
and auxiliary results are well supported with the help of the Disco Distributed File
System. Many companies, including Nokia Research Center, employ Disco for large-
scaled log analyses, probabilistic modeling, data mining, and full-text indexing [23].

Skynet [24] is a Ruby-based open-source implementation of Google’s MapReduce
framework. It is an adaptive, self-upgrading, fault-tolerant, and fully distributed system
with no single point at which failure might occur. Unlike master–slave architecture
used in other systems, Skynet has no special master server, and all the workers use
the “peer recovery” strategy and message queue architecture to monitor the progress
of the other worker-computers.

GridGain [25] provides a Java-based middleware for the in-memory processing of
big data in distributed context. GridGain allows real-time in-memory processing of
both transactional andnon-transactional live datawith very low latencies. Several novel
features, such as distributed task sessions, checkpoints for long running tasks, early
and late load balancing, and affinity co-location with data grids, have been integrated
in GridGain, in which a task is split into multiple sub-tasks assigned to the available
cluster nodes. The results of the sub-tasks are then aggregated and sent back to the
user.

Another open-source MapReduce runtime, Twister [26], aims to provide effi-
cient iteration computation in distributed in-memory environment. Twister uses
publish/subscribe messaging infrastructure to handle communications, including
transferring intermediate data between map and reduce tasks in distributed memory. It
also uses a configuration phase for any proposed long-running map and reduce tasks,
to eliminate the need for reloading static data for each iteration. A combine operation
produces a collective output from all the reduce tasks. Moreover, Twister contains a
task pool to avoid the need for tasks to initialize repeatedly.

Distinctively, Misco [27] implements a Python-based MapReduce framework for
mobile systems. It has a polling-based task assignment mechanism and uses the HTTP
protocol to transfer data between the Misco server and the workers. An Earliest Dead-
line First Scheduler and a Sequential Scheduler are used to schedule its applications
and tasks, respectively. Furthermore, a UDP Server module contained in the Misco
Server is used to monitor incoming worker logs using the UDP transport protocol.
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Apache Hadoop is the dominant open-source MapReduce framework [9] which
allows distributed processing of large datasets across clusters of commercial comput-
ers. The core components of Hadoop ecosystem include Hadoop Common, Hadoop
File System (HDFS),HadoopYARN, andHadoopMapReduce.HadoopCommonpro-
vides the functional infrastructure for Hadoop framework. HDFS is an open-source
implementation of GFS, and provides scalable distributed file system support. Hadoop
YARN is a novel general framework for job scheduling and cluster resource manage-
ment. YARN can serve as a runtime environment not only for MapReduce but also for
Spark [65]. Generally, MapReduce is called MRv2 in Hadoop YARN framework.

In YARN, although the MapReduce programming model is used unchanged, the
JobTracker and TaskTracker in Hadoop 1.0 are divided into two novel components.
These are Resource Manager, which allocates global resources for all of the appli-
cations, and Application Master, which manages the job execution process for one
particular application. Figure 3 illustrates the overall architecture and workflow of
Hadoop MRv2. First, when YARN receives the submitted MapReduce application,
the Application Manager component in Resource Manager calls the corresponding
Node Manager to start Application Master (denoted as MRAppMaster in Fig. 3) in
a Container. Then, Application Master requests computational resources from the
Resource Scheduler component in Resource Manager, and asks the corresponding
Node Mangers to start the jobs for this application. During executing, the task in each
Container sends its running status to Application Master via RPC protocols.

2.3 High-Level Abstractions of MapReduce Model

When implementing complicated data analysis tasks in MapReduce frameworks
mentioned above, programmers have to design several Map and Reduce functions
separately, and determine how to group these functions to form a series of MapRe-
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duce jobs. In order to further hide the programming detail of MapReduce, researchers
have proposed several high-level abstractions, such as Sawzall [105], Apache Pig
[102], Cascading [103] and Scalding [104].

Sawzall [105] is an abstracted type-safe script language designed for analysing
massive individual log records in Google’s MapReduce clusters. A general Sawzall
script can be abstracted into two phases: a filtering phase and an aggregation phase.
After the Sawzall interpreter is instantiated for each piece of input data, the filtering
phase evaluates the analysis on each input record individually and emits the interme-
diate results to the aggregation phase. Then, based on a set of predefined aggregators
(also called tables), the aggregation phase collate and reduce the intermediate to cre-
ate the final results. Through using Sawzall, the resulting code is much simpler and
shorter, by a factor of ten or more, than the corresponding C++ code in MapReduce.
In 2010, the runtime of Sawzall which runs a Sawzall script once over a single input
was open-sourced.

Motivated by Sawzall, Apache develops an open-source large-scaled data analysis
platform Pig [102] which adopts a high-level SQL-like language Pig Latin. Pig pro-
vides a default MapReduce-based deployment model that executes ad-hoc computing
tasks in a Hadoop cluster and HDFS installation after the Pig Latin programs being
compiled into a series of MapReduce jobs. Furthermore, Pig Latin can handle nested
data models and also is able to use operations that are commonly found in databases,
such as Group By, Join, Filter, Union and Foreach etc.

Table 2 presents the Pig Latin code of word count sample. First, the Pig interpreter
parses the Pig Latin command and verifies that the input are valid. Second, the Pig
compiler builds a logical plan for the computational logic that the programmer defined.
And then, the Pig compiler converts the logical plan into a physical plan to determine
MapReduce job following lazy execution strategy. Finally, the corresponding jobs are
executed automatically in Hadoop context. The computation flow of Pig’s word count
program is illustrated in the Fig. 4.

Cascading [103] is another notable high level abstraction framework for building
data application on the top of Hadoop MapReduce. Cascading hides the topological
structure and configuration of MapReduce from programmers to improve efficiency
of complex business logic development. Cascading follows the “pipe and filter” strat-
egy to define computational workflow before compiling and executing into Hadoop
MapReduce.

Twitter’s Scalding API [104] extends Java-based Cascading to enable MapReduce
application development with promising Scala language which combines the features

Table 2 Sample of word count pseudo-code that can be used in Apache Pig

Pig Latin Code of Word Count using Apache Pig

A = load Input_Data as line:chararray;

B = foreach A generate flatten (TOKENIZE(line)) as word;

C = group B by word;

D = foreach C generate group, count(B)

dump D;
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Fig. 4 The computation flow of word count in Apache Pig

of functional programming and object-oriented programming. Recently, Twitter also
open-sources the Summingbird [106] library that allows programmers write MapRe-
duce programs that look like native Scala or Java collection transformations and
execute them on Scalding platform.

The main characteristics of these open-source MapReduce runtimes and high-level
abstractions mentioned above are summarized in Table 3. The characteristics include
the development and programming language, the supported operating system, and the
deployment environment.

3 Shortcomings of Original MapReduce

As mentioned, MapReduce has been widely used to solve data-intensive problems
in various fields because of its simplicity, fault tolerance and scalability. However,
there is still some debates amongst academic researchers about its efficiency, even
MapReduce has been criticised as a “major step backwards” in parallel data process-
ing, compared with traditional RDBMSs [28]. Dean et al. addressed misconceptions
about Google’s MapReduce and discussed ways of handling the pitfalls related to, for
example, heterogeneous systems, indices, and structured data and schemes [18]. But
it is obviously that several pitfalls of MapReduce need to be addressed, as described
below.

1. An efficient scheduling mechanism is critical to MapReduce runtime system
because it often runs multiple jobs in a distributed context. However, the default
scheduler in original Hadoop MapReduce assumes that the computing nodes in
the clusters are homogeneous and that the estimated straggler tasks can be specu-
latively copied and re-executed by other idle nodes [29]. This means that a heavy
I/O transfer load is inevitable, particularly when working under heterogeneous
clusters. In addition, within a single MapReduce job, the reduce phase does not
begin executing until all the map tasks are completed. This synchronization barrier
seriously affects its performance. In the context of cloud computing data center, it
is quite common for the computing resources available toMapReduce to be shared
with multiple users. But, the Hadoop MapReduce assumes that all the computing
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resources are assigned to a single user, so the original job scheduling mechanism
can scarcely adapt to shared MapReduce environments.

2. The simplicity of MapReduce programming model makes it relatively easy for
programmers to use. Many complex computational tasks, especially the iterative
computing algorithms used in data mining and graph analyses, are difficult to
implement in a single MapReduce job, but running multiple jobs in Hadoop is
computationally expensive [30]. Therefore, an extension of the MapReduce pro-
gramming model and runtime is in great demand.

3. With the development of the Internet of Things, large-scale stream data will be
generated rapidly by a range of sensors. Real-time computing requirements for
high speed data streams pose significant challenges. The original MapReduce was
designed for batch-oriented offline processing, which means that the data must all
be copied to the distributed file system or distributed databases at the beginning
or during the computing process. Therefore, original MapReduce model barely
satisfies upcoming real-time or interactive processing requirements.

4. Commercial computers almost all currently have multi-core CPUs or high per-
formance GPUs. However, all map and reduce tasks in the original MapReduce
are linearly executed, so the hardware computing capability of each node is not
completely used. On the other hand, most MapReduce implementations are also
designed to be executed in single cluster environments, but many cloud computing
data centers have been established around theworld. Research is therefore required
on how the original MapReduce paradigm can be extended to make it suitable for
processing large-scale distributed data across multiple clusters.

5. MapReduce applications are typically used in a cluster environment consisting of
large numbers of commercial computers. The complex configuration parameters
and cluster setup details involved pose challenges to MapReduce participators.
Therefore, some optimizations, such as those that simulate MapReduce contexts,
are in great demand allowing the performance of MapReduce to be tuned and its
dynamic running behaviour to be analysed.

6. In practice, MapReduce clusters are mostly deployed in cloud computing data
centers in which data and computing resources are shared by multi-tenants.
However, original MapReduce runtime only provides Token-based and Kerberos-
based authentication mechanisms. Therefore, how to further protect large-scaled
sensitive data and provide stronger authentication and authorization should be
considered seriously. On the other hand, energy consumption often holds a large
fraction of the total cost of MapReduce clusters. This brings a critical and chal-
lenging issue about how to decrease the usage of power andmaintain the capability
of MapReduce at same time.

4 Improvements of MapReduce

In this section, we review the state-of-the-art optimization approaches that have been
proposed to address the aforementioned issues ofMapReduce programmingmodel and
its runtime systems.We classify these approaches into following six aspects according
to their different characteristics.
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4.1 Optimizations of Job Scheduling

Although MapReduce model provides a simple programming interface for users, it
does not contain any execution plan that specifies how jobs are executed in the nodes.
The job scheduling mechanism of particular MapReduce runtime system seriously
affects efficiency of MapReduce since all the functions such as task partitioning
and resource allocation are integrated in. The default FIFO job scheduler in Hadoop
MapReduce runtime assumes that the job submitted is executed sequentially under
homogeneous cluster. However, it is very common that MapReduce is being deployed
in heterogeneous environment, and the computing and data resources are shared by
multiple users and applications. Recently, researchers havemade lots of progress in the
area of MapReduce job scheduling optimizations with respect to these two scenarios:
shared and heterogeneous MapReduce environment.

4.1.1 Shared MapReduce Environment

Under sharedMapReduce environment, how to allocate limiteddata and computational
resources should be primarily considered. Assigning these resources equally to each
user or application is the straightforward way. However, diversity of multiple jobs
and features such as data locality are not well considered by this kind of fairness-
based method. Therefore, Zaharia et al. [35] proposed a delay scheduling algorithm
for addressing the conflict between data locality and fairness in a shared MapReduce
cluster. The basic idea of the proposed algorithm is that a job that should be scheduled
according to fairness is delayed for a small amount of time when it cannot be executed
locally, letting other jobs launch instead. The delay scheduling algorithm is utilized
in the Hadoop Fair Scheduler.

Besides taking advantage of data locality, Seo et al. [32] proposed a High Per-
formance MapReduce Engine (HPMR) to reduce the amount of intermediate output
of multiple jobs to shuffle as well. HPMR contains two optimization schemes, pre-
fetching and pre-shuffling, to improve the degree of data locality and efficiency of data
shuffling, respectively, for shared MapReduce environments. The prefetching schema
is classified into types: the intra-block prefetching and the inter-block prefetching. In
intra-block pre-fetching, only an input split or an intermediate output is pre-fetched,
while the whole candidate data block is pre-fetched in inter-block pre-fetching. Dur-
ing pre-shuffling, HPMR looks over an input split before the map phase begins and
predicts the target reducer where the key-value pairs are partitioned.

Meanwhile, some works improve the efficiency of job scheduling by estimating the
execution status of multiple MapReduce applications. Sandholm et al. [31] introduced
a total system efficiency metric for shared clusters on a Xen-virtualized infrastructure.
This work dynamically adjusts the allocation of resources based on the average actual
application performance ratio in shared environment. Sandholm et al. incorporated
three user-assigned prioritization strategies into Hadoop MapReduce as well, one that
prioritizes entire workflows, one that prioritizes different stages of a single workflow
and one that detects and prioritizes bottleneck componentswithin aworkflow stage. As
a result, users can change the priority of an application over time and assign different
priority to different components under their limitation of total priority.
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For the similar purpose, Polo et al. [33] presented a performance-driven co-
schedulingmechanism for sharedMapReduce environments that dynamically predicts
the performance of parallel MapReduce jobs and adjusts the resource allocation. A job
performance estimation algorithm for dynamically estimating the completion time of
a MapReduce job was proposed. The allocation algorithm used in the task scheduler
assigns free slots to each job depending on the results of the estimation, and organizes
multiple jobs into an ordered queue based on the proposed scheduling policy. The
authors also presented an application-centric MapReduce multi-job task scheduler to
meet user-defined high level performance goals by exploiting the capabilities of a
hybrid system [34]. By developing a prototype in a cluster of Cell/BE blades, this
scheduler is capable of dynamically allocating resources to co-located MapReduce
jobs based on their completion time goals.

LsPS [36] is an adaptive scheduling algorithm that uses knowledge of workload
characteristics to tune the scheduling schemes for Heterogeneous MapReduce clus-
ter, with important statistical information on job workloads for each user, including
average task execution time, average job size and the coefficient of variation of job
sizes, being monitored and gathered by the light-weighted historical information col-
lector developed. When scheduling for multiple users, LsPS allocates slots according
to their workload characteristics, and when scheduling for a single user, LsPS tunes
the scheduling schemes for jobs based on that user’s job size distribution.

4.1.2 Heterogeneous Environment

The slow tasks which are denoted as stragglers often prolong the execution time of
MapReduce jobs. Effectively identifying stragglers in the heterogeneous cluster and
speculatively scheduling them toother idle nodes is the straightforwardway todecrease
response time. Until now, several works, such as [37], [38], [39] and [29], improve
the efficiency of job scheduling in heterogeneous context by making good use of the
speculation strategy.

The Longest Approximate Time to End (LATE) scheduling algorithm [37] defines
some static parameters like SpeculativeCap and SlowTaskThreshold to denote the
number of speculative tasks that can be running at one time, and to determinewhether a
target task is slow enough to prevent needless speculation, respectively. This algorithm
estimates the progress rate and the time to completion of each task according to the
static parameters and the amount of time that the task has been running. By using
LATE, when a node asks for a new task and the number of speculative tasks that are
running is less than the denoted total number SpeculativeCap, the request is ignored
if the node’s total progress is below the proposed parameter SlowNodeThreshold.
Otherwise, the tasks that are currently running but are not being speculated are ranked
by their estimated completion times and a copy of the highest ranked task with a
progress rate below SlowTaskThreshold is launched.

Inspired by an idea similar to the LATE algorithm, Chen et al. developed a Self-
Adaptive MapReduce scheduling algorithm (SAMR) [38] and a History-based Auto-
Tuning (HAT)MapReduce scheduler [39] for heterogeneous environments. Instead of
using static parameters to find stragglers (as LATE does), Chen et al. utilized historical
information updated after every execution to adjust the time weight of each stage of
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the Map and Reduce tasks when estimating tasks execution times. In addition, SAMR
dynamically identifies slow nodes and classifies them into sets of map slow nodes and
reduce slow nodes. As a result, the backup map tasks are launched on the nodes which
are fast nodes or reduce slow nodes.

As the SAMR algorithm does not take into account the fact that different types of
jobs may have different map and reduce stage weights, Sun et al. [29] developed an
Enhanced Self-Adaptive MapReduce scheduling algorithm (ESAMR) to improve the
speculative re-execution of slow tasks. ESAMR differentiates historical stage weight
information on each node and divides them into k clusters using a k-means clustering
algorithm. ESAMR estimates the execution time of the running tasks according to the
cluster’s weights being classified.

In addition, because of the limited network bandwidth in clusters, some studies tried
to optimize job scheduling by enhancing data locality for heterogeneous MapReduce
clusters. For example, Zhang et al. [40] developed a data-locality-aware scheduling
method that addresses the data locality problem that occurs in heterogeneous MapRe-
duce environments. After receiving a request from a requesting node, this method
preferentially schedules a task with input data stored on the requesting node. If no
such task exists, the method selects a task with input data stored nearest to the request-
ing node, and then decides whether to schedule the task to the requesting node or to
reserve the task for the node storing the input data by making a trade-off between
waiting time and transmission time at runtime.

MapReduce with Access Patterns [43] is a combination of data access semantics
and the MapReduce programming framework that has been used in High Perfor-
mance Computing (HPC) analytics applications. It contains a data-centric scheduler
to increase the performance of the HPC analytics MapReduce programs by maintain-
ing data locality. In this scheduling algorithm, a virtual split-based approach is used
to assign all the independent data chunks on a data node to local tasks and to avoid
data transfers completely. A weighted-set cover-based approach was also designed to
select data nodes for scheduling Map tasks with multiple dependent chunks.

Bu et al. [45] developed a task scheduling system to mitigate interference while
preserving the task data locality in a virtualMapReduce cluster. In order to estimate the
task slowdown caused by interference in virtual MapReduce cluster, an exponential
interference predictionmodel is presented and used in theirDynamicThreshold policy.
In addition, Bu et al. [35] improved the Delay Scheduling algorithm by adjusting delay
intervals of ready-to-run jobs in proportion to the input size.

To take full advantage of the feature of data replication in HDFS, Yang et al. [42]
developed a Data-replica scheduler that improves the performance of MapReduce
task scheduling and data allocation in heterogeneous clusters. In this approach, after
detecting the location of a free slot, the scheduler determines whether the data node is
fast or slow according to the proposed fast-datanode queue. If the node is considered to
be fast, an unprocessed block is read, otherwise the scheduler reads the data block from
the head of the proposed undo-blockInfo table. The fast-datanode queue, the undo-
blockInfo table, and the slow-data-etime queue (which is ordered by the predicted
completion time for the processing tasks) are updated after the free slot has been
processed.
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Ahmad et al. [41] analysed the key reasons for MapReduce’s poor performance
on heterogeneous clusters and proposed a load balance optimization approach called
Tarazu which consists of three components: Communication-Aware Load Balancing
(CALB), Communication-Aware Scheduling (CAS), and Predictive Load Balancing
(PLB). CALB regulates the use of remote Map tasks depending on whether Map or
Shuffle is likely to be in the critical path, CAS determines how many remote tasks
are needed and when to execute them in the task-steal mode, and PLB achieves better
load balance in the Reduce phase by skewing the intermediate key distribution among
the Reduce tasks depending on the types of nodes on which the reduce tasks run.

Table 4 summarizes above job scheduling optimizations according to their scenarios
and used optimization strategies. We observe that data locality, speculative execution
and dynamic performance estimation are the most commonly used job scheduling
optimization strategies for both shared and heterogeneous MapReduce clusters.

4.2 Optimizations of MapReduce Programming Model

The simplicity of Google’s MapReduce programming model makes it quite prevalent
in the area of big data processing.However, programmers have to define a series ofMap
and Reduce functions to implement complex computational logic due to the limited
operators and fixed workflow of original MapReduce. In this section, we review these
flexibility optimizations with respect to extension ofMapReduce programming model
and discuss these workflow improvements for iteration computing.

4.2.1 Extension of MapReduce Programming Model

TheMap–Reduce–Merge framework [46] extends the originalMapReducemodelwith
a Merge phase to support relational algebra and to implement several join algorithms
for multiple heterogeneous datasets. This framework uses a coordinator to manage
two sets of mappers and reducers. After these tasks are completed, the coordinator
launches a set of mergers that read the output from selected reducers and merges them
with user-defined logic. The novel programming model used in the Map–Reduce–
Merge framework is shown below, in which α, β, and γ are dataset lineages, k is a key,
and v represents the value entities.

Map : 〈k1, v1〉α → [〈k2, v2〉]α
Reduce : 〈k2, [v2]〉α → 〈k3, [v3]〉α
Merge : 〈〈k2, [v3]〉α, 〈k3, [v4]〉β〉 → [〈k4, v5〉]γ

Map–Join–Reduce [47] extends original MapReduce model to meet the demand
for efficiently joining multiple datasets. To add to the mapper and reducer, the authors
of [47] developed a novel filtering-join-aggregation model that adds a third joiner exe-
cuting function to a MapReduce job. A one-to-many shuffling strategy that efficiently
shuffles each intermediate key–value pair generated by the mapper to many joiners at
one time was also introduced.
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Tuple MapReduce [48] is a model that extends MapReduce to improve parallel
data processing tasks using compound records, optional in-reduce ordering, or inter-
source datatype joins. Instead of computing a key–value pair in the same way as the
original MapReduce, Tuple MapReduce processes a raw n-sized tuple and includes a
group-by clause before the reduce phase. The Map function in the Tuple MapReduce
model takes a tuple as an input of types (i1, …, im) and produces a list of other tuples
as the output list(v1, …, vn), where the first g fields in the list are used to group-by
and the first s fields are used to sort the fields. The Reduce function then takes as its
input a tuple of size g, (v1, …, vg), and a list of tuples list(v1, …, vn). Finally, a list
of tuples list(k1, …, kl) is produced by the Reduce function.

Vu et al. [49] proposed cHadoop, which supports continuous MapReduce jobs. A
carry operation is added to the reduce phase to re-inject the data generated as the
output of the map phase to the next execution. In the cHadoop framework, two com-
ponents, named the Continuous Job Tracker and the Continuous NameNode, which
were extended from the Job Tracker and the Name Node in Hadoop MapReduce,
respectively, were developed to manage and execute continuous jobs, respectively.

Another MapReduce model extension is XMR [50], which features a hierarchi-
cal reduce phase. In order to tune the performance, the authors of [50] studied the
parameters used in MapReduce and set minimum, maximum, and average values for
each parameter. They also developed a data redistribution algorithm to identify the
high-performing nodes and to reorganize the HDFS file fragments according to the
computing ratios. In this method, the number of map and reduce slots is effectively
managed to decrease the execution time. A hybrid routing schedule shuffle phase to
define the scheduler tasks, to decrease the level of memory management required, is
developed as well.

4.2.2 Improvements of Iterative Computing

As mentioned above, the fixed workflow and HDFS-based intermediate data storage
mechanism of original Hadoop MapReduce cause serious performance degradation
when executing a series of jobs iteratively. Several studies as described below try to
solve the bottlenecks of iterative computing.

Haloop [51] is a modified version of HadoopMapReduce designed to support itera-
tive computing. Besides using several novel programming interfaces, Haloop contains
a new loop control module in the master node, which iteratively starts MapReduce
jobs in a loop until a fixed point has been reached. It also contains a novel task sched-
uler that takes advantage of data locality and provides a data caching and indexing
mechanism to improve the iterative computing performance.

In order to overcome global synchronization overheads in large-scale iterative com-
puting contexts, Kambatla et al. [52] developed an extension of MapReduce model by
adapting locality-enhanced partitioning, partial synchronization, and eager scheduling
optimization techniques.

iHadoop [53] schedules iterations asynchronously and connects the output of one
iteration to the next, allowing both to process data concurrently. In addition, iHadoop
concurrently checks the terminations that occur in the background against the asyn-
chronous iterations.
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Pipelined-MapReduce [54] improves MapReduce programming model that allows
direct data transfer through a pipeline between n Map and Reduce tasks. Instead
of determining intermediate data transfers through Task Trackers, the mappers in
Pipelined-MapReduce determine which reduce tasks the intermediate data should be
sent to, and send the data through a TCP socket directly.

MapCombine [55] contains a novel controller component to schedule the iterations
efficiently and avoid re-initializing the runtime environment. The combine phase of
the original MapReduce model is modified so that the static data can be cached to
balance the workload of a computing node and solve the problem of data reloading.
Moreover, MapCombine contains an interaction layer that is responsible for fault
tolerance, downtime recovery, and communication between the controller and the
combiners.

The iMapReduce framework [56] is another distributed computing framework for
implementing iterative algorithms. This system follows a persistent task strategy, and
the entire iterative iMapReduce process is implemented in one single job, with all
Map and Reduce tasks continuing to be executed until the master has checked that the
termination conditions are satisfied. iMapReduce uses a one-to- one socket connection
to directly pass status data from the Reduce task to the Map task when starting the
next iteration, to avoid the unnecessary shuffling of data in the iterative computing
system. Map tasks in iMapReduce can also be asynchronously executed because the
Reduce tasks immediately send the data they have produced through the persistent
socket connection.

Twister4Azure [58] is a distributed decentralized iterative MapReduce runtime for
the Windows Azure Cloud. It uses a Merge task after the reduce phase to determine
the terminations of loops that take all of the Reduce outputs and broadcast data for
the current iteration as inputs. To avoid unnecessary static data reloads and transfers
between iterations, Twister4Azure supports three types of data caching approaches,
instance storage based caching, direct in-memory caching, and memory- mapped-file
based caching. The authors also developed a cache-aware scheduling algorithm to
schedule new MapReduce jobs through Azure queues.

It is noteworthy that, Spark [65], as an emerging distributed in-memory computing
framework, improves the efficiency of iterative computing through building on top of
a high level abstraction called Resilient Distributed Dataset (RDD) [57]. Moreover,
Spark provides more than 80 operators such as map, filter, reduceByKey, join, reduce
and collect and classifies them as Transformations and Actions operators. Instead of
storing intermediate data into distributed file systems, the runtime of Spark efficiently
manages the lineage of read-only RDDs in memory and allows to pipeline several
transformations based on the Lazy computing strategy.

Currently, Spark has become the top level project in Apache. Programmers can
write Spark applications in Java, Scala or Python and deploy them on Hadoop, Mesos,
or in the cloud to access diverse data sources like HDFS, Cassandra, HBase and S3.
Within Spark, some high-level tools such as Spark SQL, GraphX and Spark Streaming
are provided to implement SQL query integration, graph and stream processing of big
data, respectively.

Table 5 shows the summarization of MapReduce programming model extension
and iteration computing optimization.
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Table 5 Summarization of optimizations of MapReduce Programming Model

Data model Operations Key optimizations

Map–Reduce–Merge [46] KV pairs Map, Reduce, Merge Add a Coordinator
module

Map–Join–Reduce [47] KV pairs Map, Join, Reduce Filtering-join-
aggregation
model

Tuple MapReduce [48] N-sized tuple Map, groupBy, Reduce Novel groupBy
scheduling
mechanism

cHadoop [49] KV pairs Map, Reduce, Carry Continuous Job
Tracker &
NameNode

XMR [50] KV pairs Map, Hierarchical reduce Data redistribution &
Routing schedule

Haloop [51] KV pairs Map, Reduce Loop control & data
caching, indexing

Kambatla et al. [52] KV pairs Map, Reduce Locality-enhanced
partitioning, partial
synchronization, and
eager scheduling

iHadoop [53] KV pairs Map, Reduce Schedules iterations
asynchronously

Pipelined-MapReduce [54] KV pairs Map, Reduce Direct data transfer
via TCP socket

MapCombine [55] KV pairs Map, Reduce Novel controller
component

iMapReduce [56] KV pairs Map, Reduce Direct one-to-one
socket connection

Twister4Azure [58] KV pairs Map, Reduce, Merge Merge mechanism
and data caching

Spark [65] RDD Transformations and Actions In-memory process of
RDD DAG

4.3 Real-Time Support

Since originalMapReducemodel is couplewith distributed file system, such asGFS or
HDFS, it lacks efficient support mechanism for real-time processing. In recent years,
several solutions which take high-speed stream as input data source have been released
to deal with real-time processing issues of original MapReduce.

TheHadoopOnline Prototype (HOP) [59] extended originalMapReduce to support
long-running jobs through online aggregation of, and continuous queries, on streaming
data.Within a job, HOP directly pipelines the output of theMap function to the Reduce
task using a TCP socket when the intermediate data buffer of theMap function reaches
a threshold size. Similarly, the output of a job in HOP can be directly pipelined to the
Map task of the next job. Using this pipelining strategy and the job progress metric
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developed, HOP gives an approximate answer in online aggregation and continuous
query situations.

Böse et al. [60] developed an online MapReduce framework using shared-memory
architecture, to allow the efficient mining of large data streams. In this framework,
the Map tasks read input data from a file or from data streams and generate output
pairs periodically and as events. A generated pair is assigned to the input queue of
the corresponding reducer using a hash map mechanism. A collector component is
utilized to compute the preliminary or final result used in convergence estimations and
there is a visualization option.

By constructing an experimental evaluation of Hadoop MapReduce in the Amazon
EC2 cloud, Phan et al. [61] identified key factors that affect real-time scheduling
in MapReduce, and formulated the problem as a constraint satisfaction model. The
authors of [61] developed an enhanced MapReduce execution model and a range of
heuristic techniques for online scheduling using hierarchical scheduling, real-time
virtual machines, and probabilistic models, based on this model.

MiscoRT [62] is a mobileMapReduce framework that was developed to support the
execution of distributed applications with real-time response requirements on smart
phone networks. It extends the Misco system with two levels of schedulers, called the
Application Scheduler and the Task Scheduler. The Application Scheduler determines
the order in which the applications are run, based on the urgencies and time constraints
that are applicable, and it estimates the execution times using an analytical model. The
Task Scheduler schedules tasks dynamically and uses the measured laxity values of
the tasks to adjust the scheduling order. Additionally, node failures are also considered
in both components.

Peng et al. [63] extended the originalMapReducemodel to support real-time analyt-
ics processing. In their proposed framework, the shuffle and sort phases ofMapReduce
are removed. A timestamp is integrated into the key part of the key–value model input
to support the necessity of a real-time data stream. The authors used a Chord based
on the JOL rule language to manage the input data stream. Cassandra was chosen for
persistent key–value storage in the system.

RTMR [64] is a MapReduce-based large-scale data processing approach for high-
speed data streams. RTMR pre-processes historical data to generate intermediate
results that are distributed (cached) to the local disk of each working node according
to the hash results for the key, to decrease the overheads involved in repeated data
loading and computing. Based on this, the map phase in RTMR distributes the input
data stream to the appropriate worker node and uses a local pipeline strategy, which is
controlled by the system parameters and thread pools to optimize the CPU utilization
rate, to transfer the intermediate data asynchronously between the Map and Reduce
tasks. The authors also modified the in-memory and disk storage data structures and
improved the intermediate results read/write strategy using the overhead estimation
and replacement algorithm they developed, to optimize the access performance of
local intermediate data.

On the other hand, to optimize the efficiency of incremental processing that is
maintaining a very larger repository of Web documents and processing small updates
concurrently, Peng et al. [44] from Google designed the Percolator system which pro-
vides two main abstractions: ACID transactions over a random-access repository and
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observers, a way to organize the workflow of incremental computation. The structure
of Percolator system in the cluster consists of three components: a Percolator worker,
a BigTable tablet server and a GFS chunk server. During computing, all observers
are running in the Percolator worker which scans BigTable for changed columns and
invokes the corresponding observers as a function call in the worker process to per-
form transactions by sending read/write RPCs to BigTable tablet servers. Moreover,
two services: the timestamp oracle and the lightweight lock service are integrated in
Percolator to implement snapshot isolation and improve efficiency of notifications.

Similarly, in order to provide low-latency querying service as Google’s Zeitgeist
system does, Akidau et al. [107] designed another programmingmodel and distributed
framework called MillWheel with the capability of scalable and fault-tolerant stream
processing. The basic workflow of MillWheel can be seen as a directed compute
graph consisting of several user-defined transformations on input data. Each of these
transformations, which are also called computations, can be parallelized across an
arbitrary number of machines based on (key, value, timestamp) triples. Specifically,
since data arrival time does not strictly correspond to its generation time in a distributed
system with inputs from all over the world, MillWheel includes a timestamp-based
Low Watermark mechanism to distinguish the latency and completeness of incoming
data.

4.4 Hardware Acceleration

As discussed in Sect. 3, original MapReduce is designed for distributed comput-
ing in a cluster of commodity computers, the computing capabilities of hardware
such as multi-core CPUs and GPUs are not adequately utilized. This section reviews
these optimization approaches which extend original MapReduce to various hardware
architectures. We classify them into two aspects: processor-level and cross-clusters
hardware acceleration according to their different characteristics.

4.4.1 Processor-Level Hardware Acceleration

Employing the computing capabilities ofmulti-coreCPUs is themost commonway for
parallel computing. Some works, such as [21], [67] and [73], implemented Google’s
MapReduce programming model in multi-core CPUs context.

In addition to the features offered by Phoenix [21], MATE [67] provides a gener-
alized reduction API for the MapReduce model. Both Map and Reduce phases were
combined into a Reduction function that processes split data, defined by the splitter
function, and updates the intermediate results to give reduction objects. A Combina-
tion function was also developed to combine the final results from multiple copies of
the reduction objects into one object. TheMATE runtime, which has the same schedul-
ing strategy and fault tolerance mechanism as Phoenix, has two types of temporary
buffers, a reduction-object buffer and a combination buffer, which allocate each thread
using different splits and store the intermediate output results from each stage.

Tiled-MapReduce [73] is an extendedMapReducemodel for sharedmemorymulti-
core platforms that is based on a tiling strategy. It decomposes a large MapReduce
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job into a number of independent small subjobs that are then iteratively processed
all at one time. In so doing, execution workflow in the general MapReduce model
is modified to give four phases, Map, Combine, Reduce, and Merge. The Map and
Combine phases within a subjob are iteratively executed to generate partial results.
The Reduce phase is then used to process the partial results of the iterations rather
than the intermediate data. An Iteration Window approach is used in the runtime of
the Tiled-MapReduce model to exploit the cache hierarchy in a multi-core platform
efficiently. Optimized systems were also developed to improve the memory, cache,
and CPU efficiency.

Comparing with multi-core CPUs, GPUs have an order of magnitude higher
computation power and memory bandwidth. Several GPUs-based MapReduce imple-
mentations and optimizations have been proposed to take full advantage of the
performance of GPUs.

For example, Stuart et al. [68] developed a multi-GPUs MapReduce implementa-
tion for efficient volume rendering. The workflow in this system takes advantage of
NVIDIA GPUs, and consists of Map, Partition, Sort, and Reduce stages, the partial
reduce and combine phases being omitted. To overcome the I/O transfer bottleneck,
the runtime handles volume data in a streaming manner rather than by storing the
intermediate key–value pairs and final values on a disk.

StreamMR [70] is an OpenCL-based MapReduce framework for AMD GPUs.
Since atomic operations can cause severe performance degradation in AMD GPUs,
StreamMR uses an atomic-free mechanism that maintains a separate output buffer
for each workgroup in global memory to allow efficient output and pre-processing to
be achieved. StreamMR also maintains a hash table for each wavefront, to group the
intermediate results.

Chen et al. [71] developed an accelerated GPU-basedMapReduce implementation.
To avoid storing intermediate data in the memory in the device, they used a reduction-
based approach that encapsulates intermediate key–value pairs into reduction objects
and performs the reduction process in the shared GPUmemory. The size of the shared
memory space is often insufficient for this to be achieved, so a memory hierarchy
was developed for storing the reduction objects on both the shared memory and the
memory of the device. To balance the memory overhead and the locking costs, the
authors further developed the multi-group scheme that partitions each thread block
into multiple groups, so that each group has its own copy of the reduction object.

Grex [72] is a MapReduce framework designed to allow general purpose GPUs to
be used for parallel data processing. Its workflow consists of five execution stages,
parallel split, map, boundary merge, group, and reduce. In the first parallel split stage,
instead of splitting the input data sequentially, Grex assigns one unit of data to each
thread and uses the parallel prefix sum algorithm to compute the token for each key in
parallel, based on the temporary data structure KeyRecord developed. To overcome
problems with data skewing and load balancing, the split data are distributed to the
subsequent Map tasks in parallel, and each working thread computes a unique address
to write the intermediate key–value pairs to, so that the use of locks and atomic
operations to synchronize the thread with other threads can be avoided. Grex assigns
an equal number of intermediate data to reduce tasks, again to overcome problems
with data skewing and load balancing. It uses a lazy emit strategy to decrease the
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overhead involved in handling intermediate data in terms of computation and global
memory usage, and uses shared memory, texture cache, and constant memory in the
GPU memory hierarchy to decrease delays accessing memory.

Besides the above approaches, some works implement MapReduce model in cou-
pled CPU and GPU architecture. For instance, MapCG [66] allows source code level
portability between a CPU and a GPU. It consists of a MapReduce-based high-level
programming language and a runtime for specific hardware architectures. Intermedi-
ate key–value pairs in MapCG are copied values and are never sorted, unlike what
happens in Phoenix [21]. Two lightweight memory allocators on the CPU and GPU
were developed to deal with the performance bottleneck in Phoenix caused bymassive
requests formalloc() functions. A hash table structure inMapCGgroups the key–value
pairs on the GPU.

Mars [69] is aMapReduce framework that can run onNVIDIAGPUs, AMDGPUs,
multi-core CPUs, and Hadoop-based distributed systems. Mars workflow consists of
three loosely coupled stages, Map, Group, and Reduce. The Group stage is designed
to group the Map outputs by key. The Mars scheduler that runs on the CPU schedules
Map and Reduce tasks to GPU threads. The sizes of the outputs from the Map and
Reduce stages are unknown, and conflict may occur when multiple threads each try
to write the results to the shared output array, so a lock-free scheme was developed
and applied to both the Map and Reduce stages. The Map–Reduce–Count step in this
scheme computes the number of intermediate results, the total sizes of the intermediate
keys, and the corresponding values. Based on this, a prefix sum and an array of writing
locations are generated to represent the location of the output array for each thread.
A Rapid Group and a skew handling scheme were also developed, to optimize the
sort operation in the Group stage and the workload distribution in the Reduce stage,
respectively. Furthermore, Mars enables the integration of GPU-accelerated code to
distributed environment, like Hadoop, with the least effort.

Cell processor is another hardware architecture used for MapReduce optimization.
A MapReduce runtime for the Cell/BE architecture was developed by the study [74].
Unlike the original MapReduce model, this runtime consists of five stages, Map,
Partition, Quick-sort, Merge–sort, and Reduce. The Map stage executes the user-
specified Map function in the SPEs, and produces a set of keys containing pointers to
the corresponding values. The Partition, Quick-sort, andMerge–sort stages then group
identical keys together to produce a set of partitions sorted by the keys, on both the PPE
and the SPEs. Finally, theReduce stage applies the user-definedReduce function on the
SPEs to produce one logical output array of key–value pairs. In this implementation,
the whole computational procedure in the runtime is designed to execute in 20 threads,
with one PPE main thread spawning all of the other threads, eight SPE worker threads
performing the five stages described above, eight PPE scheduler threads notifying the
appropriate SPE when a work unit is ready for prefetching, two PPE worker threads
performing the input data partitioning and final merge–sort processes, and one PPE
event thread responding to output buffer memory allocation requests and controlling
the execution flow.

Rafique et al. [75] developed a MapReduce system for asymmetric clusters of
asymmetric multi-core processors and general-purpose processors. A general-purpose
server with multi-core x86 processors and a large amount of memory was designed
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to be the manager of their proposed architecture, and this server is responsible for
the dynamic scheduling of jobs, the distribution of data, and allocating work to the
Cell-based drivers or compute nodes, such as SONY PS3 and IBM QS20 systems
equippedwith the cell processors. The authors also developed a streaming approach for
splitting data into work units, to fit the in-cores in the computing nodes, using various
optimization techniques, such as prefetching, double buffering, and asynchronous I/O.

The work in [76] proposed another MapReduce runtime system based on Cell
architecture, and this was derived from the system developed by [74]. The modified
execution scheme consists of four stages, Map, quick-sort, merge–sort, and Reduce,
with partitioning being performed implicitly in the Map stage. The modified run-
time uses the main thread and the scheduler thread in an event-driven controller to
achieve task initiation, scheduling, andworkflowcontrol on thePPE instead of using 12
threads. The performance and scalability of the original system were also improved in
several additional ways, including adding implicit partitioning, quick sorting, memory
management, and execution schemes.

In order to take advantage of the computational performance of Intel Xeon Phi
coprocessor, Lu et al. [108] presented a MapReduce optimization named MRPhi
sharing similar idea with Phoenix++. Within this system, two technologies from on
Phoenix++ are adopted, which are efficient combiners and different container struc-
tures. As Xeon Phi features with wide 512-bit VPUs on each core which doubles the
vector width compared with other Intel Xeon CPUs, MRPhi implements map phase
in a vectorization friendly way to assist the auto-vectorization and take advantage of
VPUs in Xeon Phi. In addition, since the auto-vectorization often fails due to the com-
plex logic, Lu et al. employs the SIMD parallelism to implement hash computation
manually. To better utilize the hyper-threading capability of Xeon Phi and improve
the resource utilization, user-defined map and reduce phases are pipelined by using
the MIMD threads. Furthermore, to deal with the issue of large local arrays, Lu et al.
employs low overhead atomic operations on the global array, and the cache efficiency
can be improved as well because of the coherent L2 caches with ring interconnection.

4.4.2 Clusters-Based Hardware Acceleration

HadoopOn theGrid (HOG) [77] extendedHadoopMapReduce to execute on theOpen
Science Grid in the United States. HOG consists of a grid submission and execution
component, an across grid HDFS, and an across grid MapReduce. Grid submission
and execution component, which is based on Condor and GlideinWMS, is used to
manage the submission and execution of the Hadoop worker nodes and to allocate the
nodes at remote sites. The master server in the HOG system resides on a stable central
server. Failures on the grid are common, so the time between the heartbeat messages
is lower in this system than in other systems, and the rack awareness strategy of HDFS
was extended to become the site awareness in HOG. The MapReduce job tracker is
deployed on the central server, and its communication with task trackers is based on
HTTP over the WAN, to make it suitable for the grid context.

Heintz et al. [78] developed a cross-phase MapReduce system to overcome the
limitations of Hadoop MapReduce when processing large-scale distributed data and
using large amounts of computational resources. They proposed a Map-aware Push
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technique to hide latency and enable dynamic feedback between the push and map
phases. The better performing nodes and those with faster links can process more data
in the runtime using this method than using other methods. To eliminate the impacts
of mapper–reducer link bottlenecks, the authors also developed a Shuffle-aware Map
approach that includes a shuffle-aware scheduler to feed back the cost of a downstream
shuffle into the map process, to allow the map phase to be altered in an appropriate
way.

G-Hadoop is another MapReduce framework that allows large-scale distributed
computing across multiple clusters [79]. This system replaces the native HDFS the
Gfarm globally distributed file system, and uses the Torque Resource Manager as the
distributed resource management system for each High End Computing cluster, to
allow datasets to be shared across multiple sites. G-Hadoop architecture is also based
on the master–slave model. The master node, which is installed at a central organi-
zation, is responsible for job splitting, task assignment, and metadata management,
and consists of a Metadata server from the Gfarm system and a modified JobTracker
based on the data-aware scheduling system. The slave node, which is sent to each
participating cluster, is designed to perform the TaskTracker, JobTracker, I/O Server,
and Network share functions. A novel job execution flow, based on the system just
described, was also developed for G-Hadoop.

In order to implement efficient data-intensive computing in distributed clusters,
Mantha et al. [80] proposed Pilot-MapReducewhich is an extension of theMapReduce
runtime framework based on the Pilot abstraction model and enables the separa-
tion of resource management and the application of MapReduce in general-purpose
distributed infrastructures. The architecture of the proposed Pilot-MapReduce frame-
work consists of the MapReduce-Manager, the Pilot API, and several Data Pilot
and Compute Pilot on different resources. Among them, the MapReduce-Manager
is responsible for orchestrating the resource pool and managing the entire MapRe-
duce computing process. The Pilot API is used as an abstraction for compute and
data resources, as well as managing Data Units and Compute Units where the Map
and Reduce tasks worked. In addition, the Pilot-MapReduce supports three different
distributed MapReduce topologies: local, distributed, and hierarchical.

Instead of adapting the master–slave architecture, as in original MapReduce, P2P-
MapReduce [81] is a peer-to-peerMapReduce framework that provides amore reliable
solution for managing node churn, master failure, and job recovery in dynamic cloud
infrastructures. Master nodes and slave nodes in P2P-MapReduce form logical peer-
to-peer networks in which master nodes are responsible for receiving job requests
from user nodes, managing and executing recovery jobs, and coordinating masters
and slaves. Using the proposed Task Managers, each slave executes the tasks assigned
according to the lowest workload strategy.

Table 6 shows the corresponding hardware architecture used for improving the
efficiency of original MapReduce.
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Table 6 Summarization of hardware-based acceleration for MapReduce

Multi-core CPUs GPUs Co-processors Cell P2P Grid Clusters

Phoenix [21] �
MATE [67] �
Tiled-MapReduce [73] �
Stuart et al. [68] �
StreamMR [70] �
Chen et al. [71] �
Grex [72] �
MapCG [66] � �
Mars [69] � �
de Krujif et al. [74] �
Rafique et al. [75] �
Papagiannis et al. [76] �
Lu et al. [108] �
HOG [77] �
Heintz et al. [78] �
G-Hadoop [79] �
Mantha et al. [80] �
P2P-MapReduce [81] �

4.5 Performance Tuning of MapReduce

Performance Tuning of practicalMapReduce clusters is a challengingwork because of
the number of computing nodes and complexity of configuration parameters. Hence,
several works tried to build the simulation context for MapReduce performance mod-
elling and optimization.

MRPerf [82] is a sub-phase level simulation tool for modeling the performance
of MapReduce applications on large clusters. Taking the user-defined cluster topol-
ogy specification as its input, MRPerf simulates the inter- and intra-rack network
communications performed by MapReduce, relying on the ns-2 network simulator.
Similarly, according to the user-defined application job specification, MRPerf cap-
tures the computation time for each data-size-dependent sub-phase within a Map task
using cycle–bye parameters. MRPerf also simulates disk I/O time using a disk simu-
lator and the Data layout files.

MRSim [83] uses GidSim to simulate the network topology and communications,
and uses the SimJava discrete event engine to model the other components of the
system.MRSim takes a cluster topology file and a job specification file as its input, and
provides simulation services for shared multi-core CPUs, hard disk drives, network
traffic and memory buffers, merge parameters, parallel copy and sort parameters,
combiners, and other components.
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Kolberg et al. [88] developed theMSRG simulator for theMapReduce environment
on top of the SimGrid simulation toolkit. The MSRG system provides a speculative
execution mechanism and a data replication function, as well as several API functions
that allow a user to define task costs and intermediary data.

Liu et al. [89] developed HSim, which is anotherMapReduce simulator for Hadoop
applications. HSim models several Hadoop parameters (including node parameters,
cluster parameters, Hadoop system parameters, and HSim simulator parameters) to
provide highly accurate and dynamic behaviour simulation services. In the HSim
architecture, the Cluster Reader component reads the cluster parameters from the
Cluster Spec to create a simulated Hadoop cluster environment. The Job Spec is
then processed by the Job Reader Component and the jobs are submitted to HSim
to be simulated. However, neither the combiner nor the load balancing mechanism is
considered in the current versions of HSim.

SimMapReduce [85] is a GridSim-based simulator designed to manage resources
and to evaluate the scheduling performance of MapReduce. Its architecture has
four layers, SimJava, GridSim, SimMapReduce, and User Definition. The discrete
event processes are modelled in SimJava, the basic system component provisions are
supported byGridsim, the different cluster configurations are simulated in SimMapRe-
duce, and the multi-layer scheduling algorithms are supported using predefined XML
configuration files in the User Definition layer.

On the other hand, some studies improve the performance of MapReduce clusters
by tracing the runtime or optimizing the configuration parameters.

MR-Scope [84] is a real-time tracing tool for MapReduce. It is composed of three
layers, the Hadoop Layer, the RPC Layer, and the Client Layer. The Hadoop layer
dynamically traces the node status inHadoop using the heartbeat and observation point
features. The RPC layer is responsible for establishing communication between the
client andHadoop utilizing a collection of protocols, with the internal RPCmechanism
of Hadoop being changed to a non-blocking way. The Client layer can visualize the
distribution of the HDFS blocks and their replicas, and display the ongoing processes
in each running task using three different but interconnected perspectives, the HDFS
perspective, the MapReduce task scheduling perspective, and the on-going MapRe-
duce distributed perspective.

Predator [86] is an experience-guided configuration optimizer for MapReduce. It is
based on a Hadoop configuration model in which the parameters are divided into four
groups according to the general configuration experience, information on the cluster
CPUs and memory, the input information for a job, and the results of the Grid Hill
Climbing (GHC) algorithm developed for this system. The GHC algorithm, which is
based on an objective function developed to estimate the job execution time, randomly
generates sampling points that divide a parameter into equal subspaces and search the
optimized configuration parameters.

In order to identify the relationships among the workload characteristics, Hadoop
configurations, and workload performance, and accurate performance prediction of
Hadoop cluster, Yang et al. [87] proposed a statistical analysis approach for Hadoop
MapReduce. By applying the principal component analysis approach, they first trans-
form the criticalmetrics of Hadoopworkflow and framework configuration parameters
into a small set of independent principal components. Then, they use cluster analysis
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methods to identify groups ofworkloadswith similar behaviours. In addition, they pro-
pose a regression model to predict relative performance of workloads under different
Hadoop configurations.

Vianna et al. [90] developed an analytical model for estimating the MapReduce
workload performance, particularly focusing on the intra-job pipeline parallelism
between the Map and Reduce tasks. Based on the reference model which is designed
to predict the performance of parallel computations, the authors represent the intra-
job pipeline as a precedence tree. And then, the approximate Mean Value Analysis
is applied to predict mean job response time, throughput and resource utilization of
Hadoop.

4.6 Security and Energy Optimization of MapReduce

Security and power saving are two key factors that should be seriously considered
for cloud computing center owners. Lots of research works have been proposed to
improve the security and power efficiency for various distributed environments from
grid computing to cloud computing. In addition, a few studies tried to improve the
energy efficiency of cloud computing data centers. We review these typical solutions
specific to MapReduce as the following.

4.6.1 Security Optimizations of MapReduce

In cloud computing context, users often submit individual data to the clusters, but they
do not know where and how the data is being stored and processed since the oper-
ational details inside the cloud are invisible to data contributors. Some studies have
been proposed to enhance the data privacy. Airavat [96] is aMapReduce-based distrib-
uted system that provides end-to-end confidentiality, integrity and privacy guarantees
for sensitive data in cloud computing context. To prevent information leaks through
system resources, it adds a SELinux-like mandatory access control to the MapReduce
distributed file system.Moreover, Airavat adopts differential privacy strategy to ensure
the output of aggregate computations does not violate the privacy of individual inputs.

For similar purpose, Guo et al. [99] extended MapReduce with novel integration
of access control via attributed-based encryption and privacy-preserving aggregate
computation via homomorphic encryption technologies.Within the proposed approach
of [98], a transform module is integrated before the reduce phase to find the same key
on ciphertext for the encrypted intermediate data.

Apart from the above solutions, several solutions extend the MapReduce model
and runtime to optimize security for various usage scenarios. For example, in order to
realize privacy data protection efficiently in hybrid clouds, Han et al. [100] presented a
hierarchical control architecture based multi-cluster MapReduce programming model
named HMR. Within HMR, data isolation and placement among private cloud and
public clouds according to the data privacy characteristic is implemented by the control
center. A Map- Reduce-GlobalReduce scheduling process is also designed to perform
the corresponding distributed parallel computation correctly under the multi-clusters
mode.
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In order to support secure computing with mixed-sensitivity data on hybrid clouds,
Zhang et al. [101] proposed tagged-MapReduce which extends the original key-value
model with a sensitivity tag.Moreover, Zhang et al. designed several scheduling strate-
gies that can exploit properties of the map and reduce functions to rearrange the
computation for greater efficiency under these constraints while maintaining MapRe-
duce correctness.

SecureMR [97] is a decentralized replication-based integrity verification scheme
for MapReduce. It enhances the Hadoop MapReduce with five logical security com-
ponents: SecureManager, Secure Scheduler, Secure Task Executor, Secure Committer
and Secure Verifier. Among them, Secure Manger and Secure Scheduler are deployed
in themaster node for task duplication, secure task assignment and commitment-based
consistency checking. Secure Task Executor which runs in both mappers and reducers
is used to prevent Dos and replay attacks that exploit fake or old task assignments. In
addition, Secure Committer deployed inmappers generates commitments for the inter-
mediate data and sends them to Secure Manager to complete the commitment-based
consistency checking. Security Verifier running in a reducer collaborates with Secure
Manager to verify the intermediate results from mappers. During the process, two
protocols: Commitment protocol and Verification protocol are utilized to implement
security communication among these components.

Different from above solutions, Yoon et al. [95] designed a black box approach,
with no modification of the original MapReduce operations or introduction of extra
operations, to detect the attacks launched by malicious or misconfigured nodes, which
may tamper with the ordinary functions of theMapReduce framework. To achieve this
goal, Yoon et al. collected the low-level system calls and traces of runningHadoop logs
through dynamic instrumentation.Moreover, Yoon et al. identified a set of invariants to
form thebasic executionbehaviour of both theHadoop framework and the applications.
Based on that, Yoon et al. detected the malicious nodes by matching these correlated
Hadoop logs and system calls against the identified invariants.

4.6.2 Energy Optimizations for MapReduce

Aneffectiveway to reduce energy consumption ofMapReduce clusters is to selectively
power down idle nodes. Following this idea, the covering subset [91] scheme keeps
one replica of each block within a small subset of machines to remain fully powered to
preserve data availability, and the other nodes are powereddownduring low-utilization.
On the contrary, the All-In strategy [92] powers down the entire cluster during periods
of inactivity, and runs at full capacity more effectively.

On the other hand,GreenHDFS [93] logically divides theHDFScluster into disjoint
hot and cold zones. The frequently accessed data is placed in the hot zone, which is
always powered. Green HDFS fills the cold zone using one powered on machine at a
time.

In order to improve the energy efficiency for time-sensitive, interactive data analysis
workflows, Chen et al. [94] developed a workload manager Berkeley Energy Efficient
MapReduce (BEEMR). The basic idea of BEEMR is firstly classifying each MapRe-
duce job into one of three classes: interactive job, batch-able job and interruptible job,
based on several empirical parameters. After that, the interactive jobs are serviced in

123



Int J Parallel Prog (2016) 44:832–866 861

the proposed interactive zone and retained priority to set in a full-power ready state as
this kind of job processes data in a low latency way. For all batch-able and interrupt-
ible jobs whose latency is not a concern, BEEMR put them in a wait queue of batch
zone. Energy savings come from aggregating jobs in the batch zone to achieve high
utilization, executing them in regular batches and transitioning machines in the batch
zone to a low-power state when jobs complete.

5 Conclusions and Future Work

Continuous growth in the amount of data produced has led to the emergence of many
scalability and performance challenges for traditional single-machine-based comput-
ing environments. The MapReduce paradigm has become the de facto standard for
data-intensive computing in the cloud computing field because of its simplicity, scal-
ability, and fault tolerance. Several approaches to optimize MapReduce have been
developed recently, and these are aimed at improving the programming model and
decreasing the occurrence of bottlenecks.

In this paper, we first described the basic idea behind the MapReduce model and
discussed some of the shortcomings of the original model. We then assessed the
methods designed to address these shortcomings in terms of their abilities to optimize
the efficiency and flexibility of different aspects of MapReduce like optimizing job
scheduling, extending the programming model, accelerating hardware performance,
tuning the runtime, aswell as security and energyoptimization. Thesemethods are each
focused on optimizing a specific aspect of the model, and improve the performance of
MapReduce and make it more suitable for use in dealing with complex computational
logic. Research on the aspects mentioned above should be continued and combined.
We also suggest some other problems that will also need to be studied, and these are
listed below.

1. Optimize the MapReduce programming model for use in Hadoop YARN.

The novel runtime environment Hadoop YARN is currently considered to be the next
generation of the MapReduce open source framework. However, the programming
model used in MRv2 is not well improved, and most of the MapReduce optimiza-
tions being developed by researchers in both industry and academia are focused on
improving performance of the original MapReduce model. More research is required
to determine how to integrate currently available MapReduce optimizations (e.g.,
iterative MapReduce models, more efficient scheduling algorithms, and hardware
acceleration solutions) into YARN-based MRv2. In addition, how to integrate the
features of other YARN supported programming model such as Spark into MapRe-
duce should be further researched.

2. Research into the parallelization of classical algorithms based on the optimized
MapReduce.

In the context of big data processing, classical data mining algorithms, such as the
k-means, SVM, andNaiveBayes algorithms, are frequently used to extract useful infor-
mation.However,most of the current parallelization approaches using these algorithms
are based on the originalMapReduce programmingmodel. The optimizedMapReduce
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models described above, which perform better and are more flexible than the original
MapReduce model, are not often used. Research is therefore required to determine
how these classical algorithms can be modified to make them more suitable for use in
optimized MapReduce models.

3. Combining MapReduce with the Internet of Things.

The Internet of Things is developing rapidly, and many smart devices have been
deployed. However, most of these are only used to gather and transfer data to a cloud
computing center through the Internet, which means that the computing and storage
capabilities of the devices are not exploited well. A considerable amount of research
is therefore required to determine how the MapReduce model can be extended or
restructured to meet the demands of the Internet of Things.
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