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Abstract Many-core systems are basically designed for applications having large
data parallelism.We propose an efficient hybrid matrix multiplication implementation
based on Strassen and Winograd algorithms (S-MM and W-MM) on many-core. A
depth first (DFS) traversal of a recursion tree is used where all cores work in parallel
on computing each of the N × N sub-matrices, which are computed in sequence.
DFS reduces the storage to the detriment of large data motion to gather and aggregate
the results. The proposed approach uses three optimizations: (1) a small set of basic
algebra functions to reduce overhead, (2) invoking efficient library (CUBLAS 5.5)
for basic functions, and (3) using parameter-tuning of parametric kernel to improve
resource occupancy. Evaluation of S-MM and W-MM is carried out on GPU and
MIC (Xeon Phi). For GPU, W-MM and S-MM with one recursion level outperform
CUBLAS 5.5 Library with up to twice as fast for arrays satisfying N ≥ 2048 and
N ≥ 3072, respectively. Similar trends are observed for S-MM with reordering (R-
S-MM), which is used to save storage. Compared to NVIDIA SDK library, S-MM
and W-MM achieved a speedup between 20× and 80× for the above arrays. For
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MIC, two-recursion S-MMwith reordering is faster than MKL library by 14–26% for
N ≥ 1024. Proposed implementations achieve 2.35 TFLOPS (67% of peak) on GPU
and 0.5 TFLOPS (21% of peak) on MIC. Similar encouraging results are obtained
for a 16-core Xeon-E5 server. We conclude that S-MM and W-MM implementations
with a few recursion levels can be used to further optimize the performance of basic
algebra libraries.

Keywords Graphics Processing Unit (GPU) · CUDA programming · Strassen · Fast
matrix multiplication

1 Introduction

Modern Graphics Processing Units (GPUs) use multiple streaming multiprocessors
(SMs) with potentially hundreds of cores. The key features are the fast context switch-
ing and the high memory bandwidth, which are used to hide long latency operations
by switching to other threads [15]. Hiding the latency of main memory is based on
an efficient zero-overhead switching mechanism, which uses a context register win-
dow. GPUs are primarily designed to run numerical computations having abundant
data parallelism, i.e. having no recurrences or only marginal data dependencies. The
hybrid CPU-GPU execution model allows data dependent computations to run on a
host CPU, while the massive data parallel parts are efficiently run on the GPU. The
Compute Unified Device Architecture (CUDA) framework supports this hybrid CPU-
GPU approach of model execution. A Cooperative Heterogeneous Computing (CHC)
framework [18] has also been proposed for explicitly processing CUDA applications
in parallel on sets of heterogeneous processors including ×86 based general-purpose
multi-core processors and GPUs.

During the past few years the many-core accelerators like the GPU (Nvidia)
and Xeon Phi (Intel) [12,13] proved to be efficient in running parallel numerical
applications. Orders of magnitude acceleration have been reported compared to tra-
ditional multi-core computers. Many numerical algorithms have been designed for
simulating a wide range of application domains such as fluid dynamics, reservoir
simulation, as well as many problems that are solved using Cellular Automata (CA)
algorithms [8].

A large class of numerical techniques boil down to repeatedly solving a large system
of linear equationswith billions of unknowns. This very demanding computational task
involves dense and sparse linear algebra solvers (LAS). Modern parallel computing is
concerned with the analysis and development of efficient implementations of state-of-
the-art numerical simulations on massively parallel computers (MPC). The efficient
implementation of LAS on MPCs is obviously a challenging task which promises
a significant performance gain in many-core accelerators as compared to classical
shared-memorymultiprocessors (SMP) and distributed-memory systems [11,13]. The
iterative solvers have abundant matrix and vector operations which are known to be
communication bound. Minimizing communication overhead and storage require new
storage schemes for efficient implementation of large sparse matrix-vector (SpMV)
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operations. A communication reduction approach proved to be very useful on com-
puting clusters with accelerators [6].

Matrix-Matrix multiplication (MM) is one fundamental component for linear alge-
bra solvers, combinatorial optimizations, and graph algorithms.MM is the basic kernel
that has O(N 3) operations as per the standard MM algorithm for N × N arrays. Sig-
nificant efforts have been made to obtain efficient MM implementations such as the
Hybrid MM (HMM) algorithms. HMM generally consists of a 2-level approach: (1) a
recursive algorithm which reduces the number of multiplications at the cost of some
increase in the number of additions, and (2) a high-performanceMMsuch as CuBLAS,
MKL, and GotoBLAS.

In 1969, Strassen proposed an O(Nlog27) algorithm for MM [27] that reduces the
matrix multiplications but with some extra matrix additions. Several improvements
have also been proposed on the original Strassen MM algorithm [31] and further
developed newly optimized algorithms [24]. At present, the best upper bound kernel
is O(N 2.376) [7]. A general methodology for analyzing Coppersmith-Winograd-type
algorithms has been developed [30] that improves the matrix-multiplication time to
O(N 2.373) steps. However, the practical benefit of these methods lies in their applica-
bility to some very large matrices. Hence, the Strassens algorithm can be considered
as one of the most practical approaches for fast matrix multiplication. It is believed
that an MM optimal algorithm will run in essentially O(N 2) time [26].

Due to the additional matrix additions the original Strassen algorithm and itsWino-
grad variant have relatively weaker numerical properties in comparison to the standard
O(N 3) algorithm [19]. HMMalgorithms are known to be less accurate than the canon-
ical MM algorithm. Tiling MM is widely used due to small cache memory. However,
adding tiles strongly impacts the forward error bound. Improving the accuracyofHMM
is challenging because of the difficulties of adapting the algorithm without increasing
the execution time and storage requirements. For this, a pairwise tile summation (PTS)
that shortens the path from the summand to the total is proposed [2]. PTS is adapted
in a top-down implementation, called recursive matrix multiplication, which allows
dropping the error bound to O(log2(N )) as compared to O(

√
N ) for the GotoBLAS.

Evaluation shows that performance improves if the leaf size at which recursion breaks
is fixed as opposed to an implementation controlled using a fixed number of recur-
sions. Overall, performance improves by 10% with increased accuracy compared to
the fastest high-performance MM.

Dumitrescu et. al [10] have implemented fast MM based on Strassen [27] and
Winograd [31] algorithms using the ring and torus topologies on MIMD distributed-
memory multi-computers with the generalization of Hyper-Torus. The results show a
good asymptotic behavior in terms of complexity and efficiency. The parallel imple-
mentations achieved speedup of 75x over the canonicalMMalgorithm and 30x over an
improved canonical implementation. These results are consistent with those reported
by Bailey [3] for the same matrix dimension on a Cray-2 supercomputer. Unlike
the standard algorithm that is easily customizable, these parallel implementations are
applicable only on a fixed number of processors. The design of fast matrix multi-
plication (FMM) algorithms is emphasized while recognizing the difficulties of the
implementation onMIMD computers. Achieving scalable performance is challenging
due to the difficulty in FMM implementation on MIMD distributed-memory systems.
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Communication cost of the Strassen algorithm has been estimated [5] using graph
expansion analysis, and a lower bound on their communication costs was obtained.
The calculated lower bounds show that not only does the Strassen algorithm reduce
computation, but also creates an opportunity for reducing communication. In addi-
tion, the lower bound becomes tighter as the amount of available memory grows,
suggesting that using extra memory may also allow for faster algorithms. Using the
above analysis, a new algorithm (CAPS) [4] based on Strassen fast MM has been
proposed. CAPS minimizes communication and attains theoretical lower bounds
as identified in [5]. CAPS traverses the recursion tree of Strassen sequential algo-
rithm in two ways that are the Breadth-First-Step (BFS) and the Depth-First-Step
(DFS). BFS step requires more memory but reduces communication costs while
a DFS step requires little extra memory but is less communication-efficient. The
implementation of the above algorithm on Cray XT4 enhanced the execution time
by 24–184% for a fixed matrix dimension of size 94080. Lipshitz et. al [21] also
evaluated the Strassen MM algorithm on Hopper (Cray XE6), Intrepid (IBM BG/P),
and Franklin (Cray XT4) machines. A few other approaches for optimizing MM
on MIC have been reported. Manually optimized library of operators [12] has been
implemented on MIC, which allowed achieving approximately similar performance
to MKL.

Matrix multiplication kernels have been investigated extensively on GPUs and
several optimizations have been proposed [9,16,20,22,32] including GEMM imple-
mentation in MAGMA and CUBLAS libraries. Out of these implementations, CUDA
BLAS (CUBLAS) library includes a highly optimized matrix multiplication kernel
[23] based on the Volkov Demmel’s algorithm [28] on Tesla architecture. Panel Fac-
torization (PF) has been efficiently implemented using BLAS1 and BLAS2. These are
bandwidth bound on GPU, i.e. performance strongly depends on the flop:word ratio.
Due to complexity of optimizations on GPUs, micro-benchmarking is used to reveal
the memory latency and bandwidth, pipeline latency, and synchronization overheads.
The above parameters allowed optimizing PF by adapting a blockedMM tomatchwith
the best block size, using memory alignment with short vectors, and loading blocks
of data into the register file instead of the shared memory. Overall, Volkov Demmel’s
kernel is implemented on a hybrid CPU-GPU model with efficient use of tiling due
to the small cache memory on GPU. Volkov’s hybrid implementation of Cholesky
factorization has been further enhanced [29] on the Fermi architecture using newer
improvement strategies. A speedup of 3.85x is reported on Cholesky factorization of
a square matrix of dimension 104.

Li et. al [19] presented both Strassen algorithmand itsWinograd variant onNVIDIA
C1060 GPU for integer and single-precision floating point data arrays. Strassen imple-
mentation achieved a speedup of 32–35%whileWinograd variant achieved a speedup
of 33–36% over CUBLAS 3.0 SGEMM implementations. The maximum numerical
error was about twice that achieved by SGEMM for single-precision and zero for
integer matrix multiplication. A GPU implementation of Strassen MM was first opti-
mized by usingmulti-kernel streaming at the lowest level of recursion to exploit thread
block parallelism [17]. Kernel synchronization was used to preserve dependencies. A
cutoff prediction allowed finding the point at which the recursion breaks and the high-
performance MM is activated. Basically, Strassens algorithm applies to power-of-2
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sized matrices. In the above work, arbitrarily sized matrices were handled by using
dynamic peeling. Evaluation shows a 1.27× speedup for SPFP and 1.42× speedup
for DPFP over the CUBLAS-5.0 on a Tesla K10 GPU.

In this paper we propose a method for optimizing the performance of basic Strassen
MM algorithm. The DFS approach is used due to the limited global memory space on
the GPU andMIC. The proposed implementation is based on three optimization steps.
First, the function invocation overhead is reduced byusing a small set of basic functions
(matrix multiplication, matrix addition, and matrix aggregation). Second, one of the
most optimized libraries (CUBLAS 5.5) is invoked and embedded into the code using
static device functions. This reduces the overhead of dynamic linking at runtime.
Third, parametric kernels are generated and parameter-tuning techniques are applied
to find the most profitable resource parameters that improves resource utilization. In
the evaluation we show that 1-level of Strassen MM (S-MM) and other variants with
CUBLAS as the basic library outperforms the native CUBLAS for two dimensional
arrays. Similar results have been achieved when running the proposed approach on
MIC and invoking the MKL library. This suggests that the proposed approach can be
used as an optimization technique to further enhance the performance of CUBLAS
and MKL libraries for basic algebra operations.

The rest of the paper is organized as follows: Sect. 2 describes the Strassen matrix
multiplication method and its derivations. Section 3 presents the proposed Strassen
implementations. Section 4 presents GPU and MIC architecture and programming
models and optimizations. Section 5 presents the performance evaluation and discusses
the obtained results. In Sect. 6, we conclude our work.

2 Strassen Matrix Multiplication Method

In 1969, Volker Strassen developed a recursive matrix multiplication algorithm (S-
MM) [27] based on a divide and conquer strategy.

The objective is the computation of the resultant product matrix C as follows:

C = AB A, B,C ε R2n×2n (1)

where A and B are square matrices over a ring R with N = 2n .
All three matrices will be sub-divided into equally sized blocks of matrices in such

a way that
A =

(
A1,1 A1,2
A2,1 A2,2

)
, B =

(
B1,1 B1,2
B2,1 B2,2

)
, C =

(
C1,1 C1,2
C2,1 C2,2

)
(2)

with
Ai, j , Bi, j , Ci, j ε R2n−1×2n−1

(3)

then

C1,1 = A1,1B1,1 + A1,2B2,1

C1,2 = A1,1B1,2 + A1,2B2,2

C2,1 = A2,1B1,1 + A2,2B2,1

C2,2 = A2,1B1,2 + A2,2B2,2 (4)
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In the above construction eightmultiplications are needed to calculateCi, j matrices.
In order to reduce the number of multiplications, the following new matrices have to
be defined.

M1 = (A1,1 + A2,2)(B1,1 + B2,2)

M2 = (A2,1 + A2,2)B1,1

M3 = A1,1(B1,2 − B2,2)

M4 = A2,2(B2,1 − B1,1)

M5 = (A1,1 + A1,2)B2,2

M6 = (A2,1 − A1,1)(B1,1 + B1,2)

M7 = (A1,2 − A2,2)(B2,1 + B2,2) (5)

Now, using only the above 7 multiplications, Ci, j can be expressed in terms Mk as
follows:

C1,1 = M1 + M4 − M5 + M7

C1,2 = M3 + M5

C2,1 = M2 + M4

C2,2 = M1 − M2 + M3 + M6 (6)

The sub-division process can be done recursively until the sub-matrices degener-
ate into numbers. The complexity of the S-MM algorithm in terms of addition and
multiplication operations can be calculated as follows:

f (n) = 7 f (n − 1) + l4n (7)

where f(n) denotes the number of additions performed at each level l of the algorithm.

g(n) = (7 + O(1))n (8)

where g(n)denotes the number of multiplications performed at each level.
Thus, the asymptotic complexity for multiplying matrices with N = 2n is O([7 +

O(1)]n) = O(Nlog27+O(1)) ≈ O(N 2.8074). However, this reduction inmultiplications
has been achieved with some reduction in the numerical stability of the algorithm and
an increased need for additionalmemory in comparison to the canonicalMMalgorithm
of O(N 3). The arithmetic complexity of the algorithm per iteration is:

tm(n) = nlog27 ta(n) = 6nlog27 − 6n2 (9)

where tm(n) and ta(n) respectively denote the number of matrix multiplications and
the number of matrix additions.

Winograd [31] proposed an alternative approach to S-MM, which is denoted as
W-MM, that reduces the number of matrix additions to 15 which has been proved to
be the minimum for any of the rank 7 algorithms. Table 1 shows the comparison of
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Table 1 Number of
Multiplications and
additions/subtractions of each
approach

Algorithm Multiplications Additions/subtraction

S-MM 7 18

W-MM 7 15

operations in both Strassen andWinograd approaches in each recursion. The following
equations describe the ordered steps of the W-MM algorithm:

S1 = A2,1 + A2,2

S2 = S1 − A1,1

S3 = A1,1 − A2,1

S4 = A1,2 − S2
S5 = B1,2 − B1,1

S6 = B2,2 − S5
S7 = B2,2 − B1,2

S8 = S6 − B2,1

M1 = S2 × S6
M2 = A1,1 × B1,1

M3 = A1,2 × B2,1

M4 = S3 × S7
M5 = S1 × S5
M6 = S4 × B2,2

M7 = A2,2 × S8

V1 = M1 + M2

V2 = V1 + M4

C1,1 = M2 + M3

C1,2 = V1 + M5 + M6

C2,1 = V2 − M7

C2,2 = V2 + M5

(10)

The complexity of W-MM algorithm is as follows:

tm(n) = nlog27 ta(n) = 5nlog27 − 5n2 (11)

We are interested in a few iterations of S-MM implementation for which odd-sized
matrices pose a problem. In this case, dynamic peeling [17] seems to provide an
acceptable solution. At each level of recursion, dynamic peeling strips off the extra
row and/or column from the input matrices to make them evenly sized. Hence S-MM
is applied to even-sized matrices, which represent the majority of the computation,
while the vector and scalars are separately computed andpatchedback into the resulting
matrix.

3 Strassen Matrix Multiplication Optimization Method

A previous implementation of S-MM andW-MM algorithms (referred to as H-S-MM)
on GPUs [19] uses 10 different user-defined matrix algebra kernels. These kernels are
manually optimized for the basic matrix multiplication and matrix addition. H-S-MM
has been implemented using some reordering of the matrix operations of the original
Strassen to reduce memory allocation. H-S-MM kernels implement the following
operations:

Z = X + Y

Z = X − Y

Z = X × Y

(Y+, Z+) = W × X
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(Y+, Z−) = W × X

(Y, Z−) = W × X

(Y, Z+) = W × X

Z = W × X + Y

W = U × V ; Y+ = W ; Z+ = Y ; Y+ = X

Y = X − V × W ; Z+ = X (12)

These implementations were run on NVIDIA C1060 GPU and the performance of
H-S-MM was compared with CUBLAS 3.0 SGEMM kernel.

To further enhance the S-MM performance we propose the following optimization
steps:

1. A small set of basic algebra operators. A set of three basic functions is used to
provide the needed functionality as the basic matrix algebra kernels. These kernels
are thematrixmultiplication (MM),matrix addition (Madd/sub), andmatrix aggre-
gation (Magg). The objective is to reduce the overhead associated with the library
invocation. We also define two special matrix algebra kernels for matrix add com-
position (Maddcomp) and matrix composite addition (Mcompadd) to combine
the repetitive addition of different matrices into the same matrix and to reduce
overhead of kernel termination and invocation.

2. Embedding of optimized library. Earlier approaches used manually optimized
kernels formatrixmultiplication andmatrix addition. In our approachwe use some
of the most optimized libraries to date, i.e. the CUBLAS 5.5 which is optimized
at the level of the CUDA assembly language. This library is invoked for each
MM operation in the S-MM and W-MM algorithms. We used the available static
device functions of CUBLAS instead of the external library to reduce the overhead
of dynamic linking of library at runtime.

3. Optimizing GPU occupancy. Kernel optimization is based on (1) the design of a
thread grip organization that match the structure of the data results, (2) partitioning
the grid into thread blocks to provide parallelism, and (3) setting up the thread block
size to improve resource utilization. For the above the performance of CUDA
programs strongly depends on grid organization, number of blocks, and thread
block size. To provide a systematic approach for optimizing the above resource
parameters, we developed a matrix-aggregation (Magg) operator as a parametric
kernel, and use parameter-tuning technique (Sect. 3.2) to find the best possible
number of blocks and number of threads in each block thatmaximizeGPU resource
occupancy [1]. This approach allows us to find an optimal tile size forMagg kernel
to guarantee the best GPU resource utilization.

3.1 Basic GPU Kernels

In the following we present the details of each algebra operator.

– Madd/sub: This kernel performs the single-precision matrix-matrix addition/sub-
traction to compute the intermediate sub matrices for each of the multiplications
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proposed in Strassen and Winograd algorithms. To achieve the best possible per-
formance, we used cublasSgeam function of CUBLAS 5.5. The function can be
used to perform one of the following operations:

C = αA + βB or

= αAT + βB or

= αA + βBT or

= αAT + βBT

(13)

where α and β are scalars, and A, B, and C are matrices stored in column major
format with dimensionsm × n. In our implementation, we have used this function
for addition or subtraction of submatrices (Z = X + Y or Z = X−Y) by setting
α = β = 1 or α = 1, β = −1 and also for copying the submatrices as required
for the multiplications mentioned in Sect. 2 by setting α = 1, β = 0.

– MM: This kernel performs the single precision MM using the cublasSgemm func-
tion of CUBLAS 5.5. The function can be used to perform one of the following
operations:

C = αAB + βC or

= αAT B + βC or

= αABT + βC or

= αAT BT + βC

(14)

where α and β are scalars, and A, B, and C are matrices stored in column major
format with dimensions A m × k, B k × n and C m × n. In our implementation,
we have used this function with only non-transpose case for seven multiplications
(M1 − M7) mentioned in Sect. 2 by setting α = 1, β = 0.

– Magg: This is a set of four similar kernels to perform the final four operations
(C11, C12, C21, C22) at the recursion termination mentioned in Sect. 2. All of
these kernels load each operand from the global memory to the sharedmemory and
then to the register file by applying the related operation (addition or subtraction).
Then the result will be stored back to the global memory. These kernels take two
parameters that define the width (TILE_X) and height (TILE_Y) of the tile to be
loaded into shared memory. Code Listings 1–4 show the kernel functions for these
operations. Based on the restructuring algorithm [1], we have used TILE_X = 32
and TILE_Y = 16 that give the best performance of these kernels using optimal
resource utilization. The kernels are invoked with block dimension (TILE_X x
TILE_Y) and grid dimension (N/TILE_X x N/TILE_Y) where N is the dimension
of submatrices.
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Listing 1 Compute C11 Kernel

__global__ void computeC11 (float *C, float *m1 ,
float *m4 , float *m5 , float *m7 , int width , int
subWidth)

{
int tx = threadIdx.x;
int ty = threadIdx.y;
int row = blockIdx.y * TILE_Y + ty;
int column = blockIdx.x * TILE_X + tx;

__shared__ float as[TILE_Y ][ TILE_X ];

float Csub;

as[ty][tx]=m1[(row+i)*subWidth+column ];
Csub=as[ty][tx];
as[ty][tx]=m4[(row+i)*subWidth+column ];
Csub+=as[ty][tx];
as[ty][tx]=m5[(row+i)*subWidth+column ];
Csub -=as[ty][tx];
as[ty][tx]=m7[(row+i)*subWidth+column ];
Csub+=as[ty][tx];

C[(row+i)*width+column ]=Csub;
}

Listing 2 Compute C12 Kernel

__global__ void computeC12 (float *C, float *m3 ,
float *m5 , int width , int subWidth)

{
int tx = threadIdx.x;
int ty = threadIdx.y;

int row = blockIdx.y * TILE_Y + ty;
int column = blockIdx.x * TILE_X + tx;

__shared__ float as[TILE_Y ][ TILE_X ];

float Csub;

as[ty][tx]=m3[(row+i)*subWidth+column ];
Csub=as[ty][tx];
as[ty][tx]=m5[(row+i)*subWidth+column ];
Csub+=as[ty][tx];

C[(row+i)*width+column ]=Csub;
}
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Listing 3 Compute C21 Kernel

__global__ void computeC21 (float *C, float *m2 ,
float *m4 , int width , int subWidth)

{
int tx = threadIdx.x;
int ty = threadIdx.y;

int row = blockIdx.y * TILE_Y + ty;
int column = blockIdx.x * TILE_X + tx;

__shared__ float as[TILE_Y ][ TILE_X ];

float Csub;

as[ty][tx]=m2[(row+i)*subWidth+column ];
Csub=as[ty][tx];
as[ty][tx]=m4[(row+i)*subWidth+column ];
Csub+=as[ty][tx];

C[(row+i)*width+column ]=Csub;
}

Listing 4 Compute C22 Kernel

__global__ void computeC22 (float *C, float *m1 ,
float *m2 , float *m3 , float *m6 , int width ,int
subWidth)

{
int tx = threadIdx.x;
int ty = threadIdx.y;

int row = blockIdx.y * TILE_Y + ty;
int column = blockIdx.x * TILE_X + tx;

__shared__ float as[TILE_Y ][ TILE_X ];

float Csub;

as[ty][tx]=m1[(row+i)*subWidth+column ];
Csub=as[ty][tx];
as[ty][tx]=m2[(row+i)*subWidth+column ];
Csub -=as[ty][tx];
as[ty][tx]=m3[(row+i)*subWidth+column ];
Csub+=as[ty][tx];
as[ty][tx]=m6[(row+i)*subWidth+column ];
Csub+=as[ty][tx];

C[(row+i)*width+column ]=Csub;
}

– Maddcomp: this kernel is defined to perform the operation (αX+, βY+) = Z
that adds matrix Z in one or both X and Y based on the values of α and β. Code
Listing 5 shows the kernel function for this operation.
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Listing 5 matrix add composition

__global__ void Maddcomp(float *X, float *Y, float
*Z, int alpha , int beta , int width , int wX , int
wY , int wZ)

{
int i = blockIdx.y*blockDim.y+threadIdx.y;
int j = blockIdx.x*blockDim.x+threadIdx.x;

float z = Z[i* wZ + j];

X[i * wX + j] += alpha * z;
Y[i * wY + j] += beta * z;

}

– Mcompadd: this kernel is defined to perform the operation Z = (αX+, βY+)

that adds one or both matrices X and Y in matrix Z based on the values of α and
β. Code Listing 6 shows the kernel function for this operation.

Listing 6 matrix composite addition

__global__ void Mcompadd(float *X, float *Y, float
*Z, int alpha , int beta , int width , int wX , int
wY , int wZ)

{
int i = blockIdx.y*blockDim.y+threadIdx.y;
int j = blockIdx.x*blockDim.x+threadIdx.x;

Z[i*wZ+j]+= alpha*X[i*wX+j]+beta*Y[i*wY+j];
}

3.2 Parameters Tuning Algorithm

Algorithm 1 determines the optimal parameters (TILE_X and TILE_Y) for the gener-
ated parametric CUDA kernel. The kernel will be executed with TILE_X x TILE_Y
block dimension and N/TILE_X x N/TILE_Y grid dimension.

The algorithm evaluates the generated parametric kernel with various possible com-
binations of TILE_X and TILE_Y. The pruning of the list of possible parameters is
used at three levels to reduce the repeated compilation and execution of the kernel.
The three levels of pruning are as follows:

1. Array Block Level: This skips those values of TILE_X and TILE_Ywhich do not
equally distribute the number of resultant elements among all threads (see step 3
and 7).

2. Kernel Block Level: This skips those values of TILE_X and TILE_Y which do
not distributed the number of resultant elements among all kernel blocks (see step
11).

3. Active Block Level: This skips those combinations of parameters which require
more than the available resources such as number of registers, shared memory and
number of threads per SM (see step 32).
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Algorithm 1 Parameters Tuning Algorithm
findOptimalParameters(N, CC)

Parameters:
N = Matrix Dimension
CC = Compute Capability of GPU Device
Constants and Keywords:
params = Structure of GPU Parameters
minTW = Minimum TILE_X, maxTW = Maximum TILE_X
minTH = Minimum TILE_Y, maxTH = Maximum TILE_Y
KB = Kernel Blocks
RPT = Registers Per Thread
ShM = Shared Memory Per Block
RPB = Registers Per Block
WPB = Warps Per Block
ABW = Active Blocks Limit based on WPB
ABShM = Active Blocks Limit based on ShM
ABR = Active Blocks Limit based on RPB
CompleteParamsList = Set of all Possible Kernel Parameters
CandidateParamsList = Set of Candidate Kernel Parameters
OptimalParams = Set of final Optimal Kernel Parameters

Algorithm:
1: Load params for compute capability of CC
2: for tw=minTW to maxTW Step *2 do
3: if N mod tw �= 0 then
4: continue
5: end if
6: for th=minTH to maxTH Step *2 do
7: if N mod th �= 0 then
8: continue
9: end if
10: KB = INT(N/tw) * INT(N/th)
11: if KB = 0 then
12: continue
13: end if
14: Compile kernel to determine the required RPT and ShM
15: RPB=INT(RPTxbs,params.RegisterAllocationUnitSize)
16: WPB=CEILING(bs/params.ThreadsPerWarp)
17: ABW=FLOOR(params.WarpsPerSM/WPB)
18: ABShM=FLOOR(params.MaxSharedMemory/ShM)
19: ABR=FLOOR(params.RegisterFileSize/RPB)
20: Add parameters into CompleteParamsList
21: end for
22: end for
23: for all p in CompleteParamsList do
24: if p.ABW>0 and p.ABShM>0 and p.ABR>0 then
25: Add p into CandidateParamsList
26: end if
27: end for
28: mintime = 0
29: for all p in CandidateParamsList do
30: Execute the kernel with TILE_X=p.tw, TILE_Y=p.th
31: determine execution time (ktime) of the kernel
32: if ktime>0 and (mintime=0 or mintime>ktime) then
33: mintime = ktime
34: OptimalParams = p
35: end if
36: end for
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The algorithm takes kernel source file, resultant matrix dimension (N) and GPU
Compute Capability (CC) for the target GPU device. It first loads the parameters (see
Algorithm 1) for the given compute capability such as Register Allocation Unit Size,
Threads PerWarp,Warps Per SM,MaximumSharedMemory Per Block, Register File
Size, etc. It then loops over all possible combinations of TILE_X and TILE_Y limiting
to the range given by the user with appropriate pruning (Array Block Level and Kernel
Block Level) of the parameters as explained above. For each combination, it compiles
the kernel with ptx information to determine the required number of Registers Per
Thread (RPT) and Shared Memory (ShM) per block (see step 14). Then, it calculates
and stores the restricted number of Active Blocks by Warp (ABW), Active Blocks by
Shared Memory (ABShM), and Active Blocks by Registers (ABR) into a structured
list (CompleteParamsList) (see steps 15–20). Then, it performs parameters pruning
at Active Block Level and generates a list of possible optimal parameters (Candi-
dateParamsList) (see steps 23–27). Finally, it executes the kernel for each combination
of parameters in CandidateParamsList and determines the final optimal parameters
(OptimalParams) that give the minimum execution time (see steps 29–36).

3.3 Algorithm Implementations

3.3.1 Strassen Adaptation (S-MM)

Algorithm 2 shows the pseudo code of S-MM implementation. Following the Strassen
block partitioning, the function starts by calculating the dimension of current matrix
blocks that is dividing each dimension by 2 (step 1). The current implementationworks
only for square matrices. Then, in step 2, it performs global memory allocations to
store the intermediate results of seven multiplications (m1–m7) and also for their
operands that result from some addition or copy operations on matrix blocks (m1a,
m1b, m2a, m2b, m3a, m3b, m4a, m4b, m5a, m5b, m6a, m6b, m7a, m7b). Each of
these sub-matrices are of the dimension subWidth x subWidth. These operands will
be calculated in step 3 and 4. In Step 5–7, the threshold of current matrix dimension
(BLOCK_THRESHOLD) is checked to decide whether to continue with recursion or
terminate. After recursion termination, synchronization among all threads is required
to avoid data hazards (step 16) as it may be possible that elements of matricesm1 tom7
be read by some threads which may be calculated by some other threads in different
thread blocks. In step 17, the resultant matrix C is computed and the global memory
resources is de-allocated in step 18.

3.3.2 Strassen with Reordering Steps (R-S-MM)

The original implementation of Strassen suffers from memory usage, and it is not
practical due to the size of memory it needs for large matrices. We implemented a
reordering Strassen algorithm that reduces the memory allocations at each level of
recursion [19]. In each level of recursion only two matrices (T1,T2) of size (N/2L)
are needed as intermediate sub-matrices, where L is the level of recursion and N is
dimension of the matrix. Algorithm 3 shows the pseudo code of R-S-MM.
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Algorithm 2 S-MM Pseudo code
S_MM(A, B,C, width)

Parameters:
A=matrix A, B=matrix B, C=matrix C
width=dimension of the matrices (assuming square matrices)
subWidth=represent the dimension of the current block partitions
BLOCK_T H RESHOLD=Stop Recursion Condition
Note:Madd/sub, MM, and Magg are the basic kernels as explained in Sect. 3.1

Execution Steps:
1: subWidth=width/2
2: Allocate space in global memory for each of the submatrices to store intermediate results of dimension

subWidth
3: Calculate m1a=A11+A22,m1b=B11+B22,m2a=A21+A22,m2b= B11,m3a=A11,m4a=A22,m5a=A11

+A12,m5b=B22,m6b=B11+B12, m7b=B21+B22 using Madd/sub
4: Calculate m3b=B12-B22,m4b=B21-B11,m6a=A21-A11,m7a= A12-A22 using Madd/sub
5: if width <= BLOCK_T H RESHOLD then
6: Calculate m1=m1a*m1b,m2=m2a*m2b,m3=m3a*m3b,m4= m4a*m4b,m5=m5a*m5b,

m6=m6a*m6b,m7=m7a*m7b using MM
7: else
8: Call S_MM(m1a,m1b,m1, subWidth)

9: Call S_MM(m2a,m2b,m2, subWidth)

10: Call S_MM(m3a,m3b,m3, subWidth)

11: Call S_MM(m4a,m4b,m4, subWidth)

12: Call S_MM(m5a,m5b,m5, subWidth)

13: Call S_MM(m6a,m6b,m6, subWidth)

14: Call S_MM(m7a,m7b,m7, subWidth)

15: end if
16: Synchronize all threads
17: Caculate C11=M1+M4-M5+M7, C12=M3+M5, C21=M2+M4, and C22=M1-M4+M3+M6 using

Magg
18: Free all allocated global memory as created in step 2

3.3.3 Winograd Adaptation (W-MM)

Algorithm 4 shows the pseudo code of W-MM. The implementation of W-MM is
similar to that described for S-MM with the following exceptions:

– In step 2, it allocates only 15 submatrices (m1 to m7 and S1 to S8) instead of 21
submatrices.

– In step 3, it performs only 8 addition/subtraction operations instead of 14 addi-
tion/subtraction/copying operations.

3.4 Tradeoffs Between Time-Bound and Storage-Bound Implementations

The proposed S-MM algorithm consists of traversing the recursion tree sequentially
using the depth-first scheme DFS and executing each step using all available memory
and processing cores. S-MMcomputes a linear combination of pairwiseMMand com-
bines intermediate matrices as a linear combination to produce the final sub-matrices.
S-MM is based on a traversal of the recursion tree where all the cores work in parallel
on assembling each of the seven sub-matrices, which are computed in sequence. S-MM
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Algorithm 3 R-S-MM Pseudo code
R_S_MM(A, B,C, width)

Parameters:
A=matrix A, B=matrix B, C=matrix C
width=dimension of the matrices (assuming square matrices)
subWidth=represent the dimension of the current block partitions
BLOCK_T H RESHOLD=Stop Recursion Condition
Note:Madd/sub, MM, Magg, Maddcomp, and Mcompadd are the basic kernels as explained in Sect. 3.1

Execution Steps:
1: if width <= BLOCK_T H RESHOLD/2 then
2: Calculate C=A*B using MM
3: else
4: subWidth=width/2
5: Allocate space in global memory for two submatrices (T1 and T2) to store intermediate results of

dimension subWidth
6: Calculate T1=A11+A22,T2=B11+B22 using Madd/sub
7: Call R_S_MM(T1, T2, C21, subWidth) //M1 calculated
8: Calculate T1=A21-A11,T2=B11+B12 using Madd/sub
9: Call R_S_MM(T1, T2, C22, subWidth) //M6 calculated
10: Calculate T1=A12-A22,T2=B21+B22 using Madd/sub
11: Call R_S_MM(T1, T2, C11, subWidth) //M7 calculated
12: Calculate C11=C11+C21,C22=C22+C21 using Maddcomp
13: Calculate T1=A21+A22 using Madd/sub
14: Call R_S_MM(T1, B11, C21, subWidth) //M2 calculated
15: Calculate T2=B12-B22 using Madd/sub
16: Call R_S_MM(A11, T2, C12, subWidth) //M3 calculated
17: Calculate C22=C22-C21+C12 using Mcompadd //C22 calculated
18: Calculate T2=B21-B11 using Madd/sub
19: Call R_S_MM(A22, T2, T1, subWidth) //M4 calculated
20: Calculate C11=C11+T1,C21=C21+T1 using Maddcomp //C21 calculated
21: Calculate T1=A11+A12 using Madd/sub
22: Call R_S_MM(T1, B22, T2, subWidth) //M5 calculated
23: Calculate C11=C11-T2 and C12=C12+T2 using Maddcomp //C11 and C12 calculated
24: Free all allocated global memory created in step 5
25: end if

repeatedly applies the DFS steps, which reduces the required storage of intermediate
results by assembling one single matrix at a time. DFS requires allocation of only one
sub-matrix because each of the intermediate results is computed in sequence. Thus
there is no redistribution of work and all cores participate in computing each resulting
matrix. Each core computes the local additions and subtractions associated with the
intermediate sub-matrices. In contrast, in the BFS the cores work on different subsets
of matrices in parallel, which requires extra memory but with reduced data motion
among the cores, while DFS leads to large data motion among the cores to gather the
resulting sub-matrices [4,21].

A time-bound (TB) implementation aims at minimizing execution time by reducing
the recursive function calls at base level (1-Level) of the algorithm. In addition it
avoids any unnecessary stack operations that might increase the execution time and
the required storage. TB assumes boundless storage. Thus TB can be used for S-MM
and W-MM to highlight the implementation that produces the least execution time.
Examples of TB implementations are S-MM and W-MM which are evaluated in the
next section.

123



Int J Parallel Prog (2016) 44:801–830 817

Algorithm 4W-MM Pseudo code
W_MM(A, B,C, width)

Parameters:
A=matrix A, B=matrix B, C=matrix C
width=dimension of the matrices (assuming square matrices)
subWidth=represent the dimension of the current block partitions
BLOCK_T H RESHOLD=Stop Recursion Condition
Note:Madd/sub, MM, and Magg are the basic kernels as explained in Sect. 3.1

Execution Steps:
1: subWidth=width/2
2: Allocate space in global memory for each of the submatrices to store intermediate results of dimension

subWidth
3: Calculate S1=A21+A22,S2=S1-A11,S3=A11+A21,S4=A12- S2,S5=B12-B11,S6=B22-S5,S7=B22-

B12,S8=S6-B21 using Madd/sub
4: if width <= BLOCK_T H RESHOLD then
5: Calculate m1=S2*S6,m2=A11*B11,m3=A12*B21,m4=S3*S7, m5=S1*S5,m6=S4*B22,

m7=A22*S8 using MM
6: else
7: Call W_MM(S2, S6,m1, subWidth)

8: Call W_MM(A11, B11,m2, subWidth)

9: Call W_MM(A12, B21,m3, subWidth)

10: Call W_MM(S3, S7,m4, subWidth)

11: Call W_MM(S1, S5,m5, subWidth)

12: Call W_MM(S4, B22,m6, subWidth)

13: Call W_MM(A22, S8,m7, subWidth)

14: end if
15: Synchronize all threads
16: CaculateC11=M2+M3,C12=M1+M2+M5+M6,C21=M1+M2+M4-M7,C22=M1+M2+M4+M5using

similar kernels as shown in Code Listing 1-4.
17: Free all allocated global memory as created in step 2

The storage-bound (SB) implementation aims at minimizing the used storage by
reordering the original steps and using some of the resultantmatrices to accumulate the
intermediate results of multiplication operations and the final aggregation operations.
However, this approach requires additional overhead of recursive function calls among
other execution steps such as additions and subtractions. This option is useful if one
may tolerate an increase in execution time provided that the minimum storage is being
used which allows an implementation to use a larger problem size. Example of SB
implementation is the R-S-MM.

At each computation level, S-MM (W-MM) repeatedly performs all the 18 (15)
matrix additions before carrying out one in-depth recursion until reaching the deepest
recursion level which is defined by a threshold on the smallest operable matrix size.
When recursion pops up, S-MM (W-MM) performs oneMM. Recursion pops up until
reaching the originalmatrix, where it proceeds on another depth-first path. The process
is repeated until assembling the resulting matrix. In contrast, R-S-MM repeatedly
performs partial matrix additions in preparation of the single MM before carrying out
one in-depth recursion. This process of partial computing and recursion repeats until
reaching the deepest recursion level. When recursion pops up, R-S-MM completes
partial work for the matrix multiplication as well as all needed matrix additions. The
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Table 2 Algorithm complexity analysis

Implementation Additions/subtractions Multiplications Recursions

S-MM 7k
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pop up process continues until returning to the original matrix at the top level. The
process is re-iterated from the top level in a similar manner to S-MM.

Theperformanceof eachof the implementations depends on the number of addition-
s/subtractions, multiplications and function recursive calls. Table 2 shows the number
of additions/subtractions,multiplications, function recursive calls and additionalmem-
ory allocations of each of the implementations based on the matrix dimension (N) and
the level of recursion (k).

W-MM requires less number of arithmetic operations and recursive calls than S-
MM and hence it has better performance. S-MM and R-S-MM have an equal number
of arithmetic operations. R-S-MM has additional overheads of stack operations due
to the additional recursive calls compared the S-MM.

4 An Overview of GPU and MIC

4.1 GPU and CUDA

GPU is organized into an array of highly threaded Streaming Multiprocessors (SMs).
Each SM has a number of Streaming Processors (SPs) that share control logic and
instruction cache. Each GPU currently comes with up to 4.8 GB of graphics double
data rate (GDDR) DRAM referred to as global memory (GM) that is visible to all
threads in all blocks. Each SM has a read/write shared memory (ShM) which is visible
to all threads running within SM. ShM is much faster than GM but smaller in size.

A CUDA program is a unified source code encompassing both the host and the
device code. The device code is written using ANSI C extended with keywords for
labeling data-parallel functions, called kernels, and their associated data structures
[15]. Each kernel initiates a set of blocks defined by the programmer as grid dimension.
Another parameter is the number of threads to be executed within each block while
invoking the device kernel function. The block scheduler dynamically schedules each
thread block to one SM based on the availability of resources. Each block is broken
down into subsets of 32 thread forming warps. Warps execute in SIMD mode. The
warp is the unit of thread scheduling in SMs. Each warp consists of 32 threads of
consecutive thread ids. An SM can handle at most 16 blocks at a time. Also, the
possible number of concurrent blocks per SM depends on the number of warps per
block, number of registers per block, and the shared memory usage per block.
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Each SM schedules one warp at a time with zero overhead warp scheduling. In the
case of higher dimensional kernels, warps are retrieved from blocks according to the
row major numbering. As warps execute in SIMD fashion, if there is a high latency
exception such as loading or storing data with GM then the warp is suspended and its
context preserved. A DMA operation is initiated by the SM whenever it finds one or
more threads within a runningwarp that are subject to long latencymemory transfer. In
this case, SMschedules another readywarpwith zero-overhead context switching [15].

4.2 Xeon Phi and Programming Model

Intel Many Integrated Core (MIC) Architecture is based on a 64-core cache-coherent
SMP, where each core features hybrid 4-way hyperthreading with wide 512-bit vector-
ization unit (VPU) to exploit data parallelism [12,13,25]. All coherence notifications,
control, address, and data are transferred on a set of 10 fast ring networks. Each core
has an in-order dual-issue unit with two level L1 and L2 caches. Each core can access
all other L2 caches via the ring network which makes a collective L2 cache size with
up to 32MB. VPU has 32 512-bit SIMD registers. VPU supports Fused Multiply-Add
(FMA) operations. The sustainable peak performance using StreamTriad benchmark2
is about 20 GFLOPS. Eight memory controllers support up to 16 GDDR5, which
deliver up to 5.5 GT/s.

A host CPU interfaced to a MIC operates in three modes: (1) the offload mode
in which the host transfers part of its computing code to MIC, (2) the symmetric
mode uses MPI to communicate with other MICs, and (3) the native mode in which
the application is locally run on MIC. There are three ways for thread assignments.
First, scattering consists of evenly distributing the threads across all cores. Second,
in compact mode consecutive threads are distributed over a minimal number of cores
with four treads per core. Third, in balanced mode threads are scattered across all
cores such that successive threads are assigned to the same core. In our work we used
OpenMp programming paradigm which uses a fork-join execution model.

Because MIC has 5.6 GB of memory, the largest matrix that can be handled by S-
MM is 3072. The R-S-MM is based on re-using some storages that saves the memory
allocation and allows the use of larger matrices with up to 10240. In this work we
focus on using R-S-MM for the above reasons. The R-S-MM algorithm for MIC is
denoted as Str_mkl with the invocation of the MKL function CBLAS_DGEMM for
single precision.

The number of recursion levels L depends on the threshold value of the smallest
matrix size the algorithm can handle. For each recursion level, the new matrix size
and the scope of sub matrices are passed as illustrated on Table 3.

5 Performance Evaluation

In this section we evaluate the performance of proposed algorithm implementations
S-MM, R-S-MM, and W-MM on an NVIDIA GPU and an Intel Xeon Phi. The GPU
used is a Kepler K20c with 4.8 GB of GM, 48 KB of ShM, and 13 SM. The Xeon Phi
accelerator is 7110 with 60 cores and 5.6 GB of main memory. Each core is running
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Table 3 Submatrix indices
Sub matrix Row index Column index

Sub1,1 Newsize Newsize

Sub1,2 Newsize Newsize+scolx

Sub2,1 Newsize+srowx Newsize

Sub2,2 Newsize+srowx Newsize+scolx

at 1.3 GHz with 32KB L1 cache and 512KB L2 cache. In the following sub-sections
we present the performance evaluation of proposed approaches.

5.1 Evaluation on GPU

Proposed algorithms S-MM, R-S-MM, and W-MMwere implemented using the opti-
mized libraries CUBLASSGEMM(version 5.5) andNVIDIASDKMM(version 5.5).
Ideally, the above algorithms are run with different BLOCK_ THRESHOLD (BT) at
which the recursions break and the high-performance MM (CUBLAS or MKL) is
applied. However, to ease the interpretation of the results we refer to the recursion
level for each run.

Figure 1 shows the speedup achieved by S-MM, R-S-MM, and W-MM over native
CUBLAS SGEMM versus the matrix size using one recursion level. Figure 2 presents
a comparison of the execution times of S-MM, R-S-MM, W-MM, and CUBLAS
SGEMM. Note that W-MM has the shortest execution time for the studied range of
matrix size. CUBLAS is faster than S-MM only for matrices where N ≤ 3072 (for
S-MM) and N ≤ 2048 (for W-MM). For matrices with N > 2048, W-MM becomes
up to twice as fast as CUBLAS. S-MM becomes also faster (speedup of 1 to 1.9) than
CUBLAS for N > 3072. On the other hand, R-S-MM only outperforms CUBLAS

Fig. 1 Speedup of our implementations with 1-Level Recursion over CUBLAS Sgemm
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Fig. 2 Comparison of our implementations with 1-Level Recursion and CUBLAS

Fig. 3 Performance FLOPs for our implementations with 1-Level Recursion and CUBLAS

when N > 6144 due to reordering which incurs some overhead in copying data. For
N ≥ 2048, the three implementations satisfy the following condition TW−MM ≤
TS−MM ≤ TR−S−MM , where TX is the execution time of implementation X. The
proposed algorithms scale well with increase in the problem size of up to the largest
size that the above GPU can handle. R-S-MM was ranked last because of it’s SB
implementation, which is due to additional overhead of recursive function calls, as
compared to S-MMandW-MMwhich are based onTB implementation (see Sect. 3.4).

Figure 3 shows the performance in FLOPS of proposed Strassen/Winograd imple-
mentations with CuBLAS versus the matrix size. Sorting the above implementations
in descending order of best achieved performance gives W-MM, S-MM, R-S-MM,
and CuBLAS with best score 2.35 TFLOPS, 1.95 TFLOPS, 1.45 TFLOPS, and 1.35
TFLOPS, respectively. The above performance scores represent 67, 55, 41, and 38%
of peak performance for Kepler K20c GPU (3.52 TFLOPS). These results confirm the
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Fig. 4 Comparing speedup over NVIDIA SDK by CUBLAS and our implementations with 1-Level Recur-
sion

effectiveness of proposed kernel optimizations because significant fraction of peak
GPU performance is achieved.

Figure 4 shows the speedup achieved by S-MM, R-S-MM, W-MM, and CUBLAS
SGEMM over the NVIDIA SDK library. Notice that S-MM, W-MM, CUBLAS, and
R-S-MM are 80×, 60×, 41×, and 38× faster than the NVIDIA SDK library when
N ≥ 4096, respectively. Additionally, by inspecting Figs. 1 and 4 we note that the per-
formance of our proposed implementations scales much better than CUBLAS versus
an increase in array size.

However, as we increase the level of recursion the execution time is also increased
due to the overhead of additional operations in both Strassen andWinograd implemen-
tations. The reason is that the reduction in one matrix multiplication using Strassen
and Winograd is not large enough to offset the overhead of the matrix additions and
the stack overhead due to recursive invocations when two recursion levels or more
are executed. Also note that the high-performance MM CUBLAS_Sgemm is highly
optimized at a very low level of programming.

Figure 5 shows the percentage increase of the execution time when two recursion
levels are used over one recursion level implementations. The results show that our
implementations are more profitable and scalable with additional levels of recursion
when there is an increase in matrix size. Also, W-MM shows a zero balance between
matrix additionoverhead and the saving in the onematrixmultiplication.Unfortunately
we are bound by N = 10240 due to limitations of device memory on the Kepler K20c
GPU.

5.2 Evaluation on Xeon Phi

In this sectionwe compare the performance of proposed StrassenMMalgorithm to that
of MKL onMIC for 2D arrays. As stated before, the reordering algorithm Str_mkl (R-
S-MM) has been implemented using C++ with OpenMp on MIC. Recall that Str_mkl
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Fig. 5 Percentage increase in execution time with 2nd level of recursion

is similar to R-S-MM with the difference that it invokes the MKL high-performance
matrix multiplication function CBLAS_DGEMM. On MIC, the memory allocation
(malloc) for two dimensional array does not allocate contiguous memory when 2D
indexing is used. This causes some performance degradation due to address translation
overhead for large array sizes. For this, we used explicit 1D array indexing instead
of the standard 2D array indexing to reduce the above mentioned overheads. All the
experiments were run by disabling the factorization unit and using the O2 level of
compiler optimization. Also, the thread affinity was set to “compact” to enhance the
data locality among the threads. In the case of compact affinity, a minimum number of
cores is used for assigning four consecutive threads to each core. In all the experiments,
each core is running 4 OpenMp threads which bind to the hardware threads depending
on the OS scheduling criteria. Finally, it is noticed that OpenMp incurs a relatively
small overhead for scheduling, managing, and synchronizing threads under Linux.

To assess the Str_mkl, we ran the experiments with different matrix sizes and
different numbers of threads or cores. We experience the Str_mkl algorithm with the
first five level of recursions and compare execution time to that achieved by directly
invokingMKL for standardMM. Figures 6, 7, 8, 9 show the execution time of Str_mkl,
for 1–5 recursion levels, and MKL for 8, 16, 32, and 60 MIC cores, respectively. In
these Figures, the execution time of Str-mkl is shown with different recursion levels
versus MKL CBLAS_DGEMM execution time.

For one recursion level, Str_mkl is faster than MKL by a smaller factor which is
between 4 and 8% for all the experimented number of cores. The reason is that the
MIC memory is not fully utilized to take advantage of using deeper recursion levels
with Str_mkl. For two recursion levels, Str_mkl is faster than MKL by 14–26% when
the array size N ≥ 1024 for all the experimented number of cores. In this case, there
is a matching between the MIC available memory and the storage of intermediate
arrays required by the Str_mkl depth-first recursive kernels. Vtune run-time profiler
was used to validate the efficient use of the memory in the case of one or two recursion
levels. The number of L1 and L2 misses is dramatically lower than that noticed in the
case of deeper recursion levels. For three recursion levels, Str_mkl achieves shorter
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Fig. 6 Execution time of Strassen with MKL using 8 cores

Fig. 7 Execution time of Strassen with MKL using 16 cores

execution times only for matrix sizes satisfying N>=16000 and for all number of
cores. Specifically, Str_mkl is 6–12% faster than MKL. For four or more recursion
levels the overhead of matrix additions seem to offset the benefit of saving on matrix
multiplication, where MKL times are shorter than those of proposed Str_mkl for all
problem sizes and all the experimented number of cores.

Proposed algorithm Str-mkl is based on a traversal of the recursion tree where
all the MIC cores work in parallel on computing each of the sub-matrices, which
are processed one after the other in sequence. DFS reduces the required storage of
intermediate results by assembling one sub-matrix at a time because it allocates storage
for each of the resulting four sub-matrices. Thus, DFS leads to aggregate data motion
among all the cores to gather the resultingmatrix. InMIC the inter-core communication
is carried out implicitly by the coherence protocol, which is supported by eight fast
ring networks. The above mechanism seems to be efficiently aggregating the core sub-
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Fig. 8 Execution time of Strassen with MKL using 32 cores

Fig. 9 Execution time of Strassen with MKL using 60 cores

matrices. With four threads assigned to each core, a thread which is exposed to a high
latency exception (like a remote data fetching) is temporarily suspended and another
thread is started using a fast context switching. For the first two recursion of Str-mkl, it
is clear that the above MIC latency hiding technique seems to be profitable in trading
one matrix multiplication at the cost of 18 extra matrix additions. However, with three
or more recursion levels str-mkl is no longer profitable as compared to MKL due to
the following reasons:

1. The reduction in one matrix multiplication seems not sufficient to offset the over-
head of additional smaller matrix additions,

2. The transfer of large data (coherence protocol) involved when aggregating the
intermediate arrays and assembling the current working matrix.

3. The increase in time of the CBLAS_DGEMM library when the size of the matrix
is smaller than 2048 especially when using a large number of cores. Figure 10
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Fig. 10 Execution time of cublas_dgemm MKL library function

Fig. 11 Execution time of Strassen with MKL using 16 cores on Xeon E5 CPU

shows how the CBLAS_DGEMM library performs with matrices smaller than
2048 when run on larger number of threads.

4. The increase in time due to the stack operation overhead that is caused by the
recursive Strassen invocations and the less efficient cache utilization when DFS
works with small arrays.

We have also run the same experiments on Intel Xeon E5 CPU with 16 cores and
found similar trends of execution time with respect to the level of recursion in the
Strassen kernel execution. Figure 11 shows the execution time of Strassen implemen-
tation and MKL CBLAS_DGEMM kernel library. Like Xeon Phi results, Strassen
implementation with up to 2 levels of recursion outperformsMKL CBLAS_DGEMM
kernel.
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Fig. 12 Flops comparison of Strassen with MKL under different cores

Figure 12 shows the performance in FLOPS of proposed Str-mkl and MKL imple-
mentations for fixed matrix size of N= 16384 versus the number ofMIC cores. Sorting
the above implementations in descending order of best achieved performance gives
MKL, str-MM(N/4), str-MM(N/2), str-mkl(N/8), str-mkl(N/16) with best FLOPS
score of 0.5, 0.45, 0.42, 0.35, and 0.2 TFLOPS respectively. The above performance
scores represent 21, 19, 17.5, 15, and 8.5% of peak performance for Xeon Phi 7110
(2.4 TFLOPS). Here also, these results confirm the effectiveness of proposed code
optimization because significant fraction of peak MIC performance is achieved.

5.3 Accuracy of Strassen Implementation

It is well known that the hybrid MM algorithms like Strassen algorithm have weak
numerical properties compared to the canonical algorithm or the high-performance
MM like MKL. We assessed the numerical accuracy of three MM implementations:
str-mkl with the first four recursion levels, MKL and the canonical algorithm.

We used the single precision test matrix defined in [14]. The test consists of ini-
tializing two operand matrices of arbitrary size to some predefined values so that
their product is the identity matrix. Table 4 shows the maximum absolute differences
between the elements of the product matrix as computed by each of the above imple-
mentations and the exact product. For each of the above implementations, the test was
run using 60 cores with 240 threads.

MKL and the canonical algorithm have comparable accuracy to the advantage
of MKL. The str-mkl errors are substantially larger than that produced by MKL.
Specifically, MKL is at least one order of magnitude more accurate than str-mkl.
Referring to str-mkl, the errors increase up to one order of magnitude when recursion
are increased from one to four levels. In other word, the errors are about three times for
each additional recursion level. Also the errors increase with the array size. Although,
str-mkl with two recursions achieves between 14 and 25% speedup over MKL, but the
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Table 4 Maximum absolute errors of MM implementations

Implementation 1024 2048 4096 8192 10240 12288 14336

Canonical 3.22E−05 6.51E−05 1.64E−04 2.49E−04 2.92E−04 3.49E−04 3.80E−04

MKL 3.24E−05 4.96E−05 6.10E−05 1.14E−04 1.18E−04 1.11E−04 1.22E−04

Str-mkl (N/2) 9.46E−05 1.43E−04 1.42E−04 6.39E−04 6.71E−04 9.00E−04 1.23E−03

Str-mkl (N/4) 2.15E−04 4.75E−04 5.18E−04 1.06E−03 3.04E−03 2.68E−03 3.30E−03

Str-mkl (N/8) 3.38E−04 1.16E−03 1.50E−03 1.13E−02 1.25E−02 1.09E−02 1.19E−02

Str-mkl (N/16) 7.71E−04 2.15E−03 6.48E−03 1.97E−02 4.25E−02 4.31E−02 4.54E−02

errors are 7 to 27 times compared to those achieved by MKL for the studied range of
matrix sizes.

6 Conclusion

Hybrid matrix multiplication using Strassen MM algorithm has O(N 2.807) time com-
plexity instead of O(N 3) for the canonical approach. The depth first traversal is used
for the hybrid MM method using Strassen and Winograd algorithms. In this case,
all cores work in parallel on computing each of the N × N sub-matrices, which are
computed in sequence. Although this approach reduces the needed storage, it requires
substantial data motion to gather and aggregate the results. The proposed Strassen and
Winograd implementations are based on three optimizations: (1) using a small set of
basic algebra functions to reduce overhead, (2) invoking efficient library (CUBLAS
5.5) for basic functions, and (3) using parameter-tuning of parametric kernel to improve
GPU resource occupancy. Evaluation of S-MM andW-MM is carried out on GPU and
MIC. For GPUs, W-MM and S-MM with one recursion level are up to twice as fast
as CUBLAS 5.5 Library for arrays satisfying N > 2048 and N > 3072, respectively.
Similar trends are observed for S-MM with reordering, which is used to save storage.
Compared to NVIDIA SDK library, S-MM and W-MM achieved a speedup between
20× and 80× for the above array sizes. ForMIC, two-recursion S-MMwith reordering
outperforms MKL library by 14–26% for N >= 1024. Similar encouraging results
are obtained for 16-core Xeon-E5 server with enhanced computation scalability. The
best achieved performance FLOPS are 2.35 TFLOPS for W-MM (67% of peak) and
1.95 TFLOPS (55% of peak) for S-MM on GPU and 0.5 TFLOPS on MIC (21% of
peak). This shows the profitability of proposed S-MM implementation with limited
recursion levels as a hybrid MM algorithm. We conclude that proposed S-MM and
W-MM implementations with a few recursion levels can be used to further optimize
the performance of basic algebra libraries. The number of recursion levels can be
increased for very large matrices.
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