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Abstract In this work we present the first design and implementation of a wait-free
hash map. Our multiprocessor data structure allows a large number of threads to con-
currently insert, get, and remove information. Wait-freedom means that all threads
make progress in a finite amount of time—an attribute that can be critical in real-time
environments. This is opposed to the traditional blocking implementations of shared
data structures which suffer from the negative impact of deadlock and related correct-
ness and performance issues. We only use atomic operations that are provided by the
hardware; therefore, our hash map can be utilized by a variety of data-intensive appli-
cations including those within the domains of embedded systems and supercomputers.
The challenges of providing this guarantee make the design and implementation of
wait-free objects difficult. As such, there are few wait-free data structures described
in the literature; in particular, there are no wait-free hash maps. It often becomes
necessary to sacrifice performance in order to achieve wait-freedom. However, our
experimental evaluation shows that our hash map design is, on average, 7 times faster
than a traditional blocking design. Our solution outperforms the best available alter-
native non-blocking designs in a large majority of cases, typically by a factor of 15 or
higher.
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1 Introduction

Ourdesign ismotivated by the need for applications and algorithms to change and adapt
as modern architectures evolve. These adaptations have become increasingly difficult
for developers as they are required to effectively manage an ever-growing variety of
resources such as a high degree of parallelism, single-chip multi-processors, and the
deep hierarchies of shared and distributed memories. Developers writing concurrent
code face challenges not known in sequential programming, most importantly, the
correct manipulation of shared data. The new C++ standard, C++11, includes a large
number of concurrency features, such as atomic operations. However, C++11 still does
not offer a standard collection of parallel multiprocessor data structures. The standard
collection of data structures and algorithms in C++11 is the inherently sequential
Standard Template Library (STL).

Currently, the most common synchronization technique is the use of mutual exclu-
sion locks. Blocking synchronization can seriously affect the performance of an
application by diminishing its parallelism [13]. The behavior of mutual exclusion
locks can sometimes be optimized by using a fine-grained locking scheme [15,27] or
context-switching. However, the interdependence of processes implied by the use of
locks, even efficient locks, introduces the dangers of deadlock, livelock, starvation,
and priority inversion—our design avoids these drawbacks.

This paper is extended from a conference version [8].

1.1 Our Approach

The main goal of our design is to deliver a hash map that provides both safety and
high performance for multi-processor applications.

The hardest problem encountered while developing a parallel hash map is how to
perform a global resize, the process of redistributing the elements in a hash map that
occurs when adding new buckets. The negative impact of blocking synchronization is
multiplied during a global resize, because all threadswill be forced towait on the thread
that is performing the involved process of resizing the hash map and redistributing
the elements. Our wait-free implementation avoids global resizes through new array
allocation. By allowing concurrent expansion this structure is free from the overhead
of an explicit resize, which facilitates concurrent operations.

The presented design includes dynamic hashing, the use of sub-arrays within the
hash map data structure [20]; which, in combination with perfect hashing, means that
each element has a unique final, as well as current, position. It is important to note
that the perfect hash function required by our hash map is trivial to realize as any
hash function that permutes the bits of the key is suitable. This is possible because
of our approach to the hash function; we require that it produces hash values that
are equal in size to that of the key. We know that if we expand the hash map a fixed
number of times there can be no collision as duplicate keys are not provided for in the
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standard semantics of a hash map. The aforementioned properties are used to achieve
the following design goals:

(a) Wait-free: a progress guarantee, provided by our data structure, that requires all
threads to complete their operations in a finite number of steps [13].

(b) Linearizable: a correctness property that requires seemingly instantaneous exe-
cution of every method call; the point in time that this appears to occur is called a
linearization point, which implies that the real-time ordering of calls are retained
[13].

(c) High performance: our wait-free hash map design outperforms, by a factor of 15
or more, state of the art non-blocking designs. Our design performs a factor of 7
or greater faster than a standard blocking approach.

(d) Safety: our design goals help us achieve a high degree of safety; our design avoids
the hazards of lock-based designs.

The rest of this work is organized as follows: Sect. 2 briefly introduces the fun-
damental concepts of non-blocking synchronization, Sect. 3 discusses related work,
Sect. 4 presents the algorithms of our wait-free hash map design, Sect. 5 presents an
informal proof of correctness, Sect. 6 offers a discussion of our performance evalu-
ation, Sect. 7 provides an overview of the practical impact of our work, and Sect. 8
offers conclusions and a discussion of our future work.

2 Background

A hash map is a data container that uses a hash function to map a set of identifying
values, known as keys, to their associated values [3]. The standard interface of a hash
map consists of three main operations: put, get, and remove; each operation has an
average time complexity of O(1).

Standard hash maps used in software development are designed to work in sequen-
tial environments, where only one process can modify the data at any moment in time.
In a concurrent environment, there is no guarantee that the hash map will be in a con-
sistent state when more than one process attempts to modify it; one potential problem
is that a newer value may be replaced by an older value. The solution to these issues
was the development of lock-based hash maps [1].

Each process that wished to modify the hashmap would have to lock the entire hash
map. If the hash map was already locked, then all other processes needed to wait until
the holder of the lock released it. This led to performance bottlenecks as more parallel
processes were added to the system, because these processes would have to wait on the
others [28]. Eventually, fine-grained locking schemes were also proposed, but even
these approaches suffered from the negative consequences of blocking synchronization
[15].

As defined by Herlihy et al. [13,14], a concurrent object is lock-free if it guaran-
tees that some process in the system makes progress in a finite number of steps. An
object that guarantees that each process makes progress in a finite number of steps is
defined as wait-free [13]. By applying atomic primitives such as CAS, non-blocking
algorithms, including those that are lock-free and wait-free, implement a number of
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techniques such as optimistic speculation and thread collaboration to provide for their
strict progress guarantees. As a result of these requirements, the practical implemen-
tation of non-blocking containers is known to be difficult.

A common problem with non-blocking designs is called the ABA problem. This
refers to the following situation:

(1) One thread reads a memory address, and sees A.
(2) Then, a context switch occurs.
(3) The new thread changes the value to B, and the back to A.
(4) The original thread resumes, and does not know that any change has occurred.
(5) This could cause a semantic violation—an example of the ABA problem.

3 Related Work

Research into the design of non-blocking data structures includes: linked-lists [11,23];
queues [25,26,32]; stacks [12,26]; hash maps [10,23,26]; hash tables [30]; binary
search trees [9], and vectors [5].

There are no pre-existing wait-free hash maps in the literature; as such, the related
work that we discuss consists entirely of lock-free designs. In [23], Michael presents
a lock-free hash map that uses linked-lists to resolve collisions; this design differs
from ours in that it does not guarantee constant-time for operations after a resize is
performed [23,30]. In [10], Gao et al. present an openly-addressed hash map that is
almost wait-free; it degrades in performance to lock-free during a resize.

In [30], Shalev and Shavit present a linked-list structure that uses pointers as short-
cuts to logical buckets that allow the structure to function as a hash table. In contrast to
our design, the work by Shalev and Shavit does not present a hash map and it is lock-
free. There was a single claim of a wait-free hash map that appeared as a presentation
by Cliff Click [2]; the author now claims lock-freedom. Moreover, the work by Click
was not published. A popular concurrent hash map that is part of Intel’s Threading
Building Blocks (TBB) [15] library is claimed to be lock-free, but is also unpublished.

4 Algorithms

In this section we define a semantic model of the hash map’s operations, address con-
cerns related to memory management, and provide a description of the design and the
applied implementation techniques. The presented algorithms have been implemented,
in both ISOCand ISOC++, and designed for execution on an ordinary,multi-threaded,
shared-memory system;we require only that it supports atomic single-word read,write,
and CAS instructions.

4.1 Structure and Definition

Our hash map is a multi-level array which has a structure similar to a tree; this is
shown in Fig. 1. Our multi-level array differs from a tree in that each position on the
tree could hold an array of nodes or a single node. A position that holds a single node
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Fig. 1 An illustration of the
structure of the hash map

is a dataNode which holds the hash value of a key and the value that is associated
with that key; it is a simple struct holding two variables. Since a dataNode is at least
two memory words we cannot read it atomically, so we must have a way to prevent
interference with nodes that are being read or are otherwise in use; we call our method
of doing this, “watching” (see Sect. 4.4). A dataNode in our multi-level array could
be marked. A markedDataNode refers to a pointer to a dataNode that has been
bitmarked at the least significant bit (LSB) of the pointer to the node. This signifies that
this dataNode is contended. An expansion must occur at this node; any thread that
sees this markedDataNode will try to replace it with an arrayNode ; which is a
position that holds an array of nodes. The pointer to an arrayNode is differentiated
from that of a pointer to a dataNode by a bitmark on the second-least significant bit.

Our multi-level array is similar to a tree in that we keep a pointer to the root, which
is a memory array that we call head. The length of the headmemory array is unique,
whereas every other arrayNode has a uniform length; a normal arrayNode
has a fixed power-of-two length equal to the binary logarithm of a variable called
arrayLength. The maximum depth of the tree, maxDepth, is the maximum num-
ber of pointers that must be followed to reach any node. We define currentDepth
as the number of memory arrays that we need to traverse to reach the arrayNode
on which we need to operate; this is initially one, because of head.

Our approach to the structure of the hashmapuses an extensible hashing scheme;we
treat the hash value as a bit string and rehash incrementally [7].WeusearrayLength
to determine how many bits are necessary to ascertain the location at which a
dataNode should be placed within the arrayNode. The hashed key is expressed as
a continuous list of arrayPow-bit sequences, where arrayPow is the binary loga-
rithm of the arrayLength; e.g. A− B−C−D, where A is the first arrayPow-bit
sequence, B is the next arrayPow-bit sequence, and so on; these represent positions
on different arrayNodes. These bit sequences are isolated using logical shifts. We
use R to designate the number of bits to shift right, in order to isolate the position in the
arrayNode that is of interest.R is equal to log2 arrayLength∗currentDepth.
For example, in a memory array of length 64 = 26, we would take R= 6 bits for each
successive arrayNode.

The total number of arrays is bounded by the number of bits in the key (which is
stored in a variable calledkeySize) divided by the number of bits needed to represent
the length of each array. For example, with a 32-bit key and an arrayLength of 64,
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we have a maxDepth of 6, because �32/ log2 64� = 6. This places no limit on the
total number of elements that can be stored in the data structure; the hash map expands
to hold all unique keys that can be represented by the number of bits in the key (even
beyond the machine’s word size). We have tested with multiword keys, such as the 20
bytes needed for SHA1. Neither an arrayNode nor a markedDataNode can be
present in an arrayNode whose currentDepth is equal to maxDepth, because
no hash collisions can occur there.

4.2 Traversal

Traversing the hash map is done by performing a right logical shift on the hashed key
to preserve R bits, and examining the pointer at that position on the current memory
array. If the pointer stores the address of an arrayNode, then the currentDepth
increases by one, and that position on the new memory array is examined.

Wediscuss the traversal of the hashmapusingFig. 2 as an illustration of this process.
In our example, the arrayNodes have a length of four, whichmeans that exactly two bits
are needed to determinewhere to store ourdataNode on any particulararrayNode,
except for headwhich has a larger size than every other arrayNode (see Sect. 4.1).
The hashed key is expressed as a finite list of two-bit sequences e.g. A − B − C ,
where C is the first three-bit sequence, and so on; these sequences represent positions
at various depths.

For example, if we need to find the key 0-4-2, in the hash map shown in Fig. 2,
then we first need to hash the key. We assume that this operation yields 2-3-1. To find
2-3-1 we first take the right-most set of bits, and go to that position on head. We see
that this is an arrayNode, so we take the next set of bits which leads us to examine
position 3 on this arrayNode. This position is also an arrayNode, so we take the
next set of bits which equal 2, and examine that position on this arrayNode. That
position is a dataNode, so we compare its hashed key to the hashed key that we are
searching for. The comparison reveals that the hash values are both equal to 2-3-1, so
we return the value associated with this dataNode.

Fig. 2 An example of data
stored in the hash map (values
not shown)

0 0-0-0

1

63 1-3-63

0
2-0-1

3

1 3-1-1

2 3-2-1
0

1-3-0

1 null

3 null

2 2-3-1

...
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4.3 Main Functions

In this section we provide a brief overview of the main operations implemented by
our hash map. Unless otherwise noted, all line numbers refer to the current algorithm
being discussed. In other sections of the paper, the main functions are referred to by
the first letter of the function name followed by the line number of interest; supporting
functions are referred to by their full name. In all algorithms, local is the name of the
arrayNode that an operation is working on and pos is the position on local that
is of interest. The variable failCount is a thread-local counter that is incremented
whenever a CAS fails and the thread must retry its attempt to update the hash map.
Instances of this variable are compared to themaxFailCountwhich is a user-defined
constant used to bound themaximum number of times that a thread retries an operation
after a CAS operation fails. If this bound is reached, then an expansion is forced at the
position that the failing operation is attempting to modify.

The CAS operation that we use is part of C++11; the function that we use returns
the value that the memory address held before the execution of the operation. If our
functions are implemented in a system that does not have a sequentially consistent
memorymodel, thenmemory fences are needed to preserve the relative order of critical
memory accesses [23].

4.3.1 Algorithm 1: insert (key, value)

Theinsert function is used to insert a key-value pair into the hashmap. The function
returns true if the key is not in the hash map, and false if the key is already there; this
allows us to prevent the user from performing unintended overwrites of elements in
the hash map. We provide an update operation for the case wherein a user would
like to change the value that is associated with a key that is already in the hash map
(see Sect. 4.3.2).

An insert operation traverses the hash map as described in Sect. 4.2 until it finds
a position that is null or that contains a dataNode. If the position is null, then a
CAS is performed; this is shown on line 13. If the CAS is successful, then the function
returns true. If a dataNode whose key matches the key that is being inserted, is
encountered during the traversal, then the function returns false. If it is a dataNode
whose key is different, then the thread calls expandMap at the position (resolving the
hash collision); if the expansion is successful, then the thread continues its traversal
from the new arrayNode that was added.

If theCASat line 13 failed, then theCASoperation has returned either adataNode
or an arrayNode. If an arrayNodewas returned, then the thread continues traver-
sal from the arrayNode. If the result is a dataNode whose key matches the key
that is being inserted, then the function returns false; if it does not match, then it calls
expandMap at the position.

If a call to expandMap fails, then the failCount is incremented and the return
value is examined. If failCount equals maxFailCount, then an atomic bit-
mark is placed on the contents of local at pos, and expandMap is called. When
expandMap returns, the thread continues traversal from the arrayNode that is
guaranteed to be returned (see Sect. 4.3.5). For this situation to arise, the position that
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this thread wants to insert into must be highly-contended, so new arrayNodes are
added until the thread can insert without interference from another thread.

The linearization point of this operation, when it returns true, is the CAS on line
13. The same CAS is one of the linearization points when the function returns false,
the other two are the atomic reads on lines 8 and 23.

Algorithm 1 insert key, value
1: hash=hashKey(key);
2: local=head;
3: for int r=0; r <keySize−arrayPow;r+=arrayPow do
4: pos=hash&(arrayLength−1);
5: hash=hash>>arrayPow;
6: failCount=0;
7: node=getNode(local,pos);
8: while true do
9: if failCount>maxFailCount then
10: node=markDataNode(local,pos);
11: if node==null then
12: insertThis=allocateNode(value,hash);
13: if (node=CAS(local[pos],null, insertThis))==null then
14: watch(null);
15: return true;
16: else
17: free(insertThis);
18: if isMarked(node) then
19: node=expandMap(local,pos,r);
20: if isArrayNode(node) then
21: local=node;
22: break;
23: else
24: watch(node);
25: node2=getNode(local,pos)
26: if node != node2 then
27: failCount++;
28: node=node2;
29: continue;
30: else if node−>hash == hash then
31: watch(null);
32: return false;
33: else
34: node=expandMap(local,pos,r);
35: if isArrayNode(node) then
36: local=node;
37: break;
38: else
39: failCount++;
40: free(insertThis);
41: watch(null);
42: pos=hash&(arrayLength−1);
43: currValue=local[pos];
44: if currValue == null then
45: return (CAS(local[pos],null, value)==null);
46: else
47: return false;
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4.3.2 Algorithm 2: Update (key, expectedValue, newValue)

The update function is used to update the value associated with a key that is present
in the hash map. This function takes three arguments: the first is the key whose value
we would like to update, called key; the second is the value that we expect to be
associated with this key, called expectedValue; and the third is the value that
we would like to associate with this key, called newValue. The update function
returns true, if it successfully replaces a dataNodewhose key and value matches the
key and expectedValue of this operation. If the key is not present in the hash map,
or if the key’s associated value does not match expectedValue, then the function
returns false. In order to reason about the results of a failed CAS operation we require
expectedValue to be different from newValue.

The update operation traverses the hash map as described in Sect. 4.2, until it
finds a position that is null, or that contains a dataNode. If a markedDataNode
is found during the traversal, then expandMap is called and the thread continues its
traversal. If it is a dataNode whose key matches the one being updated, and the
value in the dataNodematches expectedValue, then a CAS is performed which
replaces the current dataNode with one containing newValue.

If the CAS fails, then the return value is examined. If it is a marked version of
the node that the CAS attempted to replace, then the thread calls expandMap and
continues its traversal. If the value returned is an arrayNode, then the thread con-
tinues its traversal. An arbitrary dataNode, null, or a dataNode whose key and
value matches could have been returned as well; the first two indicate that the oper-
ation should return false. The return of a dataNode whose key and value matches
may seem like a successful result; however, it is actually an indication that we may be
experiencing the ABA problem. The reasoning is that because we placed the constraint
that expectedValuemay not be equal to newValue, then there must have been a
state where the key was not present, or the value associated with the key did not match
expectedValue in order for the CAS to have failed, so we return false in this case.
If the traversal is completed without finding a dataNode with a key-value pair that
matches key and expectedValue, then the function returns false.

There are several linearization points. Two of these are the atomic reads in the calls
to getNode at lines 7 and 19; another two of these are the CAS operations at lines 37
and 54. If update returns true, then it linearizes upon the return of the appropriate
CAS operation. If any of the four lines returns null or a pointer to a dataNode
whose key and value does not match the key and expectedValue of this operation,
causing update to return false, then it is at that point that the operation linearizes.
The third point occurs when a failed CAS operation returns a pointer to a dataNode
whose key and value matches the expected, then the linearization point is between
the atomic read in getNode and the the completion of the CAS operation. There
must have been a state when either the key was not in the map, or the value associated
with the key did not match expectedValue, and it is at this state that the operation
linearizes.

In theworst case, this operation requiresexpandMap to be called untilmaxDepth
is reached, at which point it is not possible for there to be any more expansions, by
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definition of maxDepth and the constraints on the hash function. Therefore, at this
point, the thread will be able to finish its operation with a single CAS or atomic read.

4.3.3 Algorithm 3: get (key)

The get operation traverses the hash map as described in Sect. 4.2, until it finds a
position that is null, or that contains a dataNode. If it is a dataNode whose
key matches, then the value associated with the key is returned; otherwise, null is
returned.

Thepoint atwhich this operation linearizes is the atomic read in the call togetNode
(see lines 7 and 17). If a dataNode is read, then this thread must announce that
it is about to read the node, by calling the watch function. If the value changed
between the read and the call to watch, then the thread retries. If it retries more than
maxFailCount times, then the thread will mark the address as highly-contended
and force an expansion; the number of times that this can occur is equal tomaxDepth.
If maxDepth is reached, then the thread can no longer read dataNodes, only null
or values, as such the thread simply returns the value that it reads at this level (see
Sect. 4.1).

4.3.4 Algorithm 4: remove (key, expectedValue)

Theremove operation is nearly identical to theupdate operation, it can be treated as
a specialized version of updatewhere the only difference is that instead of replacing
a dataNodewith another dataNode, it replaces it with null. It has the same logic
for determining when an operation returns true or false, the same bound on the number
of loop iterations, and the same linearization points.

4.3.5 Algorithm 5: expandMap (local, pos, right)

This function is used to expand the map when there is a hash collision. If the current
value at pos in local is marked, then it is guaranteed that when the function returns,
the contents of pos in local are an arrayNode that holds an unmarked version
of the node that was there before.

First, expandMap reads the current value at pos. If it is not an arrayNode, then
it allocates a new one, calculates the position where the node that was there previously
belongs on thearrayNode, and sets the pointer at that position equal to the location
of the node. Next, it uses a CAS to attempt to replace that node with the arrayNode (see
line 10). This function returns the allocated arrayNode, if the CAS is successful;
otherwise, it returns false.

The atomic read in the call to getNode on line 1 is the linearization point, if this
operation returns false; the CAS on line 10 is the linearization point, if this operation
returns true.

An optimization that we use in the implementation is that if an operation is attempt-
ing to insert a node that collides with a node that is currently in the map, then the
expandMap algorithm creates an arrayNode or a series of them, that contains both
nodes, and then performs the CAS.
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Algorithm 2 Update key, expectedValue, newValue
1: hash=hashKey(key);
2: local=head;
3: result=false;
4: for int r=0; r<keySize−arrayPow;r+=arrayPow do
5: pos=hash&(arrayLength−1);
6: hash=hash>>arrayPow;
7: node=getNode(local,pos);
8: if isArrayNode(node) then
9: local=node;
10: else if isMarked(node) then
11: local=expandMap(local,pos,r);
12: else if node==null then
13: break;
14: else
15: watch(node);
16: if node != getNode(local,pos) then
17: failCount=0;
18: while node != getNode(local,pos) do
19: node=getNode(local,pos);
20: watch(node);
21: failCount++;
22: if failCount>maxFailCount then
23: markDataNode(local,pos);
24: local=expandMap(local,pos,r);
25: break;
26: if isArrayNode(node) then
27: local=node;
28: continue;
29: else if isMarked(node) then
30: local=expandMap(local,pos,r);
31: continue;
32: else if node==null then
33: break;
34: if node−>hash == hash then
35: if node−>value != expectedValue then
36: break;

insertThis=allocateNode(newValue,hash);
37: if (node2=CAS(local[pos],node,insertThis))==node then
38: result= true;
39: break;
40: else
41: free(insertThis);
42: if isArrayNode(node2) then
43: local=node2;
44: else if isMarked(node2)∧unmark(node2)==node then
45: local=expandMap(local,pos,r);
46: else
47: break;
48: else
49: break;
50: if r >= keySize−arrayPow then
51: pos=hash&(arrayLength−1);
52: currValue=local[pos];
53: if currValue == expectedValue then
54: result= (CAS(local[pos], expectedValue, newValue) == expectedValue);
55: else
56: result=false;
57: else if result then
58: safeFreeNode(node);
59: watch(null);
60: return result;
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Algorithm 3 get key
1: hash=currHash=hashKey(key);
2: local=head;
3: result=null;
4: for int right=0;right<keySize−arrayPow;right+=arrayPow do
5: pos=hash&(arrayLength−1);
6: hash=hash>>arrayPow;
7: node= getNode(local,pos);
8: if isArrayNode(node) then
9: local=node;
10: else if node==null then
11: break;
12: else
13: watch(node);
14: if node != getNode(local,pos) then
15: failCount=0;
16: while node != getNode(local,pos) do
17: node=getNode(local,pos);
18: watch(node);
19: failCount++;
20: if failCount>maxFailCount then
21: markDataNode(local,pos);
22: local=expandMap(local,pos,r);
23: break;
24: if isArrayNode(node) then
25: local=node;
26: continue;
27: else if isMarked(node) then
28: local=expandMap(local,pos,r);
29: continue;
30: else if node==null then
31: break;
32: if node−>hash == currHash then
33: result=node−>value;
34: break;
35: if r >= keySize−arrayPow then
36: pos=hash&(arrayLength−1);
37: result=local[pos];
38: watch(null);
39: return result;

4.4 Memory Management

This section discusses the allocation and reuse ofmemory.When designing concurrent
applications, choosing an appropriate memory management scheme is important, and
the one chosen must be thread-safe. As the standard memory allocator is blocking,
special provisions must be made for lock-free and wait-free programs. In order for the
hash map to behave in a wait-free manner, the user must choose a memory allocator
that can manage memory in a wait-free manner [31].

Furthermore, this memory manager must be able to handle the ABA problem [4]
correctly, because this problem is fundamental to all CAS-based systems [24]. To
prevent the ABA problem we ensure that the values stored in the dataNode remain
unchanged while any thread is using that dataNode. Any update to the value asso-
ciated with a key is done by replacing the dataNode that is associated with that
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Algorithm 4 remove key, expectedValue
1: currHash=hash=hashKey(key);
2: local=head;
3: result=false;
4: for int r=0; r<keySize−arrayPow;r+=arrayPow do
5: pos=hash&(arrayLength−1);
6: hash=hash>>arrayPow;
7: node=getNode(local,pos);
8: if isArrayNode(node) then
9: local=node;
10: else if isMarked(node) then
11: local=expandMap(local,pos,r);
12: else if node==null then
13: break;
14: else
15: watch(node);
16: if node != getNode(local,pos) then
17: failCount=0;
18: while node != getNode(local,pos) do
19: node=getNode(local,pos);
20: watch(node);
21: failCount++;
22: if failCount>maxFailCount then
23: markDataNode(local,pos);
24: node=expandMap(local,pos,r);
25: break;
26: if isArrayNode(node) then
27: local=node;
28: continue;
29: else if isMarked(node) then
30: local=expandMap(local,pos,r);
31: continue;
32: else if node==null then
33: break;
34: if node−>hash == currHash then
35: if node−>value != expectedValue then
36: break;
37: if (node2=CAS(local[pos],node,null))==node then
38: safeFreeNode(node);
39: result= true;
40: break;
41: else
42: if isArrayNode(node2) then
43: local=node2;
44: else if isMarked(node2)∧unmark(node2)==node then
45: local=expandMap(local,pos,r);
46: else
47: break;
48: else
49: break;
50: if r >= keySize−arrayPow then
51: free(insertThis);
52: pos=hash&(arrayLength−1);
53: currValue=local[pos];
54: if currValue ==expectedValue then
55: result = (CAS(local[pos], expectedValue, null) == expectedValue);
56: else
57: result=false;
58: watch(null);
59: return result;
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Algorithm 5 expandMap local, pos, right
1: node= getNode(local,pos);
2: watch(node);
3: if isArrayNode(node) then
4: return node;
5: if node !=(node2=getNode(local,pos)) then
6: return node2;
7: aNode=alloc(sizeof(arrayNode));
8: newPos=(node−>hash>>(right+arrayPow))& (arrayLength−1);
9: aNode[newPos]=node;
10: if (node2=CAS(local[pos]), node, aNode)) == node then
11: return aNode;
12: else
13: aNode[newPos]=null;
14: free(aNode);
15: return node2;

key with a new one with the same key. To achieve this we used Michael’s ABA-free
approach to safe memory-reclamation, called hazard pointers [24].

Hazard pointers work by having each thread announce the address of the memory
it is about to access [24]. In our algorithm each thread performs an atomic read at a
position on an arrayNode and if it is a dataNode, the thread writes the address
of the dataNode to a global array. The thread then checks to ensure that, between
reading thedataNode andwriting to the global array, the nodewas not removed from
that location. If it was removed, then the thread retries; this retrying is what makes
some other algorithms that use hazard pointers lock-free. In our algorithm we using
the atomic bitmark and expansion to bound the number of times a retry is attempted.
In practice retrying rarely occurs. Additionally, since values and not dataNodes are
stored on the arrayNodes located at max depth, there is no need to perform a hazard
pointer read at max depth, and the value read can be operated on without concern.

Michael’s hazard pointer implementation is wait-free if you can place a reference
into thewatched address list in await-freemanner. This consists of reading the contents
of an address, storing the value read into the global list, re-reading the contents,
and comparing the two values to ensure that they are the same. If they are different
it must retry until they are the same. In most algorithms this process is lock-free,
because the number of times the algorithm must retry is not bounded. That is not the
case in our algorithm, because of how we use atomic bitmarks and the fact that an
arrayNode cannot be removed. The wait-free property of hazard pointers and the
minor adjustments made to implement this algorithm in our code mean that watch
and safeFreeNode are both wait-free (see [24]).

There are several existing approaches to wait-free memory management. An
approach that includes wait-free memory allocation and reclamation is found in [31].
For testing purposes we use the Lockless library [21] for lock-free memory allocation,
and hazard pointers for wait-free memory reclamation as presented in [24]. To make
the entire system wait-free, the user would have to supply their own wait-free memory
allocator as the system calls involved in the allocation of memory are beyond the scope
of this paper.
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4.4.1 Algorithm 6: watch (value)

This function uses a thread-local variable, threadID, and a global array,
watchedNodes, to alert other threads of the node a particular thread is using.Watch-
ing is done before any read or write operations on the hash map. Each thread has a
unique value form 0 to Threads as their threadID, this corresponds to the position
on the watchedNodes array where it stores the node that it is about to use. For more
information please review Sect. 4.4.

Algorithm 6 watch value
1: watchedNodes[threadID]=value;

4.4.2 Algorithm 7: safeFreeNode (nodeToFree)

This function is used to ensure that memory is not freed while another thread is using
it. It checks the watchedNodes array for the address of nodeToFree, and if it is
not present, then the node is freed. If it is present, then the nodePool (a thread-local
linked list that holds pointers to nodes that we want to remove from the map, but
cannot because they are in watchedNodes) is checked for nodes that are no longer
being used, if one is found then that node is freed and this node takes its place in the
nodePool. Otherwise, additional space is added for this node.

4.4.3 Algorithm 8: allocateNode (value, hash)

This function reuses nodes that have been stored in the nodePool; if no node is avail-
able, then a new node is allocated. The thread first checks its thread-local nodePool
for a node that is no longer being referenced; if a node is found, then the thread returns
a pointer to that node; otherwise, the thread allocates a new node.

4.5 Supporting Functions

This section briefly describes the supporting functions referenced in the pseudocode
of the preceding algorithms.

(a) getNode: shownasAlgorithm9, returns the pointer held at the specifiedposition,
pos, on the arrayNode, local, that is currently being examined.

(b) isMarked: shown as Algorithm 10, returns true if the pointer has a bitmark
at its least significant bit; this reveals a markedDataNode.

(c) isArrayNode: shown as Algorithm 11, returns true if the pointer has a bit-
mark at its second-least significant bit.

(d) markDataNode: shown as Algorithm 12, uses an atomic OR operation to place
a bitmark on the value held at pos on local.
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Algorithm 7 safeFreeNode nodeT oFree
1: freeable=true;
2: for int i=0; i<Threads; i++ do
3: if i==threadID then
4: continue;
5: else if nodeToFree == watchedNodes[i] then
6: freeable=false;
7: break;
8: if freeable then
9: free(nodeToFree);
10: else
11: list=nodePool[threadID];
12: while list != null do
13: node=list−>value;
14: freeable=true;
15: for int i=0; i<Threads; i++ do
16: if i==threadID then
17: continue;
18: else if node == watchedNodes[i] then
19: freeable=false;
20: break;
21: if freeable then
22: free(list−>value);
23: list−>value=nodeToFree;
24: return ;
25: else
26: list=list−>next;
27: pNode=allocate();
28: pNode−>next = list;
29: pNode−>value=nodeToFree;
30: nodePool[threadID]=pNode;

(e) unmark: shown as Algorithm 13, expects a pointer to a dataNode or a
markedDataNode, and returns a pointer without a mark on the least signif-
icant bit.

(f) free: a function to free memory using the system’s memory management
scheme.

(g) allocate: a function to allocate memory using the system’s memory manage-
ment scheme.

5 Correctness

In this section we outline a correctness proof. For brevity, we give informal proofs;
these follow the style in [23]. Several useful definitions follow. Abbreviations of the
form U11 are used; the letter is the first letter of the corresponding operation e.g. U11
refers to the eleventh line of the update algorithm pseudocode.

(1) For all times t, a node is in the hash map at t, if and only if at t it is reachable
by following pointers starting from the head.

(2) For all times t, the state of the hash map is represented as Sn,m,p where n, m, and
p are defined as follows.
(a) n : the number of dataNodes in the hash map at t.
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Algorithm 8 allocateNode value, hash
1: ppNode=pNode=nodePool[threadID];
2: node = null;
3: while pNode != null do
4: freeable=true;
5: for int i=0; i<Threads; i++ do
6: if i==threadID then
7: continue;
8: else if pNode−>value == watchedNodes[i] then
9: freeable=false;
10: break;
11: if freeable then
12: if ppNode==pNode then
13: nodePool[threadID]=pNode−>next;
14: else
15: ppNode−>next=pNode−>next;
16: node=pNode−>value;
17: free(pNode);
18: break;
19: else
20: ppNode=pNode;
21: pNode=pNode−>next;
22: if node == null then
23: node=allocate();
24: node−>value=value;
25: node−>hash = hash;
26: return node;

Algorithm 9 getNode local, pos
1: res=&local[pos];
2: return res;

Algorithm 10 isMarked node
1: res=(node&0x1);
2: return res;

Algorithm 11 isArrayNode node
1: res=(node&0x2);
2: return res;

Algorithm 12 markDataNode local, pos
1: address=&local[pos];
2: res= atomic_OR_and_fetch(address,0x1)
3: return res;

Algorithm 13 unmark node
1: res=(node | 0x1);
2: return res;
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(b) m : the number of markedDataNodes in the hash map at t.
(c) a : the number of arrayNodes in the hash map at t (this excludes the main

array).

For example, the hash map is in state S2,1,0 if it contains exactly two dataNodes,
one markedDataNode, and zero arrayNodes.

Lemma 1 The hashed key of a dataNode never changes while it is in the hash map.

Lemma 2 A markedDataNode is not unmarked until the corresponding expansion
has occurred.

Lemma 3 An arrayNode is never removed from the hash map.

5.1 Safety

To prove safety, we attempt to prove Claim 1.
The hash map is in a valid state, if and only if it matches the definition of some state

Sn,m,a that is reachable, through the specified transitions, from the initial state S0,0,0.
The state of the map changes upon the successful execution of any of the following
lines: markDataNode line 2, I13, R37, or E10 (see Sect. 4.3). In Fig. 3, these lines
are abbreviated as follows: markDataNode line 2 which marks a node becomes M,
I13 which inserts a dataNode becomes I, R37 which removes a node becomes
R, and E10 which unmarks a markedDataNode and adds a new arrayNode
becomes N. Transitions that occur on the execution of markDataNode line 2 from
S1,1,0 and S2,1,0 have been omitted for clarity.

Claim 1 All transitions are consistent with the hash map’s semantics. If the hash map
is in a valid state, then if a CAS succeeds a correct transition occurs, as shown in the
state transition diagram in Fig. 3.

Fig. 3 A state transition
diagram for the hash map
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In the case of a successful update operation the state triple does not change;
however, the set of all dataNodes that exist in the map is changed (see Sect. 4.3.2).
Specifically, a dataNode is atomically removed from the set and replaced by a
dataNode with the same key but a different associated value, this occurs at line
U38.

We prove Claim 1 by induction. In the basis step, we assume that the hash map is
in the valid, initial state S0,0,0. We take Claim 1 to be the induction hypothesis. In the
inductive step, we show that, at any time t, the application of any transition on a valid
state yields a valid state.

Lemma 4 If successful, the atomic OR operation in line I11 takes the hash map to a
valid state, and marks a dataNode.

Lemma 5 If successful, the CAS on line I13 takes the hash map to a valid state, and
inserts a dataNode into the set.

Lemma 6 If successful, the CAS on line U38 does not change the state, and updates
the value associated with a key.

Lemma 7 If successful, the CAS on line R37 takes the hash map to a valid state, and
removes a dataNode from the set.

Lemma 8 If successful, the CAS on line E10 takes the hash map to a valid state
and replaces a markedDataNode with an arrayNode that contains an unmarked
version of the markedDataNode.

Theorem 1 Claim 1 is true at all times.

5.2 Linearizability

Our hash map is linearizable, because all of its operations have linearization points
(see Sect. 4.3 for details).

The linearization points below are presented for each operation,when executed con-
currently with any other operation of the hash map. If there is no concurrent execution,
then linearizability is not applicable, because the definition of a linearization point is
meaningless when defined on a single operation. In the case of a single operation, that
of sequential execution, correctness of the algorithms becomes much easier to prove;
such proofs are omitted. The linearization points of the supporting algorithms are
trivial to prove. Due to the composability of linearizability we do not need to further
consider the supporting functions. See Sect. 4.4 for a discussion of the linearizability
of the memory management functions.

Lemma 9 Every get operation takes effect upon its read on line G06.

Lemma 10 Every update and remove operation that returns true takes effect
upon its CAS on lines U38 and R37, respectively.
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Lemma 11 Every update and remove operation that returns false takes effect
when a dataNode with a different key is encountered during traversal (see Sect.
4.3.2).

Lemma 12 Every insert operation that returns true takes effect upon its CAS on
line I13.

Lemma 13 Every insert operation that returns false takes effect upon its CAS on
line I13, its atomic read on line I08, or its atomic read at line I23.

Given the derived linearization points, we are able to provide a valid sequential
history from every concurrent execution of the hash map’s operations; this proves
Theorem 2.

Theorem 2 The hash map’s operations are linearizable.

5.3 Wait-Freedom

To prove wait-freedom we must show that every call to insert, update, get, and
remove returns in a bounded number of steps [19]. This is trivial to prove for the
get, update, and remove operations as they are bounded by a for-loop, that runs
at most maxDepth times, and the progress of these operations is unhindered by the
side effects of any combination of concurrent operations. To prove wait-freedom for
insert we need to show that the number of operations that may linearize before a
particular insert operation is bounded [19].

We need only consider thoseinsert operations that act on the same position in the
hash map, as disjoint operations may proceed in parallel without issue. Furthermore,
operations that attempt to insert the same key at the same position at the same time
do not break the wait-free progress guarantee, because one operation will complete
the CAS successfully, and the others will fail and will not retry. However, when con-
current insert operations with different keys attempt to work on the same position
they would retry infinitely if it were not for maxFailCount (see Sect. 4.3.1), which
is an upper bound on the number of times that the insert operations would con-
flict before an expansion occurred at that position. In the worst-case, the expansions
would be performed until maxDepth was reached, with maxFailCount attempts
at expansion being needed every time.

All of these operations complete in a finite number of steps; this is expressed in
Theorem 3. Theorem 4 follows directly from Theorems 1, 2, and 3.

Lemma 14 The insert operation completes in a number of steps that is bounded
by maxDepth ∗ maxFailCount.

Lemma 15 The update operation completes in a number of steps that is bounded
by maxDepth.

Lemma 16 The get operation completes in a number of steps that is bounded by
maxDepth.
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Lemma 17 The remove operation completes in a number of steps that is bounded
by maxDepth.

Theorem 3 All operations of the algorithm are ∈ O(1), in the worst case.

Theorem 4 The algorithm is wait-free.

6 Performance Evaluation

We tested several algorithms against our wait-free implementation; we tested with
two different values for arrayLength, to show the space-time trade-off that this
parameter represents. The values that we chose for the arrayLength were four
(WaitFree-4) and six (WaitFree-6). As there are no other wait-free hash maps in the
literature we chose the best available lock-free maps as well as a standard locking
algorithm to test against. The locking solution that we include is the C++11 standard
template library hashmap protected by an optimized global lock (Lock-STL) [16]. The
lock-free algorithms, from the literature, that we compare against are Split-Ordered
Lists (Split-Ordered) [30] and Michael’s lock-free hash map (Michael) [23]. We use
the freely available implementations of Split-Ordered Lists and Michael’s hash map
that are provided by the Concurrent Data Structures library [18].

We also compare against two versions of Click’s hash map. The first version is
provided by him, and is written in Java (Click-Java) [2]. In order to avoid an unfair
comparison by comparingC/C++ implementations to Java code,we include the second
version which is provided by nbds (Click-C++) [6], and is written in C++. We also
compare against Intel TBB’s implementation (TBB) [15], because it is known to have
high performance.

Careful attention has been paid to the comparability of the different implemen-
tations; for example, all tested data structures are able to accept different initial
capacities. We only timed the operations of the hash map, avoiding any performance
overhead of memory management and any overhead due to the testing itself. All data
shown is the average of thirty runs, which were made to minimize the effects of any
extraneous factors in the system. All tests were run on a SuperMicro server with four
sockets, each populated by a sixteen-core AMD Opteron 6272 processor at 2.1 GHz,
and a total of 64 gigabytes of RAM. The machine was running 64-bit Ubuntu Linux
version 11.04, and all code was compiled with g++4.7, with level three optimizations
enabled. The testing variables for the graph presented in Fig. 4 include creating a
hash map that has an initial capacity of 210 elements. This hash map was filled to its
capacity and then we performed one million operations.

We divided our operations into three different kinds of distributions. The first type of
distribution is based on a reported typical operation mix for hash maps [30]. This mix
was reported without mention of an update function. We run the reported distribu-
tion, 88%get, 10%insert, 0%update 2%remove and amodified version that
includes calls to update, 88% get, 8% insert, 2% update 2% remove. The
second kind of distribution involves inverting the two versions of the aforementioned
typical usage distributionwithin reason bymoving the focus from theget operation to
the insert and update operations; this yields the following operation mixes:
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Fig. 4 Hash map performance results for different operation mixes. a 10% Get, 18% Insert, 70% Update,
2% Remove. b 10% Get, 70% Insert, 18% Update, 2% Remove. c 10% Get, 88% Insert, 0% Update,
2% Remove. d 25% Get, 25% Insert, 25% Update, 25% Remove. e 34% Get, 33% Insert, 0% Update,
33% Remove. f 88% Get, 8% Insert, 2% Update, 2% Remove. g 88% Get, 10% Insert, 0% Update, 2%
Remove
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Fig. 4 continued
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Fig. 4 continued
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Fig. 4 continued

10%get, 88%insert, 0%update 2%remove; 10%get, 70%insert, 18%
update 2% remove; and 10% get, 18% insert, 70% update 2% remove.
The third distribution consists of a more even mix of operations. We have two of these
distributions; one includes update: 25% get, 25% insert, 25% update 25%
remove; one does not include update: 34% get, 33% insert, 0% update
33% remove.

The performance results in Fig. 4 show that, on average, our wait-free algorithm
outperforms the traditional blocking design by a factor of 7 or more, and it performs
faster than the lock-free algorithms typically by a factor of 15. The lack of scalability
of the blocking solution is a result of the fact that the lock is applied to all operations,
not only those that conflict. Both lock-free solutions scale; however, they perform
worsewhenmoreinsert operations are performed, because theinsert operations
trigger more global resizes. Due to the incremental approach that we take to resizing
the hash map, we see performance improvements over the other designs in the tested
scenarios except for TBB. The other lock-free designs show an average of a 17.5 times
performance decrease when compared to Intel’s TBB implementation. In contrast, our
approach is competitive with only a 14% loss in performance to provide the stronger
progress guarantee of wait-freedom.

Onaverage, the lock-free algorithmsuse 1.8 timesmorememory thanour algorithm,
and the blocking approaches use 1.4 times more memory than our design. When we
compare the two different configurations of our algorithm, we see that when we set
the arrayLength to 6 we use 4% more memory, but complete the test runs 5%
faster. In general, it is advisable to set the size of the main array equal to the ceiling
of the binary logarithm of the expected number of elements; this allows the hash
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map to perform a minimal number of resizes, without using too much memory. The
arrayPow determines how much space is added when a hash collision occurs; it
should be set based on the expected number of hash collisions. The maxFailCount
should be set to the expected number of threads that will compete for a single location
in the hash map; in practice, the failCount never surpassed 3, but a value of 10
was used for testing. If maxFailCount is set too low, then the hash map may be
unnecessarily expanded.

The following graphs show the average number of nanoseconds per thread that each
operation took to execute the test versus the number of threads, and the average number
of kilobytes per thread for each test. These graphs contain error bars which represent
a 95% confidence interval for the results. The memory results for the Java version of
Click’s hash map were not able to be completely separated from the overhead of the
virtual machine; so, these are not reported here.

7 Relevance

Webelieve that ourwait-free hashmap allows significant performance increases across
any shared-memory parallel architecture. The most pertinent use of our data structure
would be in a real-time system where the guarantees of a wait-free algorithm are
critical for accurate operation of the system [31]. An example of our hash map in such
a system is algorithmic trading. In this case, several threads listen to network updates
on stock values that are stored in a hash map by ticker symbol. Due to the rate of
change of stock prices, a fast data structure is needed.

Our design could provide speedup to a large number of applications, such as those
in the fields of: computational biology[22]; simulation [28,34]; discrete event simu-
lation [17]; and search-indexing [36]. Specifically, our data structure could be used
in biological research where both search and computation can involve retrieving and
processing vast libraries of information [33].Additionally, our hashmapwill be used in
the implementation of a popular network performance management software solution
provided by SevOne [29].

8 Conclusions and Future Work

We presented a wait-free hash map implementation. Our implementation provides the
progress guarantee of wait-freedomwith significant performance gains over the tested
designs.We discussed the relevance of this work and its applicability in the real-world.
To facilitate real-world applications, the code for the algorithms that we discuss here
is open source, and is freely available on our website at cse.eecs.ucf.edu.

We are currently developing a project that applies advanced program analysis pro-
vided by POET [35] to automatically replace standard, blocking hash maps with our
wait-free hash map in real-world applications.
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