
Int J Parallel Prog (2016) 44:337–380
DOI 10.1007/s10766-015-0380-7

Memory Partitioning in the Limit

Emre Kültürsay1 · Kemal Ebcioğlu2 ·
Gürhan Küçük3 · Mahmut T. Kandemir1

Received: 4 July 2013 / Accepted: 18 September 2015 / Published online: 26 October 2015
© Springer Science+Business Media New York 2015

Abstract The key difficulties in designing memory hierarchies for future computing
systems with extreme scale parallelism include (1) overcoming the design complex-
ity of system-wide memory coherence, (2) achieving low power, and (3) achieving
fast access times within such a memory hierarchy. Towards addressing these difficul-
ties, in this paper we propose an automatic memory partitioning method to generate
a customized, application-specific, energy-efficient, low latency memory hierarchy,
tailored to particular application programs. Given a software program to accelerate,
our method automatically partitions the memory of the original program, creates a
new customized application-specific multi-level memory hierarchy for the program,
and modifies the original program to use the new memory hierarchy. This new mem-
ory hierarchy and modified program are then used as the basis to create a customized,
application-specific, highly parallel hardware accelerator, which is functionally equiv-
alent to the original, unmodified program. Using dependence analysis and fine grain
valid/dirty bits, the memories in the generated hierarchy can operate in parallel with-

B Emre Kültürsay
euk139@cse.psu.edu

Kemal Ebcioğlu
kemal.ebcioglu@global-supercomputing.com

Gürhan Küçük
gkucuk@cse.yeditepe.edu.tr

Mahmut T. Kandemir
kandemir@cse.psu.edu

1 Pennsylvania State University, 111N IST Building, University Park, PA 16802, USA

2 Global Supercomputing Corporation, P.O. Box 603, Yorktown Heights, NY 10598, USA

3 Faculty of Engineering and Architecture, Yeditepe University, Office A-407, Kayisdagi,
34755 Istanbul, Turkey

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-015-0380-7&domain=pdf

338 Int J Parallel Prog (2016) 44:337–380

out the need for maintaining coherence and can be independently initialized/flushed
from/to their parent memories in the hierarchy, enabling a scalable memory design.
The generated memories are fully compatible with the memory addressing in the orig-
inal software program; this compatibility feature enables the translation of general
software applications to application-specific accelerators. We also provide a compiler
analysis method to perform accurate dependence analysis for memory partitioning
based on symbolic execution, and a profiler-based futuristic limit study to identify the
maximum gains that can be achieved by memory partitioning.

Keywords Memory partitioning · Parallel processing · Application-specific
hardware accelerators · Exascale computing · Supercomputers

1 Introduction

As we move towards the era of exascale computing, high performance computing
systems will exhibit an unprecedented degree of parallelism. As of today, achieving
exascale performance is a hard problem,whose solutionwill likely include application-
specific hardware, at least to reduce the total power consumption within the system.
One example of an exascale system is therefore an application-specific hardware accel-
erator that spans a large number of racks and modules within these racks, each module
housing customhardware chips (ASICor FPGA)withmany small processing elements
in them operating together to improve the performance of a particular application. In
such a system, there will be thousands of memory accesses issued simultaneously;
thus, the memory system must be very scalable to serve this many requests with low
latency and low power. Yet, preferably, the memory system will need to comply with
the semantics of a single unified, coherent memory (as if all processing elements
were jointly working on one single sequential program) for improved programmer
productivity.

Our research is directed towards making a breakthrough in the memory designs
of future high performance systems. We believe that, by using automatic mem-
ory partitioning, we can solve the memory scalability problem by creating custom,
application-specific memories, thus achieving less design complexity, lower power,
and faster access times through hardware specialization. Memory partitioning [24,47]
is a technique to decompose the memory address space of a software program into
independent subspaces, such that each subspace is implemented by an independent
memory partition that is accessed by only a subset of the processing elements/memory
request sources in the system. For the purpose of building large parallel hardware
systems, the most important benefit of using partitioned memory over distributed
shared memory is the simplification in coherence hardware: the customized mem-
ory system created for the program is exactly equivalent to the original program
memory, yet the generated memories do not need to be kept coherent. As a result,
this partitioned memory system can easily scale to a large number of memories
that can operate in parallel to satisfactorily serve all the simultaneously issued
requests.

123

Int J Parallel Prog (2016) 44:337–380 339

1.1 Contributions

We developed a compiler/profiler framework to analyze programs, create a special-
ized partitioned memory for these programs, and quantify the benefits of using this
partitioned memory. Specifically, wemake the following contributions with this work:

• Our first contribution is a method to partition memory. Our method differs from
existing methods in two aspects. First, the memories generated by our method
are 100% compatible with the corresponding addresses used by the original soft-
ware program, thus widening the applicability of memory partitioning to arbitrary,
general, sequential code (including assembly code). Address compatibility is the
key to enabling full functional equivalence between an arbitrary software program
fragment and the hardware accelerator it is compiled into. Second, our method
hierarchically partitions the memory space of the target program. This results in
a larger number of smaller memories that are active during the execution of inner
program scopes, which can further improve performance and energy efficiency of
the memory system.

• Our second contribution is an enhancement to symbolic execution, a technique
which can lead to more aggressive and more accurate dependence analysis with
optimizing compilers [21]. We extend symbolic execution to handle languages
with aliasing and propose heuristics to address its computational complexity. We
use this symbolic execution method to perform dependence analysis, the results
of which are used for memory partitioning.

• Our third contribution is a profiler-based method to identify the maximum degree
of memory partitioning that can be achieved for a given application.

• Finally, our fourth contribution is a detailed evaluation of various SPEC bench-
marks [27,45] from the memory partitioning perspective. We provide compiler-
based and profiler-based memory partitioning results. The profiler-based results
denote the maximum degree of memory partitioning (i.e., the limit) that can be
achieved using speculative memory partitioning schemes. By comparing the com-
piler and profiler-based results, we also identify input and compiler-related limits
to memory partitioning.

1.2 Organization of this Article

The remainder of this article is organized as follows. In Sect. 2, we first describe our
target architecture, namely, application-specific hardware accelerators, and then give
an overview of our compiler/profiler toolchain. Sect. 3 summarizes the related work
in the area and underlines the novel parts of this study. Sect. 4 formulates the memory
partitioning problem and provides our approach to it. As memory partitioning relies
on accurate disambiguation of memory references in the target program, we provide
a detailed description of our dependence analysis methods in Sect. 5. This includes a
static analysismethod performed by our compiler aswell as a dynamic analysismethod
performed by our profiler. We provide the details of our experimental evaluation in
Sect. 6 and conclude with Sect. 7.

123

340 Int J Parallel Prog (2016) 44:337–380

2 Overview of the Proposed System

2.1 Application-Specific Hardware Accelerators and the Role of Automatic
Memory Partitioning

Application-specific hardware accelerators—in the form of ASICs or FPGAs—are
typically generated by translating some part of a target software program (such as one
or more hot loops or procedures) into custom hardware, accompanied with a method
to transfer execution control and data across the software program and the generated
hardware accelerator. Execution of this custom hardware is equivalent to the original
software program fragment it is extracted from, but takes a shorter time, thereby
improving the performance of the original application. Execution of the application
typically starts in software running on the host, transferring control (and necessary
input data) from the host to the accelerator at the entry of the code fragment mapped
to custom hardware, and returning back to the host software (and copying necessary
output data) at the end of hardware execution.

Custom hardware-based accelerators include various features that enable them to
outperform general purpose processors. While prior work does not describe any gen-
eral method to convert arbitrary sequential program code into a highly parallel custom
hardware-based accelerator, at least on scientific array codes custom hardware-based
accelerators work well and can exploit lots of parallelism, both at a coarse grain thread
level and at a fine grain instruction level [10,23]. Compared to general purpose proces-
sors, such custom hardware-based accelerators also do not suffer from various intrinsic
overheads, such as the overheads associated with instruction fetch/decode/issue and
overheads due to synchronization.

In thiswork, we start with a sequential program code as input and realize parallelism
in the application-specific hardware corresponding to this code, by using hierarchical
software pipelining and resource duplication. Using software pipelining [34], each
(outer or inner) loop within the loop hierarchy of the target program is mapped into
a pipelined state machine. Applying software pipelining hierarchically, an outer loop
can dispatch the execution of an inner loop to an inner loop state machine by simply
treating the inner loop as a multi-cycle pipelined operation. Duplicating the loop state
machine resources enables parallel execution of multiple inner loop instances. When
an outer loop state machine reaches the start point of an inner loop, it dispatches
an inner loop execution operation to one of the available inner loop state machines
over a dedicated scalable network, following a “spawn-and-forget” thread model.
The inner loop thread will eventually run when an inner loop state machine becomes
free. To maintain sequential semantics, synchronization across threads, if necessary, is
performed by employing specialized, application-specific synchronization networks
in the custom hardware. This nested parallelization strategy enables a large number of
state machines to execute simultaneously in the application-specific hardware system.
As a result, a large number of hardware units can issue requests to the memory system,
resulting in a large contention in the memory system. Possibly recursive subroutine
calls can be treated in the same manner as an inner loop invocation.

Another salient feature of custom hardware accelerators is that they typically use a
specialized, partitioned memory architecture [15,47]. Partitioned memory is synthe-

123

Int J Parallel Prog (2016) 44:337–380 341

sized at compile time together with the rest of the hardware accelerator. In comparison
to the single, unified memory view in general purpose systems, custom hardware has
the flexibility to use multiple smaller memories designed specifically for the target
program. These small memories, when combined, reproduce the information content
in the original software program, which means that partitioning does not alter the
semantics of the application. The advantage of using partitioned memories is that
these memories are accessed independently without the need for any coherence hard-
ware across different memories. As a result, smaller networks can be used to connect
the compute units to the memories, which can in turn enable higher throughput at a
lower complexity. Individual memory partitions are smaller, preferably small enough
to be realized using on-chip resources. This means that they are faster andmore energy
efficient, further enhancing the performance of the accelerator.

In this work, we use a hierarchical memory partitioning method that is able to auto-
matically create a multi-level memory hierarchy to realize a scalable memory system.
Figure 1 shows the single, unifiedmemory of a software code fragment partitioned into
a hierarchy of memories in its application-specific hardware equivalent. The software
code fragmentmemory (MEM0 acts as the accelerator’s last level cache for the software
applicationmemory), in this example, is partitioned at a procedure level (level 1, yield-
ing children MEM1 and MEM2 of MEM0) and at an outer loop level (level 2, yielding
children MEM3 and MEM4 of MEM1) to obtain two new memory levels on the accel-
erator side. The memories at the same level (e.g., MEM1 and MEM2 (level 1) or MEM3
and MEM4 (level 2)) do not have any coherence hardware across them, as the com-
piler proved that there is no data dependence across the processing elements/memory
request sources (i.e., software code fragment instructions) connected to these memo-
ries over the target program region. The elimination of coherence hardware simplifies
the hardware design, and realizes a more scalable memory system. Each memory, in
turn, can be further partitioned into smaller child memories that once again do not
have coherence hardware across them. Child memories are connected to their parent
memories using specialized hardware that is used for initializing and flushing of the
memories at the entry and exit points of the target program regions, when needed.
Notice that as we duplicate compute resources in order to exploit parallelism, we also
duplicate the memories in the system, adding a third dimension (into the page) to
the memory hierarchy design shown in this figure. Thus, the replicated j loop state
machines in Fig. 1 each have their own private MEM3 and MEM4memories. Each node
in the memory hierarchy can be implemented using SRAMs or flip flops when the size
of the data structures contained in the memory node is known at compile time and is
small, or by using a cache, otherwise.

It is typical for the existing synthesis tools to generate a system with distributed
memory, where the host and the accelerator operate at different address spaces. In this
case, a data structure has two distinct addresses on the two domains and copying across
address spaces requires an address translation.While this translation is straightforward
for simple data structures (e.g., an array only needs its base address to be translated),
complex data structures cannot be handled so easily. When a host address is stored
in the data structure as data, such as linked list node keeping a pointer to the next
node, address translation is needed not only for variable addresses, but also addresses
stored as data in pointers. This complicates the host-accelerator memory coherence

123

342 Int J Parallel Prog (2016) 44:337–380

Fig. 1 An example memory hierarchy created by our memory partitioning method. The scope (loop)
hierarchy of the target program fragment is used to hierarchically partition the memory in the original
application. The unified memory of the application MEM0 is first partitioned into two memories MEM1 and
MEM2 at the entire accelerated procedure level. Then, MEM1 is further partitioned into two memories MEM3
and MEM4 at the i1 loop level. Different instances of the j loop enclosed by the i1 loop can execute
in parallel, and as a result, these second level partitioned private memories of the j loop are duplicated.
Memories residing at the same level of the hierarchy need not have any coherence hardware across them.
The source code corresponding to this example will later be analyzed in Fig. 4

problem, andmost accelerator systems prohibit the use of complex data structures. The
method we propose in this work can partition the memory of applications with data
structures of arbitrary complexity using distributed shared memory, which is based on
full address compatibility across the host and the accelerator memories. As a result,
our memory partitioning method can be applied to arbitrary sequential program code
fragments, even assembly language code fragments, duplicating the function of all the
original software loads/stores in the generated hardware accelerator; it is not limited
to hot loops or array calculations.

2.2 Infrastructure

In order to perform and evaluate memory partitioning, we developed a new program
analysis and optimization framework. This framework consists of a compiler and a
profiler that are both developed from scratch. In this section, we give an overview of
our compiler and our profiler, and how we use them together in our setup. Details of
the algorithms used in these tools are provided in later sections.

Compiler There are four major steps carried out by our compiler. First, it parses
the input program to construct an intermediate representation for applying analyses
and optimizations, and performs basic optimizations on this intermediate code. While
the input programming language we used in this study is x86 assembly language1

1 Due to past progress in the binary translation and optimization field, the binary instructions of an ISA
are by now a de facto compiler intermediate language [17,18,43] which allows access to a wide range of
applications.

123

Int J Parallel Prog (2016) 44:337–380 343

generated by the gcc 4.5.4 compiler with the “-gstabs+” option (“-gstabs+” adds a
degree of source-level debug information to the assembly code), any input language
can be used without loss of generality. The compiler then performs a symbolic exe-
cution of this intermediate representation of the program to disambiguate memory
references in it. The third step is to partition the memory instructions in the input
program. Without memory partitioning, all instructions in the input program access
a single memory that comprises the entire address space of the program (e.g., the
entire 32-bit or 64-bit address space). Memory partitioning creates a set of memories
with smaller address spaces, organized as a hierarchy. Each memory operation in the
input program is mapped to one memory in the extracted hierarchy. This hierarchy
of memories is scalable: the hierarchy can include a large number of memories, as
all memories are independent and there is no need for coherence hardware across
them. The fourth and final step in our compiler is code generation. In this step, one
can generate an application-specific supercomputer system at the Verilog RTL design
level, with the memory hierarchy and the modified program created in the memory
partitioning step, alongwith amodified software executablewhich communicateswith
the application-specific supercomputer when an accelerated code fragment is entered.
The flat component netlist for the entire application-specific supercomputer is then
partitioned into multiple chips interconnected by a scalable network, and a union chip
is created which can act as any one of the partitions, so that only one ASIC chip needs
to be released to build the system, thus reducing the non-recurring engineering costs.
FPGA implementations of the supercomputer are also possible. Since the primary
focus of this study is not to evaluate application-specific supercomputers, but to per-
form a futuristic limit study onmemory partitioning,we skip the hardware construction
step in the scope of this paper: we only emit the results of memory partitioning.

Profiler There are two main tasks our profiler performs. First, it complements the
compiler in dependence analysis. Note that any compiler-based dependence analysis
has two weaknesses: (1) practical compiler analyses are limited by compilation time
constraints, and even if compilation time were unlimited, as a result of the inherent
unsolvable nature of the memory disambiguation problem, there shall always be some
dependences that cannot be proved to exist or not to exist2, (2) there can be some
runtime information needed to identify that a dependence is not observed in practice for

2 A compiler algorithm answering memory disambiguation questions without any mistakes is impossible.
Assume by way of contradiction that there were such an algorithm f such that f (p, I1, I2) precisely
determines whether the following statement is valid “there exists an execution/initial state of program p
where an instance of I1 executes and an instance of I2 executes and these instances refer to the samememory
location”. Then, by Kleene’s (second) recursion theorem [40], a “contrarian” program can be constructed
which runs the algorithm f on itself, and its memory instructions I1 and I2, before ever executing I1 and I2,
and then, after getting f ’s answer, executes its remaining part: (1) making I1, I2 independent regardless of
the initial state, if the algorithm f respondswithYES (I1, I2 are dependent), and (2)making I1, I2 dependent
on at least one initial state, if the algorithm f responds with NO (I1, I2 are independent). Contradiction.
Therefore, no such algorithm f exists. Therefore, even though many current compiler algorithms are able
to avoid false negative mistakes (i.e., mistakes which say there is no dependence when in fact there is), any
disambiguation algorithm attempting to approximate f must on some inputs either not finish, or must make
conservative (false positive) mistakes, and say I1, I2 are dependent when they are not. But this negative
result has not discouraged compiler researchers, since approximate memory disambiguation algorithms
have done well enough.

123

344 Int J Parallel Prog (2016) 44:337–380

typical input values. Therefore, we use our profiler to dynamically analyze thememory
locations accessed by each memory instruction in the input program and use this
information to identify all real dependences across memory instructions. The second
task of the profiler is to evaluate the impact of memory partitioning on the performance
and the energy consumption of the memory system. The profiler uses the memory
partition table output of the memory partitioning step of the compiler and emulates
the execution of the program on a hypothetical system with unlimited resources and
partitioned memory. For this purpose, the profiler instruments the program code such
that (1) each memory instruction is treated as if it accesses the memory given by
the partition table, and (2) the access statistics for each memory are recorded. These
statistics are then used to calculate the performance and energy consumption of the
memory system using physical metrics.

The profiler is implemented by adding instrumentation code to the original code
and keeping both the original version of the code and the profiled version of the
code ready for execution. To improve the speed of the profiling, we activate profiling
only during periodic samples of execution, instead of profiling the entire execution
of the application from the start to the end. To implement the sampled execution,
we create landing locations at certain points in the original and its corresponding
profiled code. When a sampling period is over, a control code checks if the execution
is within the profiled or the original code. If the execution is in the profiling mode, we
suspend the profiling, and we jump back to the corresponding landing location in the
original version of the code and continue execution until the next sampling period is
reached. This method is much faster but, of course, less accurate than the well-known
full profiling method. The sampling period might be arranged to find satisfactory
points in both performance and accuracy curves of profiling. For instance, with this
approach, we successfully profiled the mcf benchmark in less than two minutes on a
particular input, whereas the full profiling of the same benchmark required more than
two hours of execution on the same input. Alternatively, to achieve better profiling
performance, there is also a possibility to build custom processors on FPGA with
efficient dependence profiling hardware.

Compiler/Profiler Toolchain Viewed at a high level—our compiler/profiler tool-
chain operates in three stages (as shown in Fig. 2):

– Profiling-1 Instrument the application and profile it to record all data dependences
that occur at runtime across all pairs of memory instructions. This stage is optional
and is used only for profiler-based optimistic memory separation.

– Compilation Perform static program analysis to identify data dependences across
all pairs of memory instructions. Compare the static dependence analysis analysis
results with the dynamic dependence analysis results from Profile-1 (if available)
(1) to verify the correctness of compiler dependence analysis tests, and (2) to
enable profile-guided speculative memory partitioning. Partition memory using
dependence analysis results and generate a memory partition table.

– Profiling-2 Instrument the program using the memory partition table, augmenting
each memory instruction with code that updates the access statistics of the corre-
sponding memory in the memory partition table. Emulate the partitioned memory

123

Int J Parallel Prog (2016) 44:337–380 345

Fig. 2 High level view of our compiler/profiler infrastructure for analyzing programs and performing
memory partitioning

system and obtain information about the usage patterns of the memories extracted
by the compiler.

3 Related Work

In this section, we provide a summary of the prior work in the three areas where we
make a contribution, and explain the features that distinguish our work from the prior
work.

3.1 Compiler-Guided Memory Partitioning

Memory Partitioning for General Purpose Systems. Memory partitioning methods
have been used in compilers for various purposes. A significant body of work has
been directed towards identifying the optimumdata layout on distributed systems, such
that the communication across nodes due to remote memory accesses is minimized.
By changing the original array layouts and distributing the parts of the arrays to the
compute nodes in a locality-aware manner, the compiler can generate code that makes
fewer remote memory accesses [1,2], and therefore, has better memory performance.

Another use ofmemory partitioning is to improve the performance of softwareman-
aged, on-chip scratch pad memories [3,4]. In this case, the compiler applies memory
partitioning over a program region to use different locations in the scratch pad mem-
ory for different variables throughout that region. The compiler also generates explicit
instructions to load data from the main memory to the scratch pad before the first
access to the target variables, and then writes any dirty result back to main memory
after the last access is performed.

Partitioned Global Address Space (PGAS) languages [48] shift the memory parti-
tioning task to the programmer. In PGAS languages [11,19,37,49], the programmer
uses language extensions to provide a layout for data that will be shared by multiple
compute units and the compiler generates the communication code for the given data
layout. Although using PGAS languages for high performance computing is not as dif-

123

346 Int J Parallel Prog (2016) 44:337–380

ficult as using Message Passing Interface (MPI), it still requires significant effort from
the programmer to manually identify shared/private data and provide a data layout.

Notice that in a general purpose parallel processing systemwith a coherent memory
hierarchy, even if software optimizations are present that reduce expensive commu-
nication, just to accommodate the possibility that a hardware component (memory,
cache, or processing unit) A may communicate with another hardware component B,
the network connecting A and B (e.g.,multiplexers, wires, network protocol hardware)
must be built and its costs must be incurred in terms of design complexity, added prop-
agation delay, area, and power consumption. General purpose system-wide memory
coherence hardware for large scale parallel systems is one of the most complex paral-
lel hardware designs [26]. By contrast, special purpose application-specific hardware
has the advantage that component A can be proved not to communicate with compo-
nent B at hardware design creation time, and therefore, the design complexity, added
propagation delay, area, and power consumption associated with this communication
can be completely avoided. Moreover, specialized low-power hardware, as opposed
to general purpose hardware, can be used to individually implement the components
A and B. In contrast to the efforts mentioned above, which aim to improve memory
performance of general purpose architectures, our goal in this work is to generate an
application-specific memory system.3

Memory Partitioning for Application-Specific Hardware. The efforts that use mem-
ory partitioning in designing application-specific hardware share a common goal: by
specializing the memory system based on the target application, one can improve
performance while providing better energy efficiency. Given a processor with FPGA
capability andwithmultiple local memories of different types, Gokhale and Stone [24]
provide an algorithm that automatically allocates arrays in a program to the memories
with the goal of reducing the execution time of software pipelined loops. Weinhardt
and Luk [47] present a RAM inference and an array allocation method that gener-
ates on-chip RAM banks for arrays, which reduce the number memory accesses in
FPGA coprocessors, also within pipelined inner loops. Benini et al. [7,8] synthe-
size custom multi-banked on-chip SRAM for SoCs such that memory accesses target
smaller memories that consume less energy. It is important to note that they use mem-
ory partitioning in the context of a general purpose processor, and therefore observe
energy benefits only due to reduced memory capacity. Since their memory interface
is a general purpose bus, the memories they generate are still accessed using the same
bus, whereas applying memory partitioning on custom hardware also enables trans-

3 On scientific applications, e.g., loop nests containing arrays with affine subscripts, existing compiler
transformations for parallelization and data localization on general purpose parallel processors could of
course be used as a preprocessing step before applying our memory partitioning techniques for creating
application-specific supercomputer hardware. For example, applying our technique on the loop for(int
i=0; i<nProc; ++i) func(i, data[i]); created by a typical sequential to parallel code trans-
formation [1] for scientific code (parallelized SPMD code converted back to a sequential representation)
will lead to loop i iterations being dispatched through our hierarchical software pipelining on an array
of identical application-specific hardware units implementing func, each with its private child memory
hierarchy representing a partition of the data array, without using any coherence hardware across child
memory hierarchies, and without using power-hungry general purpose processors to implement func. Our
techniques, however, are not limited to scientific applications.

123

Int J Parallel Prog (2016) 44:337–380 347

lation of such a shared medium into low-overhead point-to-point links. So et al. [44]
propose a method to generate application-specific bank-interleaved data layouts for
arrays within an FPGA environment, according to access patterns in the code. Their
approach operates in conjunction with loop nest transformations that are commonly
applied to array based computations and provide higher performance by increasing
memory level parallelism. Baradaran and Diniz [6], Cong et al. [15] present efforts
that combine scheduling techniques with memory bank-interleaved array layout to
improve performance.

In comparison to these prior studies, our focus is on performing a limit study, where
we make no restriction on how instructions are scheduled or how many requests can
be simultaneously served by each memory.4 Instead, our primary focus is to identify
the maximum performance/energy benefits that can be achieved by using the largest
number of memories and the smallest capacity memories that do not have coherence
hardware across them. Our method also differs from all prior work with its capability
to satisfy address compatibility with the original software program, its capability
to generate a multi-level memory hierarchy, and its ability to accept general code
(including assembly code) with arbitrary pointer memory accesses.

Software application programs can be very large, and not all of a software appli-
cation can be converted to accelerator hardware: some parts will remain as software.
Moreover, acceleration techniques confined to certain types of code, such as scien-
tific loop nests containing arrays with affine subscripts, will likely not be effective
in general, due to Amdahl’s law. If a compiler is unable to accept general software,
engineering productivity will be reduced due to the extra “porting” effort to convert
the software part to be accelerated into a form required by the compiler, and to ensure
that the rest of the software remains correct after the changes. Our compiler’s ability
to accept general code and its ability to achieve full functional equivalence between
the accelerator hardware and the original software code fragment, including memory
layout, address these issues not addressed by prior work.

3.2 Symbolic Execution in Compilers

Symbolic execution [30] has been used widely in various contexts [13,14,16,20,36],
yet its use in optimizing compilers has been limited [21]. We identified two main
deficiencies in its use in the prior work and devised solutions.

First, the only use of symbolic execution in an optimizing compiler has been with
a compiler that uses Fortran as the input language. However, typical Fortran programs
do not have any aliasing, except equivalence statements explicitly provided by the
programmer. Large programs written using languages such as C/C++ typically make
heavy use of aliasing that is not explicit. Therefore, we extended symbolic execution to
handle arbitrary use of pointers. Since our input language is x86 assembly code, where
even simple loop indices/induction variables may be allocated in memory, we built
our general symbolic execution framework on program states comprising (“address”

4 While the present work is a limit study, it is instructive to consider its practical implementation aspects.
These aspects, including the implementation of parallel simultaneous accesses,will be addressed in Sect. 4.4.

123

348 Int J Parallel Prog (2016) 44:337–380

symbolic expression, “contents of address” symbolic expression) pairs (as opposed
to traditional [21] (“variable”, “contents of variable” symbolic expression) pairs).
Our symbolic execution framework therefore allows any program variable (including
induction variables) to be accessed with arbitrary levels of indirection, and therefore is
able to represent and analyze general sequential code including pointers (see Sect. 5.1).

Our second enhancement is related to the execution time of symbolic execution.
Prior works have indicated the difficulty of employing symbolic execution in prac-
tical compilers due to its complexity [39]. To overcome this limitation, we use our
own symbolic execution framework which is engineered for efficiency (we do not
rely on any external symbolic math package, unlike [21]), and we use two heuristics
that automatically trade off symbolic execution accuracy with performance. Our first
heuristic handles cases where, due to the symbolic execution of a sequence of depen-
dent instructions, a symbolic expression becomes very large and costly in terms of
computational time to analyze practically. In this case, we replace this large symbolic
expression with a symbol that represents an expression whose contents are unknown.
Our second heuristic relates to the maximum cardinality of the set of facts in our
program states. Whenever this set becomes too large, we flush its contents, which is
equivalent to symbolically executing a statement whose side effects cannot be known
at compile time (e.g., executing a function call whose source code is not available).
By giving up some accuracy (i.e., reducing the strength of our static analysis automat-
ically when needed), we improve the runtime of symbolic execution significantly; our
analysis takes in the range of milliseconds to a few seconds in all the tests that we will
show later in the experimental evaluation section.

3.3 Profile-Guided Memory Partitioning

Profiling has been used in program analysis for various purposes, examples of which
include identifying hot regions for mapping to accelerators [41], disambiguating
dependences for speculative optimizations [12], and identifying parallel loops [29,32].
In this work, we use profiling for a completely different purpose. Specifically, we use
our profiler-based dynamic dependence analysis to perform memory partitioning.

The profiling and trace analysis methods for collecting statistics about a program’s
runtime behavior are related. Mahapatra et al. [33] analyze the execution traces of
programs to assess the impact of compressing the data stored in the memory system
and exchanged between the processor and the memory system on the performance,
power consumption, and cost of the memory system. However, unlike our work, they
do not employ memory partitioning and do not use address compression as a memory
design technique.

4 Memory Partitioning

The ultimate goal of our research is to design scalable, parallel memory systems.
To achieve this goal, we propose using memory partitioning to decompose the sin-
gle, unified memory view of a software program into many small memories. This
partitioned memory system has two important properties that bring parallelism and

123

Int J Parallel Prog (2016) 44:337–380 349

scalability. First, the generatedmemories operate in parallel, providing higher through-
put. Second, they accommodate independent parts of the program address space which
eliminates the need for keeping these memories coherent, thereby enabling the use of
many memories without excessive overheads for maintaining coherence.

4.1 Accelerator Memory Model

As explained in Sect. 2,most application-specific accelerators use independent address
spaces on thehost and accelerator, and simplify the host-accelerator coherenceproblem
by prohibiting the use of data structures that are not trivially serialized (i.e., translated
into a format for communication and then reconstructed at the receiver side).

In this work, we use a distributed shared memory programming model across the
host and the accelerator. The accelerator directly operates using the virtual addresses of
the host memory, which is achieved by implementing the accelerator main memory as
a cache for the accelerator virtual address space. A memory access on the accelerator
can be a miss on the accelerator main memory (i.e., last level cache—LLC), in which
case the page or line that encloses the target address is copied from the host main
memory to the accelerator LLC and the accelerator proceeds with its operation.

As our host and accelerator share the same address space and there is no address
translation mechanism needed, the lower level memories (i.e., caches) generated by
memory partitioning must also be accessed using the same addresses. For instance, a
typical method that simply promotes an array A to a distinct memoryMEMA and only
uses array offsets as the address to this memory may not be applicable, as it is possible
for some pointer in the application to also point to the same array (e.g., p = &A[0])
and be used to indirectly access it.

In our case, when we generate a memory MEMA, it is typically implemented as a
cache5 whose contents are populated from the accelerator LLC, and in turn, from the
host memory. The exact same host addresses of A are used when accessing MEMA.
Then, a memory access that uses pointer p containing &A[0] will also be connected
to MEMA and will directly use the address stored in it to access the desired element
in array A.

4.2 Partitioning the Memory of a Procedure

In this work, we apply memory partitioning only to the hottest procedure in the target
application, determined a priori by our profiler. Since any arbitrary connected code
fragment spanning multiple procedures can be converted into the form of a single

5 In the cache implementation, it is possible to save storage space by identifying duplicate, dead, and
constant bits. When a bit within a cache data line (or address) can always be computed as a function of
other fixed bits in the same data line (or, respectively, in the same address), no cache hardware resources
are needed for that bit. The missing bit can be recreated by recomputing it when needed. Similarly, a bit
proved by the compiler to be dead need not be stored as it will never be used, and a constant bit need not
be stored as its value can always be predicted with perfect accuracy.

123

350 Int J Parallel Prog (2016) 44:337–380

procedure,6 the algorithms described herein can be appliedwithout loss of generality to
arbitrary connected code fragments as well.7 Let M denote the number of instructions
in this procedure that access thememory (i.e., load and store instructions). By applying
memory partitioning, we partition these M memory instructions into N groups such
that:

1. If two instructions are dependent, they must be in the same group. For instance,
a store to and a load from the same memory location are dependent and must be
placed to the same group.

2. The smallest groups of memory instructions, where the groups are not dependent
on each other, must be identified. For instance, a store and a load that always
reference different memory locations are not directly dependent on each other,
and should be placed into different groups, as long as there is no other instruction
or set of dependent instructions that is also dependent on both this load and this
store.

When these N groups of memory instructions are identified, the address space
spanned by these M memory instructions is naturally decomposed into N independent
subspaces. Since these subspaces are independent, we can use a separate memory for
each groupofmemory instructions and let thememories operatewithout any coherence
hardware across them.

Themost important step inmemory partitioning is analyzing thememory references
in the input program and determining whether they should be placed into the same
group or different groups. To determine this, we pose a data dependence question8 to
find out if any two given memory instructions are dependent.

The pseudocode for our memory partitioning algorithm is given in Fig. 3. In this
algorithm, we first construct an undirected dependence graph (V, E), where the ver-
tices v ∈ V represent the memory instructions in the program and the undirected
edges e ∈ E represent the data dependences between memory instructions. To build
this graph, we check the dependences across all pairs of memory instructions. This
step has a computational complexity of O(|V |2 × D) where O(D) represents the
complexity of the dependence tests employed for this purpose. While using compli-
cated tests can have high computational complexity (e.g., the Omega test [38] has
exponential worst case complexity), using a profiler-based dependence analysis can
reduce the dependence analysis complexity to a hash table look-up operation of O(1)
complexity. Once we have the undirected data dependence graph, we use Tarjan’s
union-find algorithm [46] to find the connected components of this graph, which has
a complexity of O(|V | + |E | × α(|V |)), where α is the inverse Ackermann function.

6 An arbitrary multiple-entry, multiple-exit connected code fragment possibly spanning multiple proce-
dures and files (e.g., the hot basic blocks of an executable) can be converted to a single-entry, single-exit
code fragment resembling a procedure, by initially executing a multi-way branch based on the entry point
address (program counter), and having all the original exits of the code fragment jump to a single return
instruction. One can also use the profiler for discovering the most probable targets of indirect branches,
when the target(s) cannot be found statically.
7 In this work, we assume that the target procedure is either a leaf in the call graph, or it makes calls only
to functions with an equivalent hardware version in our component library (e.g., max(a, b)).
8 We provide a definition for dependence in Sect. 5.

123

Int J Parallel Prog (2016) 44:337–380 351

input : List of memory instructions in target program fragment,
Dependence analysis results

output: Memory Partition Table, Set of generated memories
// Start with an empty dependence graph

1 DependenceGraph = empty undirected graph;
// Vertices of the graph are instructions in the program

2 for i ∈ Memory Instructions do
3 DependenceGraph.addVertex(i);
4 end

// Edges of the graph are dependences across instructions
5 for i ∈ Memory Instructions do
6 for j ∈ Memory Instructions do
7 if instrID(j) > instrID(i) and depends(i, j) = NO then
8 DependenceGraph.addEdge({i, j});
9 end

10 end
11 end

// Find connected components of DependenceGraph
12 components = DependenceGraph.CC();

// The set of memories generated as a result of partitioning
13 memories = empty set of memories;
14 for comp ∈ components do

// Each component is a new memory
15 mpart = empty memory partition;
16 mpart.setID(getUniqueMemoryID());

// Instructions in the component are connected to the new memory
17 for i ∈ Memory Instructions of comp do
18 mpart.add(i);
19 PartitionTable[i] = mpart;
20 end
21 memories.add(mpart);
22 end

Fig. 3 The pseudocode for our memory partitioning algorithm

This algorithm satisfies the goals of memory partitioning: it separates instructions
into the maximal number of groups and ensures that instructions in different groups
do not have dependences between them. At this point, each connected component
represents a subspace of the memory address space that can be implemented as an
independent physicalmemory.Weassign auniquememory identifier to each connected
component and populate a table that maps memory instruction identifiers to their
corresponding memory identifiers. This table is called the memory partition table
and will be used by the compiler back end while generating custom hardware for each
memory instruction. In the partitioned memory system, instead of accessing one large,
common memory, each instruction accesses its corresponding new memory.

Note that our algorithm does not partition program data directly, but instead it
partitions the memory instructions in the program which inherently identifies inde-
pendent subspaces. One can think that memory partitioning using program data can
also achieve the same result. For instance, an array A and another array B can simply
be allocated to two different memories that are accessed independently. Yet, such a
method will not be successful when pointers, dynamic memory allocation, aliasing,
and other features that complicate direct partitioning of program data are employed.
Unfortunately, these features are commonly observed in most popular general purpose
languages such as C/C++. When the same name is used to access distinct variables,
or two different names are used to refer to the same variable, or memory allocation

123

352 Int J Parallel Prog (2016) 44:337–380

sizes unknown at compile time are used, our approach can still perform dependence
analysis and partition memory.

4.3 Hierarchical Memory Partitioning

The performance of the memory system created using memory partitioning depends
on the granularity of the memories generated as a result of applying our algorithm.
However, it is important to note that in order to create a new memory, the compiler
must prove that this newmemory and the rest of the memories can operate without the
need of coherence hardware across them throughout the entire execution of the target
software program fragment. Because of this constraint, the maximum memory level
parallelism that can be extracted at such a coarse granularity can be limited.

Notice that when analyzing whether two memory instructions are dependent at a
given program scope to perform memory partitioning, the compiler must consider all
instances of the two memory instructions, which includes all iterations of all the loops
enclosing the two instructions in the target program scope. As a result, if memory
partitioning is applied at an inner program scope such as an inner loop in a loop
hierarchy, then the number of instances of the memory instructions the compiler must
examine to identify a possible dependence is reduced. This also reduces the size of
the address subspaces spanned by memory instructions and improves the chances that
the set of addresses accessed by these two instructions do not overlap, leading to new
opportunities for partitioning. In turn, a memory generated as a result of applying
our memory partitioning at one program scope can be further partitioned into smaller
independent memories at an inner program scope, as shown in Fig. 4. Even if a parent
memory belonging to an outer scope does not give rise to more than one child memory
in an inner scope, there can be an opportunity to save energy by specializing the child
memory (for example, by using a smaller number of address bits in the child memory).
By exploiting this property, we can generate a multi-level memory hierarchy where
the memories become smaller, faster, and more energy efficient as we move towards
the lower levels in the hierarchy (i.e., closer to the leaf nodes).

To apply hierarchical memory partitioning, we refine thememory partitioning algo-
rithm presented in the previous section by making twomodifications. First, we modify
it to operate at a given particular program scope. A data dependence question defined
over a given loop scope assumes the index variables of all enclosing outer loops to be
constant (i.e., it checks dependences across a single particular loop iteration, instead
of all iterations). Second, instructions connected to different memories (i.e., belong-
ing to different connected components of the dependence graph) at an outer program
scope cannot have any dependence between them at the inner scopes, and as a result,
we do not re-examine dependences between them at inner loops. We apply this mod-
ified algorithm to all scopes of the target program to generate a multi-level memory
hierarchy.

Our iterative memory partitioning algorithm, the pseudocode of which is shown in
Fig. 5, starts partitioning at the outermost program scope and moves towards inner
program scopes. The outermost program scope corresponds to the target procedure to
be accelerated and the inner program scopes correspond to the loops in the procedure.

123

Int J Parallel Prog (2016) 44:337–380 353

int a[N,M], b[N,M]; //N,M powers of two
link MEM1 = MEM0; //MEM1=A[*,*]
link MEM2 = MEM0; //MEM2=B[*,*]
for(int i0=0; i0<N*M; ++i0)

MEM1[A[i0/M,i0%M]] = g(MEM2[B[i0/M,i0%M]]);
for(int i1=0; i1<N; ++i1) {

link MEM3 = MEM1; //initialize child MEM3=A[i1-40,*] from parent MEM1=A[*,*]
link MEM4 = MEM1; //initialize child MEM4=A[i1,*] from parent MEM1=A[*,*]
if(test(i1)) {

for(int j=init(i1); !done(j); j=next(j)) {
int t = (i1>=40 ? MEM3[a[i1-40,j]] : h(j)) & 0x7;
MEM4[a[i1,j]] ^= f(t);

}
}
//flush of read-only MEM3=A[i1-40,*] not needed
unlink MEM1 = MEM4; //flush changes in MEM4=A[i1,*] into MEM1

}
//flush of read-only MEM2=B[*,*] not needed
unlink MEM0 = MEM1; //flush changes in MEM1 to MEM0

Fig. 4 Hierarchical memory partitioning example. The parallel hardware for this code was depicted in
Fig. 1. Within any invocation of the j inner loop, outer loop index i1 is a constant, therefore the load from
a[i1-40,j] and the store/update into a[i1,j] are guaranteed not to overlap, and can be assigned to
different memories MEM3 and MEM4 within this invocation of the j loop, respectively. Furthermore, as an
energy-saving optimization example, since only 3 bits of the data from MEM3 is live (because of the &0x7
operation), and since (assuming N ,M are powers of 2) the upper log2(N) bits of the MEM3 addresses are
constant; a specialized log2(M) by 3 bit wide memory (or a cache for the same) can be constructed to serve
as MEM3. Iterations of the outer i1 loop can be executed in parallel and out of order, using a set of replicated
j loop hardware units each with its own MEM3 and MEM4 memories. Through specialized synchronization
hardware, iteration i1 of the outer loop can start as soon as iterations i1-40,i1-41,… of the i1 loop
are done, thus ensuring sequential code dependences are correctly respected. Note that without hierarchical
memory partitioning, the said load and store/update operations are dependent, and cannot be placed in
different memories. Link and unlink instruction semantics are explained in Sect. 4.4

We obtain this program scope ordering by sorting the loops in the target program
based on the reverse post order numbers of their loop header basic blocks. We then
apply our modified algorithm to each program scope in this order. When a memory is
partitioned into child memories, for each child memory, we insert a new child memory
node and a new parent-child edge to our memory hierarchy tree, resulting in an N-ary
tree. In a manner similar to the single-scope partitioning algorithm, we again construct
a memory partition table that marks the instruction to memory mappings as well as a
set of memories generated by the whole memory partitioning process.

4.4 Implementation Details and Hardware Implications

Initialization and Flushing of ChildMemories. When our compiler partitionsmemory
at a procedure scope, the data contained in the generatedmemories will be valid during
the execution of each invocation the hardware accelerator. These memories need to be
initialized from the host memory at the entry to the accelerator and the outputs of the
accelerator must be sent back to the host (i.e., flushed to the host memory) upon exiting
the accelerator. However, when the compiler generates memories at an inner scope,

123

354 Int J Parallel Prog (2016) 44:337–380

input : List of memory instructions in target program fragment, program CFG
output: Hierarchical Memory Partition Table,

Memory Hierarchy Tree, Generated Memories Table
1 ScopeList = find all program scopes of CFG for memory partitioning;
2 SortedScopeList = sort ScopeList using entry BB reverse post order numbers;

// Initialize all scopes to have empty set of generated memories
3 foreach Scope S ∈ SortedScopeList do
4 GeneratedMemories[S] = empty set of memories;
5 end
6 MEM0 = getUniqueMemoryID();

// Memory hierarchy tree is initialized to have a single root node
7 MemoryHierarchyTree = MEM0;

// All memory instructions are initially connected to MEM0
8 foreach Instruction i ∈ CFG.getInstructions() do
9 HierarchicalPartitionTable[i] = MEM0;

10 end
// Partition memories at each program scope sequentially

11 foreach Scope S ∈ SortedScopeList do
// Get instructions in scope S

12 (ChildPartitionTable, ChildMemories) = partitionMemoryAtScope(S);
13 foreach instruction-memory pair (i, childMEM) ∈ ChildPartitionTable do

// Get the old memory for i
14 parentMEM = HierarchicalPartitionTable[i];

// Update with child memory in the hierarchical partition table
15 HierarchicalPartitionTable[i] = childMEM ;
16 if childMEM /∈ MemoryHierarchyTree then

// Save the (parentMEM, childMEM) pair to the memory hierarchy
17 MemoryHierarchyTree.addNode(childMEM);
18 MemoryHierarchyTree.addEdge((parentMEM, childMEM));
19 end
20 end

// Record the memories generated at this scope
21 foreach memory childMEM in ChildMemories do
22 GeneratedMemories[scope].add(childMEM);
23 end
24 end

Fig. 5 The pseudocode for our hierarchical memory partitioning algorithm

such as over one iteration of an outer loop, these memories must be initialized and
flushed at a finer granularity, namely, at each entry to and exit from the target program
region (i.e., at each outer loop iteration). To ensure correct execution, our compiler
inserts memory initialization and flush operations at the entry and exit points of the
body of each loop in the program, as shown in Fig. 6 (and also in Fig. 4). Note that
when a child memory is implemented as a cache, the initialization costs are incurred
not upfront, but incrementally, as cold misses occur.

Initialization and flushing of child memories introduce additional copying over-
heads the severity of whichmust be analyzed by the compiler. If the compiler identifies
the copying overheads to be too high to amortize, a child memory should not be cre-
ated and all corresponding memory instructions should be connected to the next level
parent memory.

In some cases, the overheads associated with memory initialization and flushing
can be reduced or eliminated. As an example, initialization of a write-only memory,
or flushing of a read-only memory can be completely eliminated. Similarly, a memory
containing a data structure with local scope is dead upon exit from that scope, and
does not need to be flushed and typically does not need to be initialized. On the other

123

Int J Parallel Prog (2016) 44:337–380 355

Fig. 6 Inserting initialize and flush instructions to the CFG at procedure entry/exit edges (left) and loop
body entry/exit edges (right)

hand, in some cases, these overheads must be incurred regardless of whether a child
memory is generated. For example, an important optimization opportunity for making
the initialization and flushing of a child memory free, exists where a subset of the
address bits used within a child memory are constant, whereas the same subset of the
address bits are variable in the parent memory.

– For instance, to access a data in off-chip DRAMmemory, wemust first activate the
target row and bring it to a row buffer which is similar to a row-size child memory
residing inside the DRAM chips. All subsequent accesses to the same row can
be served from the row buffer which is faster and consumes less energy than the
DRAM array. In this case, if we extract a new intermediate level memory and
associate the DRAM row buffer with it, then the initialization/flushing overheads
of this memory will not be considered as extra since we would have to incur these
overheads even without extracting the memory. The DRAM row address bits will
remain constant during the region where the child memory (row buffer) is active.

– Similarly, for the case of a one-data-item child memory consisting of a register (a
child memory accessed with 0 address bits), loading data from the parent memory
into the register at the beginning of a region, operating on the register within the
program region, and writing the register back to the memory (if dirty) at the end
of the region is how hardware normally works, therefore the initialization and
flushing overheads must be incurred anyway. Accessing the register child is the
same as accessing a constant address within the parent.

– Similarly, consider a set-associative cache maintaining a set prediction field for
each load or store instruction: in this case the predicted cache set of an instruction
is the child memory used by this instruction, while the entire cache (comprising all
sets) is the parent memory. The set selection bits of the address are constant within
the region where the child is active, yielding faster access time and less energy
expenditure for the child memory. Overhead related to activating a new child
memory must be incurred anyway, as the predicted set of a memory instruction
changes.

123

356 Int J Parallel Prog (2016) 44:337–380

Eliminating False Sharing Across Memories. It is important to note that although
memory partitioning identifies disjoint address subspaces of the application, mapping
these address spaces to physical caches with large cache lines (e.g., 32–64 bytes) to
exploit spatial locality can lead to false sharing. For instance, two distinct variables a
andb can residewithin the same block in the original memory space of the application,
which would mean that the same cache line will be duplicated in the memories gener-
ated for these variables, namely, MEMa and MEMb. This would violate our assumption
where MEMa and MEMb can operate independently without coherence, as the order in
which these cache lines are flushed to their common parent memory can change the
semantics of the program.

To overcome this problem, our caches employ fine granularity dirty bits: we keep
one dirty bit for each byte in the cache. When flushing a cache line to its parent cache,
only the dirty bytes are written back and the rest of the bytes are discarded. As a result
of this optimization, the order in which the two cache lines in sibling memories are
flushed to their parent memory is immaterial, as the intersection of their dirty bit sets
must be empty per memory partitioning rules. Optionally, for reducing cache traffic,
we also add a valid bit per byte, which is initially zero when a child cache line is first
referenced, until the byte is written. When an invalid byte is read before it is written
within a child memory cache, the line is brought into the child memory cache from the
parent memory; otherwise the line is not brought in. The valid bits and the dirty bits
features together avoid the unnecessary fetching of a line destined to be overwritten,
as well as false sharing. While in a general purpose memory hierarchy, the costs of
such dirty and valid bits could be prohibitive (i.e., 2 bits per byte), in a customized
application-specific environment, this overhead can be reduced significantly by the
compiler. As the compiler extracts memories, it can also analyze the bit-width of
the operations performed on each memory and implement dirty and valid bits at that
granularity. For instance, when a memory that contains an array of 64-bit integers is
generated, this overhead can be reduced to 2 bits per 8-bytes.

Parallel Accesses to a Single Memory. Despite memory partitioning techniques, it
is possible for many memory instructions to be connected to the same memory, thus
requiring that memory to allow parallel accesses.We apply the following techniques to
solve this problem. First, two requests can use the same port to a memory unless they
are executed simultaneously in the same cycle. Statically assigning each load/store to
one of the interleaved banks of a memory [15] is not applicable within our method,
which already generates minimal, indivisible memories: if the loads/stores accessing a
memory could be partitioned into N groups,where each group is guaranteed at compile
time to be accessing its own disjoint bank of this memory, these loads/stores would
not constitute a minimal group of memory operations, contradicting the definition of a
memory (see Sect. 4.2). However, simultaneous accesses within the samememory can
be implemented through a combination of, e.g., runtime, dynamic bank interleaving, or
one of the full-blown coherent cache designs, or a small number of true multiple ports.
Memory partitioning ensures that the coherence hardware is confined to one (small)
memory. The presence of compiler-generated synchronization between loads/stores
which may access the same location, as well as the absence of memory primitives
unique to multiprocessors simplify the coherence hardware design.

123

Int J Parallel Prog (2016) 44:337–380 357

5 Program Analysis for Memory Partitioning

As described in Sect. 4, in order to partition memory, we must perform data depen-
dence analysis over all memory instruction pairs. Our compiler performs symbolic
program analysis to disambiguate memory references and answer dependence ques-
tions. When the compile-time symbolic analysis is unable to prove the existence or
non-existence a dependence, using a profiling-based dependence analysis can enable
better, yet speculative results. In this section, we first give the details of the static
program analysis technique we use in our compiler and then describe how our profiler
performs dynamic dependence analysis.

5.1 Static Analysis

The dependence question we pose in order to partition memory is defined as follows:

Definition 1 For a given pair of instructions (I1, I2) that access memory enclosed by
a given program region R, if there exists any execution of R starting with an entry
to R and ending with an exit from R, wherein there is at least one memory location
accessed by at least one I1 instance and at least one I2 instance, then I1 and I2 are
dependent.9

To perform this dependence analysis, compilers typically analyze the target pro-
gram region (or a program region that encloses this region) to obtain symbolic address
expressions for thememory instructions and identifywhether these symbolic addresses
intersect [22]. The accuracy at which these symbolic address expressions can be dis-
ambiguated determines the final quality of memory partitioning. Therefore, we use a
powerful, path-sensitive program analysis method called symbolic execution to ana-
lyze the target program. Since symbolic execution operates on program states, before
explaining symbolic execution, we define a program state.

Definition 2 A program state, corresponding to a particular point in a target pro-
gram, represents the information about that program point obtained by analyzing the
program. It contains two entities: a path predicate and a set of program facts. The
path predicate represents the condition that must be satisfied for an actual program
execution to reach that point in the program. The set of program facts represents
all address-value relationships10 known to hold when an actual program execution
reaches this particular program point.

9 This definition includes input dependences. Excluding input dependences (requiring at least one of I1 or
I2 to be a store operation) can result in a partitioned memory where more than one copy of a data can exist
in the system. However, this case occurs only for data that is exclusively accessed using load instructions
(i.e., read-only data), in which case there is still no need for maintaining coherence across memories.
10 As already summarized in Sect. 3.2, existing symbolic execution methods [21] define a program fact as
a mapping from variable names to their values, such as (var, val) mapping variable var to its value val.
We modified this definition to record program facts involving variables without names and pointers, such
as (ptr, val) which maps the location pointed by ptr to val. We can still capture variable to value mapping
information, albeit at a slightly modified form, such as (&var, val), where &var is the address expression
for variable var .

123

358 Int J Parallel Prog (2016) 44:337–380

input : Program Control Flow Graph
output: Symbolic Execution Data Flow Results
// Initial symbolic execution pass over the program fragment

1 for b ∈ BasicBlocks do
// Join symbolic program states on incoming edges of b

2 join(b);
// Symbolically execute instructions in basic block b

3 execute(b);
4 end
5 repeat
6 fixpoint = true;
7 for b ∈ BasicBlocks do

// Join symbolic program states on incoming edges of b
8 join(b);
9 if b is a loop header then

// Find induction variables of loop starting at b
10 newInductionV ars = identify new induction variables of b;
11 if |newInductionV ars| > 0 then

// Fixpoint reached if no loops with new induction vars
12 fixpoint = false;
13 end
14 end

// Symbolically execute instructions in basic block b
// only if the input program states could have changed

15 if !fixpoint then
16 execute(b);
17 end
18 end
19 until fixpoint = true;

Fig. 7 The pseudocode for our symbolic execution algorithm. Please see the “Appendix” for more details
of the subroutines execute and join

For instance, a program state can have x > 0 as its path predicate and
(&y, 0), (&z, 1) as its set of facts. This means that for an actual execution of this
program to reach the corresponding program point, the input x must have a value
greater than zero. Further, if any execution reaches this program point, the values of
variables y and z (i.e., the values at memory locations ∗(&y) and ∗(&z)) must be 0
and 1, respectively.

Iterative Symbolic Execution Symbolic execution of a procedure (or any part of a
procedure), given in Fig. 7, works as follows. We execute a pass over the entire input
procedure by symbolically executing the instructions in all basic blocks in the CFG11.
This operation starts with an empty program state (i.e., a program state with no facts
and true path predicate) corresponding to the start point of the entry basic block of
the procedure. As we symbolically execute the instructions in the first basic block, the
program state is modified to record the effect of executing those instructions. When
we finish executing the last instruction in this basic block, we obtain the program
states that correspond to the exit edges of the basic block, and continue execution
with the next basic block. Before starting symbolic execution of each basic block, the
algorithm joins the program states on all incoming CFG edges (i.e., on all exit edges

11 The basic blocks are traversed based on their reverse post ordering numbers.

123

Int J Parallel Prog (2016) 44:337–380 359

of the predecessor basic blocks) to identify the program state at the entry of the basic
block.

Note that a single symbolic execution passmaynot be sufficient to identify all induc-
tion variables (variables which are set in one iteration of the loop and then used in a
future iteration of the same loop) in the procedure. Without identifying all induction
variables, an address expression we find for a memory instruction may be incomplete
and mislead the dependence analysis to think that the corresponding memory instruc-
tion operates on a smaller range of addresses. This can result in incorrect dependence
analysis.

To address this induction variable detection issue, we use a fixpoint algorithm
that re-executes the target procedure symbolically until all induction variables are
identified.12 Since the symbolic value of an induction variable can change at every
loop iteration, the symbolic value expression of induction variables will be different
at loop entry edge and loop back edge program states. Therefore, in order to detect
loop induction variables, we compare the program states at the loop entry and back
edges. When we identify an induction variable, we insert a new mapping of the form
(addr, iv) to the entry edge program state of the corresponding loop, where addr
represents the address expression of the induction variable and iv is a unique symbolic
value expression for this induction variable which represents all possible values the
variable can take during all iterations of the enclosing loop. Then, in the rest of the
symbolic execution iteration, all subsequent instructions in the program that use this
induction variable will refer to this unique symbolic value expression. For instance,
when we identify a variable x to be an induction variable and assign it the symbolic
value ivx , we will later discover that the array access A[x] actually refers to a range
of values A[ivx], not a single element of the A array.

Each symbolic execution iteration tries to find more induction variables. In each
iteration, a basic block needs to be symbolically re-executed only if the program state
at its entry edge changed since the previous iteration. Such a change can only occur if
some new induction variables were identified.

Induction Variable Substitution The goal of symbolic execution is to accurately
identify the address expressions of memory instructions in the input program. When
a fixpoint is reached, we use program states to get a mapping from each memory
instruction to the corresponding symbolic address expression. However, these address
expressions cannot be used directly for dependence analysis as they do not include the
closed-form solutions of induction variables. For instance, assume that we identified
store instruction to access an address with symbolic expression A[iv], where iv is
a symbolic value expression of an induction variable that is used as an index when
accessing array A. Note that we do not have the actual value expression for iv yet,
and must conservatively assume that A[iv] can refer to any location in the array A. To
find the closed-form solutions for these induction variable symbolic value expressions
(i.e., ivs) [25], we use pattern matching. If an induction variable matches a known

12 Termination of this algorithm can simply be proven using the fact that a program can have a finite number
of induction variables. The maximum number of iterations done by our algorithm depends on the length of
the longest induction variable dependence chain in the target procedure.

123

360 Int J Parallel Prog (2016) 44:337–380

pattern, we replace it with the corresponding solution in all address expressions. For
instance, one pattern is defined as follows:

1. If iv is an induction variable of a loop with loop index I ,
2. If the symbolic value expression of iv is ini t at loop entry edge program state,
3. If the symbolic value expression of iv is iv + step at the loop back edge program

state,
4. Then, the closed-form solution expression for iv is ini t + I × step.

Using simple induction variable patterns,we can solve almost all induction variables
in typical programs.13 Once we have these solutions, we can use them to rewrite
the address expressions for memory instructions. For instance, an address expression
A[iv] cannowbecome A[2×I+1],which is ready for applyingdependence analysis14.

Dependence Tests Once the symbolic address expressions are ready, we can per-
form dependence analysis. Given a pair of memory instructions (I1, I2), with address
expressions (A1, A2), we perform a set of simple, fundamental tests at this stage to
prove/disprove dependences.

1. At least one of I1 or I2 must be a store operation to have a dependence (only if we
are ignoring input dependences in memory partitioning).

2. If the address expressions A1 and A2 are exactly identical, then these expressions
refer to the same memory location.

3. If it is possible to prove that the two instructions access variables with distinct
names by inspecting the two address expressions (e.g., A+offset1 and B+offset2),
then there is no dependence. Note that, as a result of path-sensitive symbolic
execution, an address expression can refer to multiple locations. For instance, an
address expression can be of the form cond ? (A + offset) : (B + offset), which
means that it refers to array A or B based on the value of variable cond at runtime.
In this case, we find the sets of variables accessed by each memory instruction
and perform a set intersection. If the intersection set is empty, then there is no
dependence.

4. If the user has indicated that the program follows ANSI aliasing rules, we analyze
the data types of the address expressions. We use the type information existing
in the symbol table15 to check whether the two instructions access variables of
different types. If so, then per ANSI aliasing rules, we assume that there is no
dependence. For instance, two stores p[I1] and q[I2] are independent if p is a
pointer to int and q is a pointer to float.

5. We also apply other standard dependence tests such as the range test [9] and the
GCD test [5]. These tests further improve the accuracy of dependence analysis.

The user can also improve the results by providing the compiler with options that
give information about argument aliasing. By indicating that the pointer arguments to

13 Solving induction variables of inner loops before outer loops enables us to solve higher order induction
variables.
14 We also solve loop exit conditions to find the symbolic loop trip counts, which correspond to the
maximum values for loop index variables (i.e., Imax values where 0 ≤ I < Imax).
15 In our implementation, we use the symbol information embedded into the assembly files by gcc when
the gstabs+ option is used.

123

Int J Parallel Prog (2016) 44:337–380 361

procedures cannot be aliased, the user can help the compiler perform better symbolic
program analysis and better memory disambiguation.

5.2 Dynamic Dependence Analysis

In some cases, static dependence analysis may not be able to prove whether two
memory instructions in the target program are dependent or not. This can occur due to
two main reasons. First, the dependence tests used in the compiler may either not be
strong enough to prove independence, or may be skipped due to taking too much time,
considering compilation time restrictions. Second, the existence of a dependence may
depend on a runtime condition that may or may not occur at runtime. In both cases,
the compiler must be conservative and assume there is a dependence. A profiler that
performs dynamic dependence analysis would not suffer from either problem.

To perform dynamic dependence analysis, we need our profiler to record which set
of instructions access the same location, and hence, byDefinition 1, are dependent. For
this purpose, our profiler keeps a table thatmaps thememory addresses accessed by the
application to the set of instructions that made the accesses. The target procedure in the
application is instrumented such that after eachmemory instruction, we also update the
corresponding entry in this table using the unique identifier of the memory instruction.
When the application terminates, we analyze the entries in this table, checking the set
of instructions that access each memory address. Using this information, we build a
dependence graph such that any two instructions that reside in the same set for at least
one memory address have a dependence edge between them.

There are certain time and space overheads in dynamically maintaining this table
thatmapsmemory addresses to set of instruction identifiers. From the time perspective,
for each memory instruction in the original program, we now perform a number of
additional memory accesses to update the table. While using a hash table we can make
these look-up and insert operations in O(1) time, we still need a set insert operation,
a typical implementation of which requires O(log(|S|)) operations where |S| is the
cardinality of the set (i.e., the number of instructions that accessed the same memory
address). In practice, only a very small subset of instructions in the procedure reside in
the same set, giving an average complexity of O(1). However, the profiler still needs
to make a number of memory accesses at least 3–4 times the original application,
which can result in a significant increase in execution time.

From the space overhead point of view, for each address accessed by the original
application, we now keep an extra set of instruction identifiers. This space overhead
is O(|S|), which can significantly increase the memory space used by the profiler. For
instance, if all addresses are accessed by 4 instructions, then at least 4X extra memory
space will be used by the profiler.

To reduce these time and space overheads associated with dynamic dependence
analysis, we use sampling in our profiler, as already explained in Sect. 2.2.We generate
two versions of the target procedure: an instrumented version and an original non-
instrumented version. We execute the profiled version of for a time period T1 and
then jump to original version to execute it for a time period T2, giving a duty cycle of
T1/(T1+T2). By applying sampling, both the time and the space overheads of keeping

123

362 Int J Parallel Prog (2016) 44:337–380

dynamic dependence information in our profiler is reduced in proportion to the duty
cycle.

One can ask the question whether the benefits of maximal memory partitioning
based on the dynamic dependence analysis described here may be achievable in prac-
tice. Indeed this limit can be approached, provided that errors due to risky speculative
memory separation decisions (i.e., there exist memory operations I1 and I2 which (1)
have never been observed to depend on each other at runtime, (2) are not proved to
be independent by static analysis, (3) are speculatively linked to different memories,
and (4) do refer to the same location on a new rogue program input) are rare, and are
detected through extra overlap detection hardware not on the critical path. When such
an error is detected, one simple approach is to abort the current hardware acceleration
and revert to the original un-accelerated software version of the hardware, before the
changes to the software application memory are flushed back by the hardware accel-
erator. The next FPGA compilation, or the next release of the ASIC chip, can respect
the offending dependence, and correct the error.

6 Experimental Evaluation

We perform our experimental evaluation in two steps. First, we analyze the accuracy
of our compiler-based dependence analysis by comparing it with the dependence
analysis results obtained from profiling. We then use these dependence results in
memory partitioning and show the quality of the resulting partitioned memory system.
Before presenting our results, we provide some definitions and elaborate on our target
benchmarks.

6.1 Metrics used in Evaluation

We evaluate the quality of our compiler-based dependence analysis using twometrics:
static accuracy and dynamic accuracy. Let dc(I1, I2, R) and dp(I1, I2, R) denote the
dependence analysis responses given by the compiler and the profiler over a program
region R for the instruction pair (I1, I2), respectively. Then, we define the function
u(I1, I2, R) as follows:

u(I1, I2, R) =
{
1, if dc(I1, I2, R) = may-alias and dp(I1, I2, R) = no-alias

0, otherwise.
(1)

This function has the value 1when the compiler is unable to prove that a dependence
between I1 and I2 does not exist, although it is not actually observed at runtime. Then,
we define the static accuracy and the dynamic accuracy of a dependence analysis as
follows.

Definition 3 Static accuracy of a compiler-based dependence analysis on a given
program measures the fraction of dependence questions that are (1) answered by the
compiler-based dependence analysis as may-alias and (2) answered by the profiler-
based dependence analysis as no-alias. The mathematical formula for static accuracy

123

Int J Parallel Prog (2016) 44:337–380 363

is as follows.

StaticAccuracy(R) = 1 −
∑

I1

∑
I2>I1 u(I1, I2, R)∑
I1

∑
I2>I1 1

(2)

= 1 −
∑

I1

∑
I2>I1 u(I1, I2, R)

(N − 1) · N/2
. (3)

where N denotes the number of memory instructions in program region R.

Definition 4 Dynamic accuracy of compiler-based dependence analysis on a given
program is a modified form of static dependence accuracy that also takes into account
the number of times each instruction is executed as a weight function.

DynamicAccuracy(R) = 1 −
∑

I1

∑
I2>I1 u(I1, I2, R) · Weight (I1, I2, R)∑

I1

∑
I2>I1 Weight (I1, I2, R)

, (4)

where the weight function is calculated using the execution counts of the two instruc-
tions over the region R in each dependence question obtained from the profiler:

Weight(I1, I2, R) = max(count (I1, R), count (I2, R)). (5)

While we use these static and dynamic accuracy values to determine the quality
of our compiler-based dependence analysis, these need not directly translate into the
quality of memory partitioning. In a well-partitioned memory system, the individual
memories will comprise a smaller number of distinct addresses and therefore a smaller
number of data values located at these addresses. Furthermore, if some addresses
within a memory are referenced more often than others, there exists an opportunity to
encode the addresses of this memory with even less bits. To quantify these reductions,
we use two metrics: the number of address bits needed to access the entire target
memory and the Shannon entropy [42], defined as follows.

Definition 5 The number of address bits to cover the entire set X of unique locations
covered by an access sequence:

Address Bits(X) = log2(|X |) (6)

Definition 6 Shannon entropy provides a limit on the best possible lossless compres-
sion of any communication. For a given distribution of messages X = {x1, . . . , xn} to
be communicated between a sender and a receiver, and a probability mass function of
outcome xi given as p(xi), entropy is calculated using the formula:

Entropy(X) = −
n∑

i=1

p(xi) · log2(p(xi)) (7)

123

364 Int J Parallel Prog (2016) 44:337–380

(a) (b) (c)

Fig. 8 An example used as a proof of concept for entropy encoding of memory accesses. a An entropy-
encoded (Huffman) representation of original addresses A0,A1,A2,A3, containing data items D0,D1,D2,D3
respectively,bdata readmultiplexer ofmemorywith entropy-encoded addresses (RA=read address,RD=read
data), and cwrite decoder ofmemorywith entropy-encoded addresses (WA=write address,WEi=write-enable
for Di)

In our case, we consider the distribution of the addresses in the accesses to each
memory to calculate its address entropy. This gives the limit on the minimum average
number of address bits needed to implement this memory, assuming a perfect encod-
ing is adopted in the compiler and the memory hardware. Entropy is intuitively also a
theoretical limit on the average number of logic levels in accessing (reading or writ-
ing) a memory, assuming the probability distribution of addresses is known a priori,
and can be achieved by accessing more frequent addresses with fewer logic levels,
and infrequent addresses with more logic levels, using encoding of addresses within
the program itself and within the memory, coupled with speculation and recovery
techniques.

Figure 8 gives a proof of concept for entropy encoding of memory addresses over
an example. Huffman encoding [28] attempts to approximate entropy, e.g., given
four data items D3,D2,D1,D0, located respectively at addresses A3 (occurring 0.2%
in the software execution trace), A2 (occurring 0.2%), A1 (occurring 0.6%), and
A0 (occurring 99%) in the original memory, we can Huffman-encode the original
addresses as A0=XX0, A1=X01, A2=011, A3=111 as in Fig. 8(a), following a low-
endian format for addresses (with address bit 0 being in the least significant position).
Here,Xmeans a “don’t care” value.We then can create amemory readmultiplexer that
reads data item D0with a delay of only one 2 to 1multiplexer level, faster than D1, D2,
or D3, as shown in Fig. 8b. Thus, the read address (RA) to read data (RD) propagation
delays will be faster for data items that are closer to the root of the Huffman-encoded
tree, and slower for data items that are more distant from the root of the Huffman-
encoded tree. We can also create a Huffman-encoded write decoder to generate the
write enable signals WE0,WE1,WE2,WE3, for data items D0, D1, D2, D3, respectively
during a write operation, as shown in Fig. 8c. This write decoder also generates the
write enable signal for D0 faster than for the other data items D1, D2, and D3. To
avoid any glitches in the WE1-WE3 signals at the instant WE0 becomes high (active) at
an early time, the decoder circuit could use, e.g., CMOS domino logic [31]. All write
enable signals will normally be low (inactive) when the decoder is precharged. Then,

123

Int J Parallel Prog (2016) 44:337–380 365

when the decoder is evaluated, one and only one write-enable signal will become high
(active) in a glitch-free fashion. As in the case of the read circuitry, the write address
to write-enable propagation delay will be faster for data items that are closer to the
root of the Huffman-encoded tree, and slower for data items that are more distant from
the root of the Huffman-encoded tree.

However, Shannon entropy can do better than Huffman encoding: for example the
number of logic levels for the given read multiplexer is at least one 2 to 1 multiplexer
logic level, whereas the Shannon entropy of this address execution trace (highly biased
to be A0) is only about 0.09. In this case, for example, when a particular test in the
Huffman tree is highly biased toward 0, an optimized version of the hardware Huffman
tree can be built by speculatively assuming the said bit is always 0, while checking
if it really is zero and falling back to the original Huffman tree after a few extra
clocks, if the speculation was incorrect. In this case, a register normally containing
D0 can be tied directly to the output for reading and will be available as the read data
immediately, with zero logic levels, for reading thememorymost of the time.Although
the practical implementation of such an encoding is the subject of future research in
compiler techniques for encoding values of variables, and future application-specific
cache hierarchy design and layout, measuring entropy gives us an idea of how close
we are to an ideal memory design. Note that a compressed encoding based on the
probability distribution of the set of data items read or written in a memory can also
give rise to beneficial reductions in the memory data width, although data bit width
optimization is beyond the scope of this paper.

When the accesses are evenly distributed across the target memory addresses, the
address bits value and the entropy values become close. However, if some addresses
are accessed much more frequently than other addresses, then encoding can improve
the average number of bits needed to perform the communication of addresses between
the processing unit/finite state machine/program and memory, and therefore entropy
becomes smaller. We compare the two metrics to reveal more information about the
underlying memory access patterns.

When we extract a number of memories for an application, using the number of
memories extracted to determine the quality of memory partitioning may be mislead-
ing, because some memories may simply be accessed only a few times, whereas most
of the accesses may be concentrated on only a few memories. To identify the effec-
tive number of memory partitions, we use the dynamic access counts of individual
memories obtained from profiling and reuse the entropy concept.

Definition 7 For a given set of memories Y = {y1, . . . , yn} where pm(yi) denotes
the empirical probability of accessing memory yi :

EffectiveNumberOfMemories(Y) = 2−∑nmemories
i=1 pm (yi)·log2(pm (yi)) (8)

gives the effective number of memories extracted from the application. If the memory
accesses are distributed across all memories evenly at runtime, then the effective
number of memories gets close to the actual number of memories extracted. However,
if only one memory is accessed at runtime and all other memories are idle, then this
metric approaches one, indicating that one memory dominates the system.

123

366 Int J Parallel Prog (2016) 44:337–380

Fig. 9 aHigh level organization of a cache andb subarray internals; taken fromCACTI technical report [35]

6.2 Modeling Cache Latency and Energy

As a result of profiling the application after memory partitioning, we obtain the num-
ber of address bits and address entropy values for all the memories we generated,
which identify the optimum size needed for this memory (without encoding and with
encoding). However, it is important to identify the exact relationship between the size
of a memory and its access latency and energy. To achieve this, we use CACTI [35]
which is a tool thatmodels cache area, latency, and timing by considering various inter-
nal structures. We now briefly describe this model and how we build a relationship
between cache capacity and cache latency/energy.

Caches are internally organized as hierarchical storage units, as shown in
Fig. 9a [35]. A cache contains set of banks that can be accessed independently. Each
bank has a number of subbanks in it, where only one subbank is accessed at a time. A
subbank access is distributed to multiple mats inside the subbank and each mat access
is further redirected to one of many subarrays inside it. Fig. 9b shows the organization
of a single subarray.

There are many components in a cache, but only a few of them are responsible for
most of the access latency and energy. One such component is the combination of row
decoder and wordline drivers. The row decoder takes a row address and generates an
enable signal for only the corresponding row. This enable signal is propagated as the
wordline enable signal to all cells in the target row, which requires drivingmany access
transistors. Therefore, dedicated wordline drivers are used to increase the strength of
this signal. Second, the SRAM cells are connected to a number of bitlines that connect
them to the sense amplifiers. Since there is a connection from each row to each bitline,
the length of each bitline is essentially proportional to the number of rows in the cache.
As the cache gets larger, these bitlines also get longer andmake a larger contribution to
latency and energy. Once the data is sensed by the sense amplifiers in a subarray of the
cache, the subarray output drivers are used to send the data read from the array to the
external interface of the entire cache. It is important to note that this communication
between the subarrays and external cache interface must be very wide to transfer an

123

Int J Parallel Prog (2016) 44:337–380 367

(a) (b) (c)

Fig. 10 a Scaling of cache latency and energy, b scaling of individual cache access latency components,
and c scaling of individual cache energy components. The x-axis denotes the number of bits (addr_bits)
in the address that are used as index bits. Cache capacity is proportional to 2addr_bits

entire cache line quickly. While other components in a cache also add to the latency
and energy of the cache, their contribution is relatively smaller.

Figure 10 (left) shows the relationship between the number of index bits in a cache
(where cache capacity is proportional to 2addr_bits) and two factors: access latency and
dynamic energy per access. For very small caches, latency and energy increase slowly
with capacity, but as the cache becomes larger, doubling the capacity also doubles
latency and energy. As can also be seen in Fig. 10 (center and right), the decoders,
wordline drivers, and bitlines dominate the access latency in large caches. Especially
long bitlines become a bottleneck in the performance of the cache. Similarly, the
dynamic energy of the cache is also dominated by two factors: bitlines and subarray
output drivers. In this case, in addition to the bitlines, the dynamic energy cost of
driving the data from the subarray to the output edges of the cache becomes very
costly as the cache gets larger. We use these CACTI-based latency and energy models
in our overall average latency and average dynamic energy per access computations.
Using these models, we translate our results expressed in terms of number of address
bits used to access caches into physical metrics (i.e., latency and energy) related to the
memory hierarchy.

6.3 Benchmarks

In our evaluation, we use benchmarks from the SPEC CPU 2000 and CPU 2006
benchmark suites [27,45]. For each benchmark, we identified the hottest procedure
shown in Table 1 and inlined all calls to user functions within that procedure. We
are using a set of eight benchmarks from these suites which have a hot function that
takes a large fraction of the execution time, that does not have recursive function calls,
and does not suffer from code explosion by inlining. In this table, we also report the
number of instructions in our RISC-like intermediate representation and the number
of loops in these procedures after inlining.

6.4 Compiler-Based Dependence Analysis Results

The first set of results we obtain are related to the accuracy of the static program
analysis in our compiler. Based on definitions 3 and 4 given in Sect. 6.1, we evaluated

123

368 Int J Parallel Prog (2016) 44:337–380

Ta
bl

e
1

B
en
ch
m
ar
ks

us
ed

in
ev
al
ua
tio

n
an
d
th
ei
r
ho

tte
st
fu
nc
tio

ns
ta
rg
et
ed

by
ou

r
co
m
pi
le
r
fo
r
m
em

or
y
pa
rt
iti
on

in
g

B
en
ch
.n
o

B
en
ch
.n

am
e

H
ot
te
st
pr
oc
ed
ur
e

In
st
r.

L
oo

ps
St
at
ic

ac
c.

(%
)

D
yn
am

ic
ac
c.
(%

)

18
3

eq
ua
ke

sm
vp

41
3

2
94

95

40
1

bz
ip
2

m
ai
nG

tU
62

5
1

94
95

40
3

gc
c

ap
pr
ox

_r
eg
_c
os
t

26
8

4
89

88

42
9

m
cf

pr
im

al
_b

ea
_m

pp
33

9
4

69
59

43
3

m
ilc

m
ul
t_
su
3_

na
13

4
2

97
96

45
8

sj
en
g

se
tu
p_

at
ta
ck
er
s

41
0

5
94

91

47
0

lb
m

L
B
M
_p

er
fo
rm

St
re
am

C
ol
lid

e
86

4
1

95
97

47
3

as
ta
r

w
ay
ob

j::
m
ak
eb
ou

nd
2

42
6

2
97

91

A
ve
ra
ge

92
91

T
he

la
st
tw
o
co
lu
m
ns

gi
ve

th
e
st
at
ic
an
d
dy
na
m
ic
ac
cu
ra
cy

of
co
m
pi
le
r-
ba
se
d
de
pe
nd
en
ce

an
al
ys
is

123

Int J Parallel Prog (2016) 44:337–380 369

Table 2 Compiler-based (conservative) memory partitioning results: average address entropy and average
number of address bits without partitioning and with partitioning

Bench. w/o Partitioning w/ Partitioning Memories Effective Num.

Entropy Bits Entropy Bits (Scalar/Array) of Memories

equake 10.8 15.9 7.5 7.8 30 (26/4) 9.66

bzip2 9.3 16.6 5.3 5.3 30 (28/2) 15.20

gcc 5.0 5.5 0.7 0.7 26 (25/1) 9.16

mcf 11.9 12.3 9.2 9.4 20 (13/7) 6.00

milc 6.2 6.9 2.2 2.2 24 (10/14) 15.65

sjeng 6.2 6.5 3.2 3.2 15 (14/1) 8.25

lbm 9.3 15.2 3.0 3.0 103 (64/39) 75.34

astar 6.4 10.9 3.0 4.9 38 (33/5) 20.58

The next column gives the number of scalar and array memories generated by applying partitioning, and
the last column presents the effective number of memories (see Definition 7)

the static and dynamic accuracy of the dependence analysis methods we use. In both
metrics, the dependence analysis results of the compiler analysis is compared against
the dependence analysis results reported by the profiler. For static accuracy, we record
the dependences that cannot be resolved by our compiler, but are never encountered
during the profiling run. We then calculate the ratio of these cases to the total number
of all possible dependence questions. In case of dynamic accuracy of the same set
of compiler questions and compiler answers, we also take into account how many
times each instruction is executed and use these values as the weights to dependences.
Our results in the last two columns of Table 1 indicate that our compiler is able to
successfully answer more than 90% of the dependence questions asked, in both static
and dynamic accuracy metrics for almost all benchmarks.

6.5 Memory Partitioning Results and Discussion

We now present our memory partitioning results. These results are obtained by per-
forming dependence analysis using the compiler-based and profiler-based methods
given in Sect. 5. We then compare these two sets of results and discuss the underlying
reasons for any similarities and differences we observe.

Compiler-based (conservative)Memory Partitioning Results. Table 2 shows two pairs
of results for each benchmark. Each pair reports the average address entropy and the
average number of address bits used by the application when accessing the memories
in the memory system. The first pair of values correspond to the case when nomemory
partitioning is used, i.e., all memory instructions on the accelerator access a single,
unified memory. The second pair of values correspond to the case when we partition
the memory of the program when mapping it into custom hardware. The results under
the columns (address) “bits” and “entropy” show the average number of logic levels in
reading and writing the memories. The results in column “bits” is the average number

123

370 Int J Parallel Prog (2016) 44:337–380

of logic levels with a flat address encoding that assigns a unique binary number to
each unique original address. If there are n items accessed in the original memory, the
number of logic levels under the “bits” column will be log2(n). The column named
“entropy” shows the results with a memory whose read multiplexer and write decoder
have been entropy-encoded according to perfect a priori knowledge of the probability
distribution of the original addresses. With entropy encoded addresses, the average
number of logic levels in accessing a memory with n elements will generally be in the
range 0 to log2(n), inclusive. For both the baseline case and the partitioned cases, and
in either the “bits” or the “entropy” column, the cost of initialization from or flushing
to the next memory is not included. The number of data items to be initialized and/or
flushed in both cases is equal to 2addr_bits , where addr_bits is the number given under
the “bits” column in the baseline case.

By examining the differences in the number of address bits neededwith andwithout
memory partitioning (i.e., pairs 1 and 2 in Table 2), we observe that there is a signif-
icant reduction in the results for all benchmarks. This indicates that the average size
of the ideal memories accessed with memory partitioning is significantly lower. An
interesting observation follows from the comparison of the entropy and the number of
address bits results with and without memory partitioning. When there is no memory
partitioning, the entropy values are typically much lower than the address bits, indi-
cating that the accesses made to the single, unified memory are quite non-uniformly
distributed. On the other hand, when we partition memory, the difference between
entropy and the number of address bits becomes much smaller. This indicates that
by partitioning memory, independent access patterns were routed to distinct memo-
ries, leading to more uniform access patterns to be received by the generated child
memories.

Figure 11 shows the reduction in the average number of logic levels during reading
or writing, the average memory access latency and the average energy per memory
access for all the benchmarks. The number of logic levels during reading or writing
are taken from Table 2 “bits” (flat encoding) and “entropy” (entropy-based encod-
ing) columns. The other two sets of results (b and c) are obtained by accumulating
the latency and energy of each memory access served by the new memories created
by memory partitioning, respectively. The number of accesses to each memory is
obtained by using the memory access statistics from the second profiling run (see
Fig. 2). The results are then normalized against the average latency and energy values
obtainedwithoutmemory partitioning, i.e., our baseline. Analyzing the results without
entropy encoding, we observe that by applying compiler-based memory partitioning,
we achieve a 20–85% reduction in the average number of logic levels and 70–99%
reduction in average access latency and dynamic energy. This means that, for these
benchmarks, we can eliminate more than 70% of the dynamic energy consumed by
the memory system, and serve the memory accesses 3.3X–100X faster. Making the
assumption that memories with entropy encoded addresses can be designed as effi-
ciently as normal memories, our results with entropy encoded memories are also seen
to be mostly in the same range; they also show very significant improvements. Note
that the VLSI layout of memories with entropy encoded addresses is a future research
topic, and making a precise estimate is difficult at this time.

123

Int J Parallel Prog (2016) 44:337–380 371

Fig. 11 Reduction results (computed as (valueold − valuenew)/valueold , where “old” means “without
memory partitioning” and “new” means “with memory partitioning”) obtained using compiler-basedmem-
ory partitioning: a average logic levels during reads or writes, b est. average access time, and c est. average
dynamic energy, with flat encoding (log2(n) bits) and entropy encoding of addresses

Table 3 Profiler-based (optimistic) memory partitioning results: average address entropy and average
number of address bits without partitioning and with partitioning

Bench. w/o Partitioning w/ Partitioning Memories Effective Num.

Entropy Bits Entropy Bits (Scalar/Array) of Memories

equake 10.8 15.9 5.9 6.1 59 (25/34) 33.01

bzip2 9.3 16.6 4.1 4.1 84 (28/56) 39.28

gcc 5.0 5.4 0.1 0.1 39 (39/0) 12.15

mcf 11.9 12.3 8.8 8.9 32 (22/10) 8.51

milc 6.2 7.0 2.2 2.2 24 (10/14) 15.44

sjeng 6.1 6.4 2.2 2.2 35 (32/3) 21.61

lbm 9.6 15.3 3.3 3.3 105 (66/39) 76.89

astar 6.4 10.7 1.8 1.8 61 (33/28) 25.80

The next column gives the number of scalar and arraymemories generated by applyingmemory partitioning,
and the last column presents the effective number of memories (see Definition 7)

Profiler-based (optimistic) Memory Partitioning Results. Our second set of memory
partitioning results are obtained by using profiler-based dependence analysis. Since the
profiler results are valid for only one particular input and the profiler might miss some
dependences due to sampling, the partitioning results from this analysis are optimistic.
This means that they represent the limit that no static analysis-based partitioning can
ever outperform. The results shown in Table 3, when compared to the equivalent results
with compiler-based partitioning given in Table 2, verify this expectation. First of all,
the number of memories generated by applying profiler-based memory separation is
always higher than that obtained using compiler-based analysis. This means that the
profiler can rule out some dependences that did not occur at runtime, which results
in the generation of more connected components in the dependence graph. Further,

123

372 Int J Parallel Prog (2016) 44:337–380

Fig. 12 Reduction results (computed as (valueold − valuenew)/valueold) obtained using profiler-based
memory partitioning: a average logic levels during reads or writes, b est. average access time, and c est.
average dynamic energy, with flat encoding (log2(n) bits) and entropy encoding of addresses

all average entropy and number of address bits results obtained with profiler-based
memory partitioning are either equal to or better than compiler-based partitioning,
which indicates that smaller memories were generated as a result of using profiler-
based dependence analysis.

Figure 12 shows the reduction in averagememory access latency and average energy
per memory access for all benchmarks, using profiler-based memory partitioning. By
applying profiler-based memory partitioning, we again achieved up to 99% reduc-
tion in access latency and dynamic energy. We observe that our final results with
profiler-based partitioning are typically very close to those obtained with compiler-
based partitioning. This indicates that the energy and latency benefits we obtained
with our compiler-based approach are very close to the ideal results, realized by our
profiler-based approach.

Multi-Level Hierarchical Memory Partitioning Results. Finally, we present our multi-
level hierarchical memory partitioning results. In bzip2 benchmark, there is only one
level of scoping hierarchy inside the hottest procedure where we focus, and, therefore,
we excluded it from the tables and figures that we present in this subsection. Table 4
shows the details of the all average entropy and number of address bits results obtained
with multi-level memory partitioning. Here, we give results for both with and without
flushing overhead. Note that the results with no flushing overhead are in agreement
with our previous findings. However, when we consider that the flushing operation
of child memory contents to their parent memories is something that we have to pay
anyway, the results without this flushing overhead looks much more promising.

Figure 13 shows the reduction in averagememory access latency and average energy
per memory access using multi-level memory partitioning. Although, we expect and
also observe much more accesses to multi-level memories due to excessive flush
overheads in some benchmarks, the energy and latency figures are still better compared
to the single memory model. This anomaly can be easily explained by the help of
Fig. 13a. The amount of logic level reduction is quite high on the average across

123

Int J Parallel Prog (2016) 44:337–380 373

Table 4 Compiler-based (conservative) Multi-level memory partitioning results: average address entropy
and average number of address bitswithout partitioning andwith partitioning (* denotes resultswith flushing
overhead (X) and without flushing overhead (Y) given in (X/Y) format)

Bench. w/o Partitioning w/ Partitioning Memories Effective Num.

Entropy Bits Entropy* Bits* (Scalar/Array) of Memories*

equake 8.7 12.0 (5.7/1.0) (5.9/1.0) 63 (40/23) (25.5/18.6)

gcc 6.5 7.8 (1.1/1.1) (1.1/1.1) 28 (25/3) (13.5/13.3)

mcf 11.8 12.2 (0.4/0.3) (0.4/0.3) 28 (19/9) (12.2/7.1)

milc 11.0 13.6 (6.1/0.6) (6.3/0.7) 40 (26/14) (30.1/16.0)

sjeng 7.7 9.3 (2.2/1.0) (2.2/1.0) 19 (10/9) (11.1/11.1)

lbm 11.4 12.8 (3.0/0.0) (3.0/0.0) 142 (103/39) (8.9/2.2)

astar 7.0 13.9 (0.7/0.7) (1.3/0.7) 42 (37/5) (22.7/20.0)

The next column gives the number of memories generated by applying memory partitioning, and the last
column presents the effective number of memories

all simulated benchmarks, and lower average entropy and number of address bits
indicate that the size of each memory partition can be arranged to accommodate only
a few number of addresses. This type of size reduction in memories directly implies
considerable amount of energy and latency reduction as shown in these figures.

Discussion of Results. While the results presented in Tables 2, 3, 4 and Figs 11, 12,
13 give an idea of the overall improvement in the memory system, we also zoom
inside target benchmarks and identify the reasons for their behavior when memory
partitioning is applied.

Our first observation is that for mcf, sjeng, astar, and bzip2 benchmarks, there
is a non-negligible difference in the number of address bits results when applying
compiler-based and profiler-based memory partitioning. When we analyzed mcf, we
observed that due to extensive use of pointers in the application, our present static
analysis was unable to track the most recent value of a pointer reused towards the
middle of the target procedure, failing to disambiguate it. This is also the reason
why our dependence analysis accuracies for mcf in Table 1 are lower than the other
benchmarks. On the other hand, by using the type of the pointer, our compiler was
still able to extract a separate memory for that type of variables, reducing the overall
impact of this inaccuracy in the final partitioning results. The profiler was easily able
to identify the set of locations accessed by this pointer and eliminate the associated
dependence edges. Our analysis with sjeng revealed that most memory accesses were
successfully disambiguated. However, since our compiler currently does not have a
monotonicity analysis, we were unable to prove that the two memory instructions
I1 and I2 in the code fragment shown in Fig. 14(left) can never access the same
memory address. Third, in astar, the type analysis pass in our compiler was unable
to identify that one pointer accesses a subfield of a structure, whereas another pointer
accesses another subfield of the same structure, which was the cause for profiler-based
partitioning outperforming compiler-based partitioning. Finally, in bzip2, we observe
that the profiler is in fact extracting information that is impossible for the compiler

123

374 Int J Parallel Prog (2016) 44:337–380

Fig. 13 Reduction results (computed as (valueold − valuenew)/valueold) obtained using multi-level
memory partitioning: a average logic levels during reads or writes with (on the left) and without flush
overhead (on the right), b est. average access time with and without flush overhead, and, finally, c est.
average dynamic energy with and without flush overhead, with flat encoding (log2(n) bits) and entropy
encoding of addresses

to obtain at compile time. We repeat a simplified version of this code fragment in
Fig. 14(right). Unless the programmer provides a hint to the compiler indicating that
the actual values of parameters i1and i2passed to the target hot procedure are separated
by a large value, the compiler cannot match the profiler results (note that we consider
loads that refer to the same location to be dependent in the context of this paper).

We also analyzed the remaining tests and observed that for milc and lbm, enabling
the GCD test in our compiler significantly improved the memory partitioning results.
In milc, this test enabled us to disambiguate memory accesses a->e[i][0],
a->e[i][1], and a->e[i][2] (obtained after loop unrolling), when the index
variable i increments in steps of 3 (i.e., i=i+3). In lbm, which is similar to a 19-
point stencil computation, the GCD test simply proved all 19 stencil points to be
non-overlapping.

7 Conclusion

We proposed a memory partitioning method to automatically generate application-
specific memory systems. This method can generate a multi-level memory hierarchy
that does not suffer from the scalability issues of existingmemory systems by eliminat-
ing coherence acrossmemories at the same level of the hierarchy. The only requirement

123

Int J Parallel Prog (2016) 44:337–380 375

void setup_attackers(...) {
...
for(i) {

if(cond1) {
see_attackers[0][numw].piece = ...; //I1
numw++;

}
}
//no change to numw here
for(j) {

if(cond2) {
see_attackers[0][numw].piece = ...; //I2
numw++;

}
...

}

bool mainGtU(UInt32 i1, UInt32 i2,
UChar* block, UInt32 nblock...) {

...
Int32 k = nblock + 8;
do {

c1 = block[i1]; c2 = block[i2];
if(c1 != c2) return (c1 > c2);
i1++; i2++;
c1 = block[i1]; c2 = block[i2];
if(c1 != c2) return (c1 > c2);
i1++; i2++;
...
k -= 8;

}while(k>=0);
...

}

Fig. 14 Simplified code fragments from sjeng (left) and bzip2 (right). In sjeng, due to lack of monotonicity
analysis in our compiler, we were unable to prove that I1 and I2 can never access the same memory
location. In bzip2, the compiler has no information about the difference of parameters i1 and i2 passed
to this procedure, and therefore cannot prove that two ranges [i1start , i1end] and [i2start , i2end] do not
overlap in practice. The profiler, on the other hand, can identify that this dependence never occurs at runtime

for ensuring correct execution of the target application is the initialization and flushing
of memories at the entry and exit points of the program regions these memories are
extracted from.

We demonstrated a compiler that uses this method to generate application-specific
memory and showed a compiler analysis that can be used to obtain answers to the
dependence analysis questions posed by this method. The effectiveness of the pro-
posed method is evaluated by using a profiler-based strategy. We demonstrated a
profiler-based calculation of the average memory access latency and average dynamic
energy per access with and without our compiler-based memory partitioning method.
Finally, we compared our compiler-based results with an oracle, profiler-based mem-
ory partitioner that represents the limit that can be achieved by memory partitioning.

Our results show that the average latency and energy of accessing memory system
canbedramatically reducedby employingourmemorypartitioningmethod. Further, in
most cases, our compiler-based partitioner can achieve results very close to the profiler-
based results, which proves that our approach is very close to achieving optimum
memory partitioning.

We believe that automatic memory partitioning can be effective in solving the
memory scalability problem, enabling the realization of custom, application-specific
memories. In this work, we also established several topics for future research.

Appendix: Details of Symbolic Execution

Basic Block Execute Algorithm

Figure 15 presents the pseudocode for the execute function referred to in Fig. 7.
Given a basic block b, this function starts with the entry program state of b, executes
all instructions in the basic block, and then generates one or more exit program states.

123

376 Int J Parallel Prog (2016) 44:337–380

input : Basic block b entry program state
output: Basic block b exit program states

1 State state = b.entryState;
2 for instruction i ∈ b do
3 switch i.type do

// arithmetic operation
4 case ADD:
5 Expr e0 = state.lookup(i.src[0]);
6 Expr e1 = state.lookup(i.src[1]);
7 Expr result = simplify(ADD, e0, e1);
8 state.update(i.dst[0], result);
9 break;

10 end
// memory load operation

11 case LOAD:
12 Expr e0 = state.lookup(i.src[0]);
13 Expr result = state.lookup(e0);
14 state.update(i.dst[0], result);
15 break;
16 end

// branch on condition register
17 case BR:
18 Expr cond = state.lookup(i.src[0]);
19 Expr condn = simplify(NOT, cond);
20 b.exitStates[0].facts = state.facts;
21 b.exitStates[1].facts = state.facts;
22 Expr p1 = simplify(AND, state.pred, cond);
23 Expr p2 = simplify(AND, state.pred, condn);
24 b.exitStates[0].pred = p1;
25 b.exitStates[1].pred = p2;
26 break;
27 end

// Cases for other operations
28 ...
29 endsw
30 end

Fig. 15 Symbolic execution execute algorithm for executing the instructions in a basic block

Executing each instruction in the basic block has some side effects on the programstate,
updating the stored symbolic value expressions of some registers or memory locations
recorded in the program state. The figure shows three types of instructions. The first
one is an arithmetic operation which is handled by reading the value expressions
corresponding to the two source registers, creating a simplified result expression,
and updating the value of the corresponding destination register in the program state
with this simplified result. The second one is a memory load instruction which starts
with extracting the value expression of the source register (containing the operand
address) from the program state, and then requires a lookup in the program state with
this extracted value expression, which is treated as an address expression. Finally, the
lookup result is used to update the value of the destination register. The third operation
is a two-way branch the direction of which depends on the value a condition register. If
the basic block endswith a two-way conditional branch, the symbolic value expression
of the condition register obtained from the program state and its logical negation are
used to update the path predicate expressions on the two outgoing edges of this basic
block. Other types of instructions are variants of these three types of instructions and
are omitted for brevity.

123

Int J Parallel Prog (2016) 44:337–380 377

input : Program states on (forward) CFG edges coming into basic
block b: inState1, inState2

output: Entry program state of basic block b: outState
// Combine input predicates

1 outState.pred = simplify(OR, inState1.pred, inState2.pred);
// Add facts from first edge

2 for fact f1 ∈ inState1.facts do
3 Expr val1 = f1.value;
4 Expr val2 = inState2.lookup(f1.address);
5 Expr val = simplify(f1.pred ? val1 : val2);
6 outState.addFact(f1.address, val);
7 end

// Add facts from second edge
8 for fact f2 ∈ inState2.facts do

// Handled in first loop?
9 if f2.address exists in inState1.facts then

10 continue;
11 end
12 Expr val1 = inState1.lookup(f2.address);
13 Expr val2 = f2.value;
14 Expr val = simplify(f2.pred ? val2 : val1);
15 outState.addFact(f2.address, val);
16 end

Fig. 16 Symbolic execution join algorithm for joining the program states corresponding to two incoming
forward CFG edges to a basic block

Program State Join Algorithm

Figure 16 gives the pseudocode for the join function referred in Fig. 7 Given a basic
block b, this function takes two program states on two (forward) CFG edges coming
into b, and computes the program state that is valid at the entry point of b. When there
are more than two incoming edges to a basic block, this function is called more than
once (e.g., join(edge1, join(edge2,edge3)) for three incoming edges).
The path predicate at the entry of b is obtained by performing a logical or operation
on the incoming edge path predicates. For each address-to-value expression mappings
on the first program state, the corresponding value expression on the second program
state is obtained and a conditional expression is created.16 The second loop handles
the address-to-value expression mappings on the second program state that do not
exist on the first program state (i.e., the address expressions not handled by the first
loop). As a result of applying this join operation, the program state at the entry of basic
block b is obtained, which is the input to the execute function given in Fig. 15. It is
important to note that this algorithm is used only for joining forward edges. Backward
edges define loops, which are handled by the algorithm in Fig. 7.

16 If the values onboth states are the same, the expression simplification algorithmeliminates the conditional
expression, i.e., simplify(cond ? x : x) = x.

123

378 Int J Parallel Prog (2016) 44:337–380

References

1. Anderson, Jennifer M., Amarasinghe, Saman P., Lam, Monica S.: Data and computation transforma-
tions for multiprocessors. In: Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPOPP ’95, pp. 166–178, New York, NY, USA. ACM (1995)

2. Anderson, Jennifer M., Lam, Monica S.: Global optimizations for parallelism and locality on scalable
parallelmachines. In: Proceedings of theACMSIGPLAN1993Conference onProgrammingLanguage
Design and Implementation, PLDI ’93, pp. 112–125 (1993)

3. Avissar, Oren, Barua, Rajeev, Stewart, Dave: An optimal memory allocation scheme for scratch-pad-
based embedded systems. ACM Trans. Embed. Comput. Syst. 1(1), 6–26 (2002)

4. Banakar, R., Steinke, S., Lee, B.-S., Balakrishnan, M., Marwedel, P.: Scratchpad memory: design
alternative for cache on-chip memory in embedded systems. In: Proceedings of the Tenth International
Symposium on Hardware/software codesign, CODES ’02, (2002)

5. Banerjee, U.K.: Dependence Analysis for Supercomputing. Kluwer Academic Publishers, Norwell
(1988)

6. Baradaran, Nastaran, Diniz, Pedro C.: A compiler approach to managing storage and memory band-
width in configurable architectures. ACMTrans. Des. Autom. Electron. Syst. 13(4), 61:1–61:26 (2008)

7. Benini, L., Macchiarulo, L., Macii, A., Poncino, M.: From architecture to layout: partitioned memory
synthesis for embedded systems-on-chip. In: Proceedings of Design Automation Conference, 2001,
pp. 784–789 (2001)

8. Benini, L., Macii, A., Poncino, M.: A recursive algorithm for low-power memory partitioning. In:
Proceedings of the 2000 International Symposium on Low Power Electronics and Design, ISLPED
’00, pp. 78–83, ACM (2000)

9. Blume, W., Eigenmann, R.: The range test: a dependence test for symbolic, non-linear expressions. In:
Supercomputing ’94, (1994)

10. Bobda, Christophe: Introduction to Reconfigurable Computing: Architectures, Algorithms, and Appli-
cations, 1st edn. Springer, New York (2007)

11. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun, C., Sarkar,
V.: X10: an object-oriented approach to non-uniform cluster computing. In: Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA ’05, pp. 519–538 (2005)

12. Chen, T., Lin, J., Dai, X., Hsu, W.-C., Yew, P.-C.: Data dependence profiling for speculative optimiza-
tions. In: Evelyn Duesterwald (ed.) Compiler Construction, vol. 2985 of Lecture Notes in Computer
Science, pp. 57–72 (2004)

13. Cimitile, A., De Lucia, A., Munro, M.: Qualifying reusable functions using symbolic execution. In:
Proceedings of the Second Working Conference on Reverse Engineering (1995)

14. Coen-Porisini, A., De Paoli, F., Ghezzi, C., Mandrioli, D.: Software specialization via symbolic exe-
cution. IEEE Trans. Softw. Eng. 17(9), 884–889 (1991)

15. Cong, J., Jiang,W., Liu, B., Zou, Y.: Automaticmemory partitioning and scheduling for throughput and
power optimization. In: Computer-Aided Design—Digest of Technical Papers, 2009. ICCAD 2009.
IEEE/ACM International Conference on, pp. 697–704 (2009)

16. Csallner, C., Tillmann, N., Smaragdakis, Y.: Dysy: dynamic symbolic execution for invariant inference.
In: Proceedings of the 30th International Conference on Software Engineering (2008)

17. Dehnert, J.C.,Grant, B.K., Banning, J.P., Johnson,R.,Kistler, T.,Klaiber,A.,Mattson, J.: The transmeta
code morphing software: using speculation, recovery, and adaptive retranslation to address real-life
challenges. In: Proceedings of the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, CGO ’03, pp. 15–24, Washington, DC, USA. IEEE
Computer Society (2003)

18. Ebcioğlu, K., Altman, E.R.: Daisy: dynamic compilation for 100% architectural compatibility. In:
Proceedings of the 24th Annual International Symposium on Computer Architecture, ISCA ’97, pp.
26–37, New York, NY, USA. ACM (1997)

19. El-Ghazawi, T., Cantonnet, F.: Upc performance and potential: a NPB experimental study. In: Pro-
ceedings of the 2002 ACM/IEEE Conference On Supercomputing, Supercomputing ’02, pp. 1–26
(2002)

20. Elkarablieh, B., Godefroid, P., Levin, M.Y.: Precise pointer reasoning for dynamic test generation. In:
ISSTA ’09: Proceedings of the Eighteenth International Symposium on Software Testing and Analysis
(2009)

123

Int J Parallel Prog (2016) 44:337–380 379

21. Fahringer, T., Scholz, B.: A unified symbolic evaluation framework for parallelizing compilers. IEEE
Trans. Parallel Distrib. Syst. 11(11), 1110–1125 (2000)

22. Feautrier, Paul: Dataflow analysis of array and scalar references. Int. J. Parallel Program. 20(1), 23–53
(1991)

23. Gokhale, Maya B., Graham, Paul S.: Reconfigurable Computing: Accelerating Computation with
Field-Programmable Gate Arrays, 1st edn. Springer, New York (2010)

24. Gokhale, M.B., Stone, J.M.: Automatic allocation of arrays to memories in fpga processors with multi-
ple memory banks. In: Proceedings of the Seventh Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, FCCM ’99 (1999)

25. Haghighat, M., Polychronopoulos, C.: Symbolic program analysis and optimization for parallelizing
compilers. In: Banerjee, Utpal, Gelernter, David, Nicolau, Alex, Padua, David (eds.) Languages and
Compilers for Parallel Computing, Volume 757 of Lecture Notes in Computer Science, pp. 538–562.
Springer, Berlin (1993)

26. Heinrich, J.: Origin and onyx2 theory of operations manual, silicon graphics corporation. Docu-
ment number 007-3439-002, (1997). http://techpubs.sgi.com/library/manuals/3000/007-3439-002/
pdf/007-3439-002.pdf

27. Henning, J.L.: Spec cpu2006 benchmark descriptions. SIGARCH Comput. Arch. News 34(4), 1–17
(2006)

28. Huffman, D.A.: Amethod for the construction of minimum-redundancy codes. Proc. IRE 40(9), 1098–
1101 (1952)

29. Ketterlin, A., Clauss, P.: Profiling data-dependence to assist parallelization: framework, scope, and
optimization. In: Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO ’12 (2012)

30. King, J.C.: Symbolic execution and program testing. Communications of ACM 19(7), 385–394 (1976)
31. Krambeck, R.H., Lee, C.M., Law, H.-F.S.: High-speed compact circuits with cmos. IEEE J. Solid-State

Circuits 17(3), 614–619 (1982)
32. Larus, J.R.: Loop-level parallelism in numeric and symbolic programs. IEEE Trans. Parallel Distrib.

Syst. 4(7), 812–826 (1993)
33. Mahapatra, Nihar R., Liu, Jiangjiang, Sundaresan, Krishnan, Dangeti, Srinivas, Venkatrao, Balakrishna

V.: A limit study on the potential of compression for improving memory system performance, power
consumption, and cost. J. Instr. Level Parallelism 7, 1–37 (2005)

34. Moon, Soo-Mook, Ebcioğlu, Kemal: Parallelizing nonnumerical code with selective scheduling and
software pipelining. ACM Trans. Program. Lang. Syst. 19(6), 853–898 (1997)

35. Muralimanohar, N., Balasubramonian, R., Jouppi, N.P.: CACTI 6.0. http://www.hpl.hp.com/research/
cacti/. (2009)

36. Necula, G.C.: Translation validation for an optimizing compiler. SIGPLAN Not. 35(5), 83–94 (2000)
37. Numrich, RobertW., Reid, John: Co-array fortran for parallel programming. SIGPLAN Fortran Forum

17(2), 1–31 (1998)
38. Pugh,W.: The omega test: a fast and practical integer programming algorithm for dependence analysis.

In: Proceedings of the 1991 ACM/IEEE Conference on Supercomputing, Supercomputing ’91, pp. 4–
13, ACM (1991)

39. Rinard, M.C., Diniz, P.C.: Commutativity analysis: a new analysis framework for parallelizing com-
pilers. In: Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (1996)

40. Rogers Jr, Hartley: Theory of Recursive Functions and Effective Computability.MIT Press, Cambridge
(1987)

41. Rul, S., Vandierendonck, H., De Bosschere, K.: Towards automatic program partitioning. In: Proceed-
ings of the 6th ACM Conference on Computing frontiers, CF ’09 (2009)

42. Shannon,ClaudeE.,Weaver,Warren:AMathematical Theory ofCommunication.University of Illinois
Press, Champaign (1963)

43. Silberman, Gabriel M., Ebcioglu, Kemal: An architectural framework for supporting heterogeneous
instruction-set architectures. Computer 26(6), 39–56 (1993)

44. So, B., Hall, M.W., Ziegler, H.E.: Custom data layout for memory parallelism. In: Proceedings of
the International Symposium on Code Generation and Optimization: Feedback-Directed and Runtime
Optimization, CGO ’04 (2004)

45. Standard Performance Evaluation Committee. Spec cpu2000 benchmarks, (2000). http://www.spec.
org/cpu2000/

123

http://techpubs.sgi.com/library/manuals/3000/007-3439-002/pdf/007-3439-002.pdf
http://techpubs.sgi.com/library/manuals/3000/007-3439-002/pdf/007-3439-002.pdf
http://www.hpl.hp.com/research/cacti/
http://www.hpl.hp.com/research/cacti/
http://www.spec.org/cpu2000/
http://www.spec.org/cpu2000/

380 Int J Parallel Prog (2016) 44:337–380

46. Tarjan, Robert Endre: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160
(1972)

47. Weinhardt, M., Luk, W.: Memory access optimization and ram inference for pipeline vectorization.
In: FPL (1999)

48. Yelick, K., Bonachea, D., Chen, W.-Y., Colella, P., Datta, K., Duell, J., Graham, S.L., Hargrove,
P., Hilfinger, P., Husbands, P., Lancu, C., Kamil, A., Nishtala, R., Su, J., Welcome, M., Wen, T.:
Productivity and performance using partitioned global address space languages. In: Proceedings of the
2007 International Workshop on Parallel Symbolic Computation, PASCO ’07 (2007)

49. Yelick, K., Hilfinger, P., Graham, S., Bonachea, D., Su, J., Kamil, A., Datta, K., Colella, P., Wen,
T.: Parallel languages and compilers: perspective from the titanium experience. Int. J. High Perform.
Comput. Appl. 21(3), 266–290 (2007)

123

	Memory Partitioning in the Limit
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Organization of this Article

	2 Overview of the Proposed System
	2.1 Application-Specific Hardware Accelerators and the Role of Automatic Memory Partitioning
	2.2 Infrastructure

	3 Related Work
	3.1 Compiler-Guided Memory Partitioning
	3.2 Symbolic Execution in Compilers
	3.3 Profile-Guided Memory Partitioning

	4 Memory Partitioning
	4.1 Accelerator Memory Model
	4.2 Partitioning the Memory of a Procedure
	4.3 Hierarchical Memory Partitioning
	4.4 Implementation Details and Hardware Implications

	5 Program Analysis for Memory Partitioning
	5.1 Static Analysis
	5.2 Dynamic Dependence Analysis

	6 Experimental Evaluation
	6.1 Metrics used in Evaluation
	6.2 Modeling Cache Latency and Energy
	6.3 Benchmarks
	6.4 Compiler-Based Dependence Analysis Results
	6.5 Memory Partitioning Results and Discussion

	7 Conclusion
	Appendix: Details of Symbolic Execution
	Basic Block Execute Algorithm
	Program State Join Algorithm

	References

