Int J Parallel Prog (2016) 44:278-307 @ CrossMark
DOI 10.1007/s10766-015-0373-6

The Design and Implementation of TIDeFlow: A
Dataflow-Inspired Execution Model for Parallel Loops
and Task Pipelining

Daniel Orozco! - Elkin Garcia! - Robert Pavel! -
Jaime Arteaga! - Guang Gao!

Received: 31 January 2013 / Accepted: 8 July 2015 / Published online: 21 July 2015
© Springer Science+Business Media New York 2015

Abstract This paper provides an extended description of the design and implementa-
tion of the Time Iterated Dependency Flow (TIDeFlow) execution model. TIDeFlow
is a dataflow-inspired model that simplifies the scheduling of shared resources on
many-core processors. To accomplish this, programs are specified as directed graphs
and the dataflow model is extended through the introduction of intrinsic constructs
for parallel loops and the arbitrary pipelining of operations. The main contributions of
this paper are: (1) a formal description of the TIDeFlow execution model and its pro-
gramming model, (2) a description of the TIDeFlow implementation and its strengths
over previous execution models, such as the ability to natively express parallel loops
and task pipelining, (3) an analysis of experimental results showing the advantages of
TIDeFlow with respect to expressing parallel programs on many-core architectures

This research was, in part, funded by the U.S. Government. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Government.

B Daniel Orozco
orozco@udel.edu

Elkin Garcia
egarcia@udel.edu

Robert Pavel
rspavel @udel.edu

Jaime Arteaga
jaime @udel.edu

Guang Gao
ggao@capsl.udel.edu

1 University of Delaware, Newark, DE, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-015-0373-6&domain=pdf

Int J Parallel Prog (2016) 44:278-307 279

and (4) a presentation of the implementation of a low overhead runtime system for
TIDeFlow.

Keywords Dataflow - Task pipelining - Parallel execution models - TIDeFlow -
Runtime system - Graph languages - Codelets - Iterated dataflow - Dependency graph

1 Introduction

The need for the careful allocation and scheduling of resources on modern processors
has increased the difficulty of efficiently utilizing said resources. Poor allocation and
scheduling of resources leads to contention and, ultimately, poor performance.

Abundant examples of the difficulties of resource orchestration can be found
throughout the literature of parallel execution. In many cases, the time spent developing
the application itself pales in comparison to the time and effort spent in adjusting the
timing of operations to fully utilize the available resources. These problems have been
documented, with great detail, by Garcia [16], in his work on matrix multiplication.

The progressive efforts made by Garcia can be observed in his sequence of publica-
tions [16—19], where he described each step of the development of a highly optimized
version of matrix multiplication. One interesting point evidenced in the experience
by Garcia, is the significant amount of effort that must be devoted to achieve proper
overlapping and pipelining of operations. This effort required the development of his
own primitives for synchronization and scheduling because the tools available to him,
pThreads [4] and TNT [8], did not provide the functionality that he required.

The difficulties found by Garcia are the legacy of decades of execution in environ-
ments dominated by very few processors where resource contention was not an issue.
This was because such contention either never occured or it was reasonably simple
to hand-code a solution. However, that is no longer the case for complex programs in
many-core architectures where hundreds of processing units compete for dozens of
different resources.

In such a scenario, it is highly probable that resource contention will occur, and
efforts to hand-code a solution are likely to be nontrivial. For example, Garcia encoun-
tered that correctly allocating memory bandwidth to processors at specific times was
crucial to obtain high performance. In addition to being crucial, it was also hard to
achieve, both in terms of achieving it during execution, and in terms of writing code
that would do such management. This problem is typical of modern many-core archi-
tectures, such as Cyclops-64 [7], where explicit memory management is done by the
programmer.

This paper describes an execution model where it is possible to express and execute
highly parallel programs it is necessary to manage shared resource, such as memory
bandwidth, between many threads.

The issue can be illustrated by the simple case of a parallel processor with some fast
on-chip memory and some slow off-chip memory where every processor does memory
movements back and forth from slow to fast memory and viceversa, interleaved with
some computation.

@ Springer

280 Int J Parallel Prog (2016) 44:278-307

How can this behavior, and its constraints, (bandwidth, available on-chip memory
space and so on) be expressed using traditional models?

This problem has been successfully solved in the past, albeit at great expense to
the programmer. The constructs to express resource constraints are cumbersome, and
hard to write and debug. For example, although possible, it is hard to write a program
where several tasks execute concurrently, and efficiently, sharing a single resource,
without contention. Locks and critical sections, for example, which come to mind first,
achieve concurrency, but they are prone to contention and wasted time.

Garcia’s experience is an excellent example of why traditional programming models
provide only awkward ways to address these issues. Although arbitrary functionality
is possible to be obtained with OpenMP [5], MPI [21] or pThreads [4], the solutions
found are far from simple. The programmer has to devise clever and complex constructs
that are hard to maintain when the program is upgraded or when it must run alongside
other programs.

To address the issues of traditional programming models, we propose a new model,
based on the dataflow model of computation [24]. We have used the dataflow model of
computation because it allows expression of arbitrary parallelism and synchronization,
and it dissociates the efforts of synchronization and scheduling. These characteristics
can be observed also in systems such as the Codelet model [39], and others.

Our proposed model, which we call the Time Iterated Dependency Flow (TIDe-
Flow) Model, provides intrinsic constructs for parallelism, resource management and
pipelining in a program. Parallelism is achieved through a dataflow-style graph rep-
resentation for programs and pipelining is achieved by allowing the programmer to
specify constraints for the execution of parts of the program. These constraints can
be in the form of ordering between parts of a program, availability of resources,
or number of times some other part of the program has executed. Scheduling is
completely decoupled from synchronization, greatly simplifying the development of
programs.

Figure 1 illustrates the advantages TIDeFlow provides for the description of parallel
programs. Several things can be noted in the Figure: (1) the graph programing model is
an intuitive way to represent parallel programs, (2) parallel loops are easily represented
by adding a weight next to each operation (node) in the graph (3) the execution flow
is controlled by tokens, and (4) loops are easily represented with backedges.

An equivalent program written in pThreads, that would achieve the same function-
ality, would be more difficult to write. First, threads for the parallel loops have to be
created and synchronized and second, there is not a single, simple construct that would

Fig.1 A simple TIDeFlow
program that achieves pipelining Load Tile Nroad

of a tiled computation
y
H Compute
o Tile Neompute
1
Offload
Tile Notfioad

@ Springer

Int J Parallel Prog (2016) 44:278-307 281

allow control of the execution of several instances of the operations in the way tokens
do.

We argue that the complexity of a solution using pThreads is not due to poor
implementation of the desired behavior, but rather, by the lack of adequate primitives
in serial programming models to address arbitrary parallelism.

Our TIDeFlow model addresses all of these problems. These are some of the most
relevant features of TIDeFlow:

— A graph programming model.
Native constructs to represent parallel loops.
— Native constructs to express resource constraints.
Automatic pipelining during execution.
— Dissociation between synchronization and scheduling.

We also show in Sect. 11 an implementation of a high performance runtime sys-
tem for TIDeFlow, which has very low latency, and which can be easily used by
the programmer. In our implementation of the Runtime System, we have introduced
recently developed techniques to increase the performance of the basic operations.
With our implementation, we have achieved an unprecedented runtime overhead of a
few hundred clock cycles per task.

We will describe in detail each one of the elements in the TIDeFlow execution model
and their usefulness. Then, we provide several real life examples, where we compare
in detail the implementation of common algorithms and we show the advantages and
disadvantages of using TIDeFlow over traditional programming models.

The rest of this paper is organized as follows: Sect. 2 provides relevant background.
Sect. 3 provides a broad overview of the TIDeFlow execution model. Sections 4 and 5
go into greater detail on arcs, actors and tokens, the components of the TIDeFlow
program model. In Sect. 6 we focus on the high degree of composability inherent in
TIDeFlow and in Sect. 7 we show how the TIDeFlow model allows for the runtime
system to efficiently pipeline tasks with minimal user input. Section 8 discusses the
underlying memory model of TIDeFlow, while Sect. 9 presents the implementation
of the TIDeFlow model using several examples. Section 10 introduces the concept of
parallel program traces, followed by Sect. 11 where the usability and performance of
TIDeFlow is evaluated through the execution of several benchmarks. Finally, Sect. 12
presents a brief summary of the paper and Sect. 13 describes our future work to improve
the TIDeFlow execution model.

2 Background

This section presents a brief description of some of the dataflow models analyzed for
the design of the TIDeFlow model and how their advantages and disadvantages were
taken into consideration during the formal definition of the model (a more compre-
hensive study of dataflow models can be found in the work by Najjar et al. [24]).
The first model studied was the Static Dataflow model proposed by Dennis [9]. This
model is very good at describing parallel programs but it presents difficulties in the
representation of parallel loops and in the execution of recursive functions. TIDeFlow
overcomes the former by using a single actor to represent a parallel loop. TIDeFlow

@ Springer

282 Int J Parallel Prog (2016) 44:278-307

also supports the combination of several operations in one actor, which was originally
proposed in the Macro Dataflow model [35], and implements an efficient operation
pipelining in the dataflow graph as proposed by Gao [13].

The Petri Net model [23] was also studied due to its advantages in the description
and study of parallel systems and because it models resource sharing better than the
Static Dataflow model. Specifically, the concepts of transitions and places of a Petri
Net were used to build the definition of weighted nodes in the TIDeFlow model, which
is one the features that makes TIDeFlow very distinctive from other dataflow models.

Like TIDeFlow, several models used the concept of queues to distribute the work
between actors. Among these models are the Kernel for Adaptive, Asynchronous
Parallel and Interactive Programming (KAAPI) [20], Cilk [3], X10 [11], Habanero C,
and Habanero Java [38]. But unlike those models, TIDeFlow uses different rules for
the expression of dataflow programs, namely the representation of parallel loops as a
single actor.

EARTH or Efficient Architecture for Running Threads [25,37] is a model that
implements a dataflow program using commodity hardware. This model features two
levels of parallelism classifying the actors as threaded procedures and fibers. The tech-
niques used on EARTH for the synchronization of fibers are also used on TIDeFlow,
but both models differ in the rules used for the representation of parallel loops and in
that the TIDeFlow model adds weights to actors.

TIDeFlow is a dataflow-based model and as such, a comparison with other non-
dataflow models such as OpenMP [5], or models used for SIMD machines and GPUs
(such as CUDA [26] or OpenCL [36]) would be more philosophical than practical.
For example, TIDeFlow execution is controlled by dependencies, while OpenMP is
controlled by the flow of the program (i.e. an OpenMP task does not start when its
data is available, but rather when the parent thread reaches a particular point). A more
general discussion is presented in the conclusions section.

3 An Overview of the TIDeFlow Model

The motivation behind the development of the TIDeFlow model is to support the
execution and development of HPC programs. To achieve that goal, the necessities of
High-Performance Computing (HPC) programs must be identified and understood.

We start with the observation that many scientific HPC programs are related to the
simulation of physical phenomena, and that they are usually composed of repetitive
patterns of regular computations such as Fast Fourier Transforms (FFT) [29] Matrix
Multiplications (MM) [16] or Jacobi kernels [27].

Of particular interest is that some of the innermost loops in most of these com-
putations are fully parallel. For example, each one of the dot products required to
compute each element in matrix multiplication can be executed in parallel, as well as
the butterflies in an FFT computation, and each one of the data elements in a Jacobi
computation.

One of the things that became apparent in our work with FFT, MM and Jacobi is
that successfully obtaining a highly optimized parallel program requires the ability to
express arbitrary dependencies between parts of the program. We have also became

@ Springer

Int J Parallel Prog (2016) 44:278-307 283

aware, that although it is possible to express arbitrary relationships using traditional
techniques such as pThreads, it is a laborious and error prone task.

Those reasons have prompted us to use dataflow as a starting point for TIDeFlow.
We use directed graphs to represent programs, which enables us to express arbitrary
dependencies between parts of a program.

This ability to express arbitrary dependencies between programs is a powerful tool
when specifying constructs such as task pipelining, overlapping of communication
and computation, or dependencies between parallel loops.

With our model, we support arbitrary dependence relationships between parts of a
program by expressing programs as graphs. Graphs in the TIDeFlow model are rep-
resented as a collection of actors that are connected by directed arcs. As in dataflow,
actors represent the computations of the program while arcs represent the dependen-
cies between those computations. Unlike dataflow, however, the arcs in a TIDeFlow
program are not restricted to data dependencies only, and instead, they can represent
other kinds of dependencies such as resource, control, or simply desired ordering
between computations. These extensions allow for powerful constructs such as auto-
matic pipelining of tasks or automatic load balancing.

The execution rules for TIDeFlow programs are similar to the rules that govern
dataflow programs [9]. Actors are allowed to execute whenever their input depen-
dencies are met. The arcs, which represent these dependencies, may carry tokens to
indicate that a dependency has been met. Tokens do not carry data in the TIDeFlow
model, instead, they indicate that a dependency has been met. This decision enables
tokens to represent data dependencies as well as other kinds of dependencies.

The following is a more formal explanation of the TIDeFlow execution model.

4 Actors

Actors in TIDeFlow are similar to Macro Dataflow actors [35] in that they both exe-
cute a set of sequential operations. However, the fundamental unit of computation in
TIDeFlow is an actor representing a parallel loop, since generally HPC applications
are mostly composed of such control flow statements.

The execution of these actors is supported by a fast and decentralized runtime
system, responsible for scheduling and assigning tasks to the available hardware.

4.1 Definition

The representation of a TIDeFlow actor is presented in Fig. 2, where N is the number
of loop iterations, ¢ is the number of time instances the actor has already been executed,
and f{) is the code to be executed by each loop iteration. An actor is executed a total
of T time instances; T is provided by the user at the beginning of the program. The
time instance is passed to the user code during execution, and is typically used to take
decisions about the termination of the program through return signals, or to construct
multidimensional loops.

The number of iterations in the loop () and the loop function (f ()), along with a set
of user-defined values that are available to the function, represent the actor’s properties,

@ Springer

284 Int J Parallel Prog (2016) 44:278-307

—
Token < Arc

Function that
executes one

loop iteration. Number Of Loop
| — Iterations
£=7 Not Enabled
Time / +
instance Execution State:

One of {Enabled, Not
Enabled, Firing, Dead}

Fig. 2 Generic representation of a TIDeFlow actor

1...
2for t in 0 to T-1

3
/* Parallel Loop */ f N

4
5 for i in 0 to N-1
6 £(i,t);

7 end for
8

9

end for
0 ...

Fig. 3 A parallel loop and its TIDeFlow actor

which are constant during the execution of the program. In the most common case,
these user-defined values are pointers to statically allocated memory that can be used
to pass data between actors.

The ability to represent loops as actors is a very powerful tool that isolates users
from the difficulties of managing and scheduling the tasks in parallel loops. This
is shown in Fig. 3, where the code of a generic for loop is represented by a single
TIDeFlow actor.

4.2 States

Each TIDeFlow actor holds a state that is used by the runtime system to handle its
scheduling and execution. At any moment, an actor can be either at the not enabled,
enabled, fired (executing), or dead state. The role of each state is:

— Not enabled The actor is waiting to have at least one token available per input arc.

— Enabled There is at least one token available in each input arc. The actor is eligible
for scheduling and execution.

— Fired The actor is currently being executed.

— Dead The actor will not be executed again.

Figure 4 shows a formal representation of the possible transitions between actor
states.

@ Springer

Int J Parallel Prog (2016) 44:278-307 285

"Iilillll’ X X X
¢, S,I/D,E % C,D,E %E; C,D,E .éESCID'_“

Signals
C: CONTINUE D: DISCONTINUE E:END

X: Other Signals

Signals
C: CONTINUE D: DISCONTINUE E:END
S: Scheduled by Runtime

T: Tokens available

Fig. 4 State transitions for actors (left) and time instances (right)

4.3 Execution

As in dataflow, actors may be executed when there is a token available at each of the
actor’s input arcs. When firing, an actor consumes exactly one token from each input
arc and, if it produces tokens, it will produce exactly one token in each output arc.

Also alike dataflow, TIDeFlow actors with no input arcs have their dependences
met at all times, which means that they are always available to be executed. The result
of this property is that actors with no input arcs are continuously being executed and
producing output tokens until they enter the dead state.

When an actor is scheduled for execution, it may enter into the firing state, in which
the runtime system assigns available hardware resources to it. When the actor fires,
the runtime system creates N concurrent invocations of the loop function f (), one for
each loop iteration. When all of these iterations have been computed, the actor’s time
instance ¢ is incremented by one and a termination signal is generated. An actor is
considered to have completed execution when all the invocations of f (i, t) have been
computed, withi = [0, N) andr = [0, T).

4.4 Termination Signals and Token Generation

The final step in the execution of an actor is the generation of a termination signal and,
depending on it, the generation of exactly one token per output arc.

The termination signals are defined by the return value of the operation executed
by the actor. In the current implementation, macros have been provided to the user so
that the proper return signal is generated. Each one of those signals is used to control
the way the program will continue its execution. The possible termination signals that
can be generated are CONTINUE, DISCONTINUE, and END.

CONTINUE specifies that execution of the program should proceed, and that exactly
one token must be generated into each output arc. DISCONTINUE specifies that the
actor generating the signal should not be executed again, and that it should remove
itself from the program, removing with it all of its input and output arcs. No tokens

@ Springer

286 Int J Parallel Prog (2016) 44:278-307

1int64_t Hello(void * parameters, int it, int t)
2 { Hello 1
3 /%

This program will print:
Hello World!
*/
printf("Hello World!\n");
return(END);
}

P 'S

Fig. 5 TIDeFlow Hello World program

need to be generated because the actor removed itself as well as all of its output arcs
from the program. END specifies that the actor generating the signal should not execute
again, and neither should the actors that depend on it. To achieve this, an actor returning
and END signal will mark itself as dead to prevent it from being executed again, and
it will not generate any output tokens to prevent execution of the actors that depend
on it. It is important to note that once an actor becomes dead through generation of
an END signal, all of the actors downstream from it will eventually stop execution
as well because they will not receive the tokens they require to execute, eventually
terminating the execution of the program.

4.5 Basic Program Examples
4.5.1 Hello World

Following the tradition of many programming languages, the introduction of the basic
TIDeFlow constructs is done here by presenting a “Hello World” program in Fig. 5.

Note that the Hel1lo actor used in this figure has no input arcs and as such, it is
always enabled. Also of interest is to note that all actors are parallel loops, and during
execution, the user code receives as parameters the iteration instance to execute. The
time instance and predefined, fixed user parameters, which are part of the actor state,
are also passed to the user code.

4.5.2 Iterations and Time Instances

A more comprehensive example on time instances and iterations is shown in Fig. 6.
In this example, the codelet returns CONTINUE and it will continue executing if its
dependencies are met. Also, the runtime system takes charge of scheduling and passing
the relevant parameters to each actor instance. Execution traces corresponding to the
program in Fig. 6 are shown in Fig. 7. Note that all parallel iterations in a time instance
must finish before the time instance is incremented.

4.5.3 Termination Signals

The use of termination signals is shown in the codelet of Fig. 8. The TIDeFlow graph
used is shown the same of Fig. 6. In this case, the codelet will stop after iteration t = 4.

@ Springer

Int J Parallel Prog (2016) 44:278-307 287

1int64_t Example(void * parameters, int it, int t)

2 { Example 3
3/

4 This program will iterate from it=0

5 to infinity, and

6 for each value of "t",

7 the program will execute

8 the printf statement below, in parallel,

9 for it=0,..2.

0 */

11 printf("it=%d, t=%d\n");
12 return(CONTINUE);
13 }

A possible output of this program is:
it=1, t=0

it=2,
it=0,
it=2,
it=1,
it=0,
it=0,
it=1,
it=2,

d‘d‘d‘d‘tﬂ'd‘d‘d‘
NNNRFR, PP OO

Fig. 6 TIDeFlow program example

A Time Time Time

" instance 0 instance 1 instance 2

H

2 it=2, t=0 || it=2, t=1 | it=2, t=2

7] PP

9 it=1, t=0 | it=1, t=1 | it=1, t=2 |:

9 it=0, t=0 it=0, t=1 it=0, t=2 | i

Y : o

Time

Fig. 7 Execution trace of the example program

1int64_t Example(void * parameters, int it, int t)

2 {

3 int t;

4

5 printf("Hello World at t = %d\n", t);
6

7 if (t == 4)

8 return(END);

9

10 return(CONTINUE);

Fig. 8 Use of signals from the user code to control execution

@ Springer

288 Int J Parallel Prog (2016) 44:278-307

5 Arcs and Tokens

When an actor finishes execution, it may signal other actors that depend on it by cre-
ating tokens. Tokens do not carry data, they only convey the meaning of a dependence
met from one actor to another. Data is passed between actors through shared memory.
This is similar to the EARTH model of computation [37].

The arcs in TIDeFlow graphs provide a simple way to express dependencies between
actors. Dependencies in TIDeFlow typically represent data dependencies in producer-
consumer scenarios but they may also represent resource or control dependencies.
Arcs are allowed to carry an unbounded number of tokens, although particular imple-
mentations can restrict the number of tokens to a certain maximum.

5.1 Representing Outer Loop Carried Dependencies

Although many inner loops in HPC programs are embarrassingly parallel, the itera-
tions of outer loops cannot, in general, be executed in parallel. The reason is that the
outer loops of an HPC program usually express the high level relationships between
computation stages in a program. In most cases, the outer loops in an HPC program
capture the causality relationships between parts of a program. They can represent a
time-ordering, or a sequence of communication and computation and so on.

Consider the case of an application where tiling has been employed to improve local-
ity. When optimized, the tiling approach must be accompanied by matching memory
movement and by successful memory management. In the simplest configuration, a
buffer will be used to improve locality. Given the nature of on-chip memories in many-
core processors, memory movement is explicit to and from the buffer. Figure 9 shows
in detail the dependencies of such an approach. The computation section must finish
before the results are offloaded to memory. Computation must wait for the results to
be loaded to memory.

However, there is a loop carried dependency between offloading of results and
loading of the next data block: The next loading operation must wait until the results
of the previous tile computation have finished. These outer loop carried dependencies
are similar to traditional loop carried dependencies in that they refer to dependencies
between different iterations of a loop. However, the outer loop carried dependencies
not only express dependencies between individual memory accesses by the loops but
also the conceptual (control, data, resource) dependencies between them.

Fig. 9 Dependencies between
memory movement and | Load Tile Niocaa
computation in a tiled
application
PP . y
Compute
Tile NCompute
y
Offload
— rile Nog£1oaa

@ Springer

Int J Parallel Prog (2016) 44:278-307 289

The dependency between offloading the data in a buffer and using the buffer again in
the next iteration is represented by a backwards arc in the program. To allow execution
of the first actor, the backwards edge is initialized with one token.

The concept of dependencies can be extended to allow dependencies between
different time instances. These dependencies are referred to as outer loop carried
dependencies. The name comes from the fact that there exists a loop carried depen-
dency present in the outer loop. It should be pointed out that innermost loop carried
dependencies are not possible in TIDeFlow because inner loops are expected to be
parallel and no data communication or synchronization is supported between loop
iterations within the same parallel loop.

The dependence distance in outer loop carried dependencies is controlled by the
number of tokens placed in the arc at the start of the program. In general, an outer loop
carried dependency of distance k between an actor A and an actor B can be represented
by placing k initial tokens in the arc that connects A and B. The additional number of
tokens regulate the execution in such a manner that time instance ¢ + k of B will wait
for a token produced by A at time instance 7.

5.2 Examples

The examples in this section are helpful in understanding the meaning and the use of
outer loop dependencies.

5.2.1 Overlapping Communication and Computation

Tiling [22], the common construct for memory locality, can be used to illustrate the
use of dependencies. When tiling is used in a program, some memory is loaded from
lower levels of the memory hierarchy into on-chip memory. Once the memory has
been loaded, the processors can work on it.

In an application that uses tiling, two buffers are used to overlap communication
and computation: Computation can be done on one buffer while memory movement
is done on the other. Figure 10 shows a TIDeFlow program that will optimize the
use of memory bandwidth and processor resources. The number of loop iterations in
the loader codelets is 8 because, for this example, we assume that it takes exactly
8 memory-movement threads to saturate the memory bandwidth of the many-core
processor used. The dependency between the loaders and their respective compute
actors are data dependencies; they indicate that computation can only proceed when
the load has completed. Of particular interest is the dependency between the loader

Fig. 10 TIDeFlow construct for
overlapping of communication Loadl 8 > Load2 8
and computation

Comp2 | 32

@ Springer

290 Int J Parallel Prog (2016) 44:278-307

Compl and Load2

become enabled

‘ Compl Compl Compl Compl Comp2 Comp2
Compl Compl Compl Compl Comp2 Comp2
Compl Compl Compl Compl Comp2 Comp2
Compl Compl Compl Compl Comp2 Comp2
Compl Compl Compl Compl Comp2 Comp2
Compl Compl Compl Compl Comp2 Comp2
Compl Compl Compl Compl Comp2 Comp2
Compl Compl Compl Compl Comp2 Comp2
Compl Compl Compl Loadl Comp2 e ° -
Compl Compl Compl Loadl Comp2
Compl Compl Compl Loadl Comp2
g Compl Compl Compl Loadl Comp2
- Compl Compl Compl Loadl Comp2
§ Compl Compl Compl Loadl Comp2
x Compl Compl Compl Loadl Comp2
Compl Compl Compl Loadl Comp2 -
H H Ll
v V Time
Loadl
Comp2 enabled enabled
Conventions
| Loadl | Load2 Compl

Fig. 11 A possible execution trace for the program of Fig. 10

actors, which indicates a resource dependency: One of the loader actors has to wait
for the other to finish there is not enough available memory bandwidth.

Figure 11 shows a possible execution trace for the program of Fig. 10. To simplify
the trace example, it has been assumed that only 16 processors participate in the
computation.

5.2.2 Using Outer Loop Carried Dependencies

The use of loop carried dependencies can be illustrated through an application where
several buffers are available. Each buffer is used to hold some data that needs to be
computed as a tile [22].

Processors can asynchronously do memory movement to put memory into the
buffers. In that way, more than one buffer can be ready for execution, and more than
one memory transfer, either from main memory or to main memory, can be happening
at the same time. This approach is useful when the computation of a tile takes an
unpredictable amount of time, since it allows slow computation of some tiles to be
amortized over several tiles.

Now, let us consider the dependencies between the operations. Three main opera-
tions are done: (1) Computation of a tile, (2) prefetching the data needed by a tile and
(3) offloading the data computed by a tile.

The computation of a tile can proceed only after the data prefetching for that tile
has completed. For that reason, there is a dependency between the memory movement
(percolation) [17] required and the computation of the tile. In a similar way, offloading
the data computed can only happen once the computation of the tile has finished, so

@ Springer

Int J Parallel Prog (2016) 44:278-307 291

there is a dependence from the computation step to the offloading step. However, there
is not an immediate dependency between offloading of a tile and loading of the next
tile. In fact, if there is a total of k buffers, a particular buffer is only reused after other
k — 1 buffers have been used.

For this reason, there is an outer loop carried dependency between offloading a
buffer and prefetching the same buffer with dependence distance of k. Figure 1 shows
the dependency graph for this situation.

5.2.3 Expressing Pipelining Through Backedges

The program of Fig. 12 presents an example of how backedges in programs cause
pipelined execution.

The program represents a typical tiled computation where three buffers are avail-
able. First, buffers are loaded with data, then, computation is performed using the data
loaded, followed by an unloading of the data.

As can be observed in the figure, the backedge between the O actor and the L
actor restrains the speed at which L can execute, ultimately resulting in an optimal
pipeline. The resulting pipelined execution was possible, in this case, because there
were enough processors to execute the actors as they become available.

5.2.4 A Matrix Multiplication Kernel

Figure 13 shows one of the ways to implement the inner kernel of matrix multiply pre-
sented by Garcia et al. [16] and a high level pseudocode for the computation of the tiles.

Fig. 12 Execution trace of a
pipelined program

L|2Fb—»C|3—» 0|2

Load Compute Offload
Tile Tile Tile
Program Graph

C enables O Execution Trace
[| | | 1 1
A
ﬁ o) o o (0] (o} o
a ojflojloglofjo||o
$ Cc Cc C C Cc C
0 1 1 N
g clcllcllcllclc
" c | Al cll ¢ | ¢
L{L|L L L L
tizlz] [z el T .
Time o
L enables C O enables L
_—

@ Springer

292 Int J Parallel Prog (2016) 44:278-307

... —»| BufferLoader 8
2 /* Globals */

3 int buffer;

4... \

5 for step in 1 to NumSteps I

6 SubTile 1024
7 /% Select which buffer to use */

8 buffer = step % 2;

9 A\

10 /% Load buffer */ L] Busferoffiocader 8

11 for i in 0 to 7

12 BufferLoader (i)

13 end

14

15 /% Innermost loop: Computes one tile %/
16 for i in 0 to 1023
17 SubTile(i);

18 end for

19

20 /% Offload buffer x/
21 for i in 0 to 7

22 BufferOffloader (i)
23 end

24

25 end for

2 ...

Fig. 13 Tiled matrix multiplication using TIDeFlow

The implementation uses two buffers in on-chip memory. A loop carried dependency
of distance 2 between the Buf ferLoader actor and the Buf ferOf f1oader actor
allows overlapping of communication and computation between the two buffers used
in the program. Because all the innermost parallel loops are embarrassingly parallel,
they have been expressed as single TIDeFlow actors.

5.2.5 A Program Where Actors Execute Only Once

The use of the DISCONTINUE signal can be illustrated with the example of Figs. 14
and 15.

The actors in the program of Fig. 15 produce a DISCONTINUE signal when they
finish execution, effectively removing the actors from the program graph. The act of

Fig. 14 Example of a program

with sequential statements L.

2x = malloc(...);
3

4for i in 0 to N-1
5 x[i] = O;

6

7for i in 0 to N-1
8 x[i]++;

9

10 free(x);

@ Springer

Int J Parallel Prog (2016) 44:278-307 293

Enabled because it has malloc codelet becomes dead after firing.

no input dependencies. ‘ Dependencies .removed.
Actors with no dependencies become enabled.

") =0 / =1 t=1 t=1
malloc malloc | 1 malloc | 1 malloc | 1
Enabled Dead Dead Dead
t=0 = = =
j =0 t=1 t=1
X[11=E x[i1=0 m“ mn
Not Enabled Enabled Dead Dead
t=0 = =i =
£=0 t=0 t=1
X[i]+E X1+ XL “
Not Enabled E Not Enabled Enabled Dead
t=0 £=0 t=0 t=1
free 1 free 1 free 1 free 1
Not Enabled Not Enabled Not Enabled Dead

Fig. 15 TIDeFlow program graph for the the program of Fig. 14

HEH
.

removing some actors from a program may result in enabling other actors, as is the
case in Fig. 15. The overall effect is a TIDeFlow program with an execution similar
to that of a serial program.

6 Composability

To increase the programmability of a model, it is important to provide the programmer
with a high degree of modularity and a layer of abstraction to avoid burdening the
programmer with implementation details such as the number of available processors.
One way to achieve this is through Composability that increases portability drastically
(Fig. 16).

Composability allows large programs to be built using smaller programs, each one
represented by an actor that is executed only once (i.e. N = 1) whenever it is enabled
and that generates a CONTINUE signal after completion. The main advantage of this
approach is that two actors, representing copies of the same small program as part of a
larger one, do not interfere with each other during execution. This because each actor
has its own local state for the lifetime of the program. However, the use of existing
and small programs for the construction of larger programs excludes the possibility
of having recursive calls in TIDeFlow since a program cannot be build using copies
of itself.

As TIDeFlow is designed from the ground up to support a high degree of compos-
ability, the rules to execute TIDeFlow composable programs and actors are the same
as those defined in Sect. 4. The rules for execution of an actor A that represents a small

Fig. 16 C interface to use
TIDeFlow programs as part of
larger programs

int = AddCodeletSet (
CodeletSet *ProgramContext,
CodeletSet *Program_ To_Use,
char * Name

)i

[O R I

@ Springer

294 Int J Parallel Prog (2016) 44:278-307

t=0
malloc | 1
Enabled
l Not enabled because
- t=0 parent is not enabled.
x[1]=0 N
Not Enabled <
1+ Actors that are programs
! eo are required to have a
x[il++ | N single iteration.
Not Enabled
Not Enabled
£=0
free 1
Not Enabled

Fig. 17 Construction of a program using small TIDeFlow programs

program P are similar: The program P starts execution when the actor A fires. The
actor A completes execution when the program P finishes.
The example of Fig. 17 demonstrates the composability of our model.

7 Task Pipelining

This ability to express task pipelining constructs at the program graph level is a pow-
erful feature that can significantly simplify the optimization of HPC programs. In
Garcia’s optimization of the matrix multiplication program [16], it was found that
a significant amount of time and effort was devoted to designing and implement-
ing a good strategy for task pipelining. Garcia’s efforts included the development
of hand-made synchronization primitives and a synchronization scheme develuped
using previous program traces. Although effective, Garcia’s approach is cumbersome,
time consuming, and potentially error prone. The details of these efforts are further
expanded upon in several publications [14,16-18].

In contrast, the development of a TIDeFlow program designed to compute the same
matrix multiplication is drastically simplified through the use of TIDeFlow graphs.
The weighted actors and the initial tokens in the backedges in TIDeFlow program
graphs allow for natural pipelining of tasks during execution. Figure 12 demonstrates
that, given an infinite number of processors, the computation is able to determine and
utilize the optimal pipelined schedule as per Dynamic Dataflow [2]. Thus, the task of
scheduling and pipelining is left to the TIDeFlow runtime system.

While the majority of task pipelining duties are left to the runtime, a programmer
can still benefit from traditional techniques used in the optimization of programs.
Aside from optimization of the underlying tasks of the programs, these techniques
can also be used to assign priorities to tasks to further improve the effectiveness of the
pipelining during execution.

Priorities are provided as a mechanism through which the programmer can iden-
tify the tasks that make up the critical path of execution. The runtime system can
then schedule these tasks with a higher priority to prevent stalls wherever possible.

@ Springer

Int J Parallel Prog (2016) 44:278-307 295

And, because dependencies are still enforced, the correctness of the results remains
unchanged.

Figures 10 and 11 provide an example of a situation where priorities can be
employed to minimize stalls during execution. The tasks that form the critical path of
the program (Fig. 10) are the loader actors, which have been set to have high priority.
During the execution (Fig. 11), the loaders are executed as soon as possible to enable
the next set of computation tasks and to prevent stalls.

Experiments with the TIDeFlow system have shown that only two levels of priority
(low and high) are enough to assist the scheduler during execution.

8 Memory Model

TIDeFlow will run correctly on any system with a Sequentially Consistent memory
model. TIDeFlow will also run correctly on most modern architectures, such as x86,
ARM and Cyclops-64, because their memory models allow the operations required
by TIDeFlow. TIDeFlow can also run with other, weaker memory models. For a full
description of what, exactly, is required from a memory model to support the TIDeFlow
system, read the rest of this section.

The memory model of TIDeFlow has been designed to provide useful constructs
for programmers while at the same time allowing simple practical implementations in
many-core systems.

Seeking simplicity of implementation and design, the TIDeFlow model uses shared
memory as the main mechanism for data communication. This decision facilitates
communication between actors at the expense of the necessity of additional rules to
avoid race conditions.

The following rules form the core of the TIDeFlow memory model.

Rule 0: A TIDeFlow system has shared memory. All processors have access to all
the shared memory. Processors can allocate and deallocate memory for their use or
for use by other processors. Global variables are allowed.

Rule 0 specifies that TIDeFlow is a shared memory system. And all communication
is done through memory.

Rule 1: Memory operations made by a loop iteration appear to complete in program
order to the processor that issued them. No ordering is guaranteed between memory
operations issued by different processors.

Execution of each one of the loop iterations that compose an actor appears serial.
Rule 1 supports serial execution of individual loop iterations. Rule 1 does not provide
any limitations between memory accesses made by two different processors.

Rule 1 does not specify what happens when loop iterations that belong to the same
actor try to access the same memory location. Rule 1 assumes that actors represent
parallel loops without data races and not other kinds of loops.

Note that the TIDeFlow model does not allow data sharing between iterations that
belong in the same parallel loop. Attempts to share data or to build synchronization
constructs may result in undefined behavior.

@ Springer

296 Int J Parallel Prog (2016) 44:278-307

Rule 2: If there is a dependency from an actor A to an actor B, and A produces
one token 4 that is later consumed by B, then all of A’s memory operations before the
token i was produced will be seen as complete by B when B consumes the token /.

Rule 2 specifies that all memory operations from an actor will be seen as complete
by all other actors that depend on it. Rule 2 is the main mechanism for orchestrating
data sharing.

Rule 3: All memory operations in a program must have completed when the pro-
gram ends.

Rule 3 supports composability. All memory operations of a program will complete
once the program completes. This rule ensures that actors depending on data produced
by a program (that was used as an actor) will have full access to all the memory
produced by the program.

The requirements for the memory model of TIDeFlow seek to allow low-overhead
runtimes because copying of data is not required between actors. However, this
advantage come at the expense of having the user be responsible for the memory
management.

9 TIDeFlow Implementation

The previous sections described the development of the theoretical foundations for
the TIDeFlow execution model. This section focuses on the challenges to overcome
in the implementation of our execution model as a runtime. In our implementation,
we pursued several goals: a focus on simplicity, the capability to represent the model
with fidelity, and the ability to provide high performance while remaining easy to use.

The remainder of this section describe the details of each part of the tools that form
the TIDeFlow system.

9.1 TIDeFlow C Interface

A TIDeFlow program can be described as a combination of graphs and small func-
tions (codelets) such as those of Fig. 6. A graph-based language [12] was considered
as a solution to represent TIDeFlow graphs. However, we decided that a programming
model based on the C programming language was sufficiently simple and could be
developed in a feasible amount of time while still allowing enough flexibility to rep-
resent a large set of applications. In this C interface, the initialization of the runtime
system and creation of TIDeFlow programs are the responsibility of the programmer.
We will now discuss the initialization and execution of TIDeFlow programs.

9.1.1 Initializing the TIDeFlow Runtime System

The first step in running a TIDeFlow program is to initialize the runtime and allocate
processors. The C API for this is as follows:

void InitRuntime(intNumProcessors);

@ Springer

Int J Parallel Prog (2016) 44:278-307 297

The initialization process completes three key tasks. First, it allocates the specified
number of processors. Second, it initializes a CB-Queue [32,33] that is modified to
support and manage TIDeFlow actors. Finally, it signals all processors to begin polling
the global queue to find work to execute.

9.1.2 Creation of TIDeFlow Programs

The creation of a TIDeFlow program consists of four key steps. First, a memory context
must be created for the program. Next, all actors must be added to the program graph.
Then, all dependencies between actors must be defined. Finally, static parameters are
passed to the actors.

Creation of a Program Context A context must be created for a TIDeFlow program.
A pointer to this context can be used to identify the program and also to include that
program as part of larger ones. The following C interface is used:

CodeletSet * CreateCodeletSet(char *x ProgramName);

Addition of Actors or Programs to a Context After the creation of a program context,
actors must be added to it using the interface depicted in Fig. 18. This interface allows
us to specify the function used for the actor and also the number of loop iterations the
actor will execute the function. An integer is returned that serves as an identifier to
the actor in conjunction with the pointer to the context.

In addition, the interface allows for the inclusion of priorities for the execution of
the actors. The two levels of priorities supported for TIDeFlow (low and high) help the
programmer to guide the scheduling and synchronization task based on his knowledge
of the application. During runtime, high priority tasks will always be scheduled first
over tasks of low priority. This allows actors in the critical path to be executed first.
Addition of Dependencies Between Actors After adding all actors in a TIDeFLow
program, dependencies between them need to be specified. The integer returned in
the creation of the actor is used to establish its dependencies. The interface to specity
dependencies is given in Fig. 18.

Providing Static Parameters to Actors Communication between TIDeFlow actors is
done through shared memory and not through tokens. For this reason, actors require

1 int AddCodelet (1void SetDependency (

2 CodeletSet *ProgramContext, CodeletSet *ProgramContext,
3 void (*function) (void *, int), int SourceActor,

4 int LoopIterations, int DestinationActor,

5 char * ActorName int TimeOffset,

6); char *DependencyName

7

8

9

B N Y}

)i
void SetPriority (
CodeletSet *ProgramContext,
10 int ActorID,
11 int Priority /% 0: High, 1: Low %/
12)i

Fig. 18 C interfaces to add actors and specify dependencies

@ Springer

298 Int J Parallel Prog (2016) 44:278-307

1void SetStaticData(

2 CodeletSet *ProgramContext,

3 int ActorID,

4 uint64_t Data[8]

5)i

6

7uint64_t GetStaticData(

8 void * parameters, /x Provided by the runtime =*/
9 int DataIndex /* An integer from 0 to 7 =*/

10)i

Fig. 19 C interface to set and get static data particular to an actor

pointers to memory where they can produce and consume data. Up to eight 64-bit con-
stants can be provided to each actor using Set StaticData during the construction
of the program. At runtime, actors can obtain any of these values through a call to
GetStaticData. Their interfaces are provided in Fig. 19.

9.1.3 Running TIDeFlow Programs

After a program is properly set up and the runtime is initialized, a TIDeFlow program
can be given to the runtime for execution. The interface is as follows:

void SignalSet(CodeletSet *x ProgramContext);

9.2 Intermediate Representation

During compilation, the graph contained in a TIDeFlow program is represented auto-
matically by the TIDeFlow toolchain as an array of structures. These structures are
composed of a set of integers that make reference to actors and that describe the con-
nections of the arcs in the program. Each actor has an associated offset in the array of
structures, which is used every time the compiler needs to make a reference to it. Arcs
between actors are expressed as a pair of integers that represent the actors it links.
This intermediate representation offers the possibility to change the program at dif-
ferent stages of compilation, to include additional compiler optimization features in
the future, and to allow portability of the program to various architectures. Addition-
ally, composability benefits from this intermediate representation since duplication of
programs can be made by just copying the array of structures that represent a program.

9.3 Compilation and Execution of a TIDeFlow Program

In the last stage of compilation, the TIDeFlow toolchain translates the intermediate
representation into an executable data structure capable of being executed in the target
architecture. The translation uses pointers to represent the offsets of actors and their
dependencies according to the array of structures in the intermediate representation.
During this stage, memory is also allocated and initialized with the properties and
states of the actors.

@ Springer

Int J Parallel Prog (2016) 44:278-307 299

Once the executable data structure is ready, the runtime system receives a pointer to
the program and starts its execution by scheduling all the actors with no dependencies
at t = 0. During execution, the runtime system monitors constantly the number of
actors to be scheduled and finishes the program as soon as this number reaches zero.

The TIDeFlow program is executed right after the translation of the intermediate
representation into the executable data structure since saving this structure on a non-
volatile memory is not supported at the moment. For this reason, the compiler and the
launcher are merged in the same tool in the TIDeFlow toolchain.

9.4 TIDeFlow Runtime System

The TIDeFlow runtime system supports the execution of programs by providing
scheduling, synchronization, initialization and termination of programs. It has been
designed to support execution in an environment without virtualization. The runtime
system is directly embedded in the application binary and it is able to perform all task
management operations. How this is accomplished and the role of the runtime system
and its relationship to the toolchain is shown in Fig. 20.

Figure 20 provides a comparison of TIDeFlow’s approach to compilation and exe-
cution with that of a traditional approach. Note that TIDeFlow is able to run without
the support of a traditional operating system. Instead, TIDeFlow’s runtime system,
embedded in the application binary, performs all task management operations.

The implementation of TIDeFlow’s runtime system presented several challenges
that ultimately resulted in interesting advances and tools: A fully distributed runtime
system, a programming language to describe program graphs, concurrent algorithms
[32], and new ways to reason about performance models [34].

9.4.1 Synchronization and Scheduling

The basic unit of execution for scheduling and execution in the runtime system is the
task. As explained, each one of the parallel iterations of an actor is represented by a
single task in the runtime system. To allow immediate visibility of available work, all
tasks that become enabled are written to a queue that can be accessed concurrently by
all processors.

serial Traditional Approach Conventions
Language A very poor design choice!
l e
i - -4 erating Programs
Compiler - Executable < L | System | g:
TIDeFlow > Source
= Code
Source to
3 Standalone
Translator
Codelet Code Executable
Graph-Based LM ==)e----:
Language Runtime System

Fig. 20 TIDeFlow toolchain

@ Springer

300 Int J Parallel Prog (2016) 44:278-307

Processors
Obtaining Executing Producing Executing
Work Work Work Work
P P P .« P

r M
| .
== Ny High Performance
ig
Work Pool OQueue

Fig. 21 TIDeFlow scheduling queue

Perhaps the most important feature of the runtime system is that its control is fully
distributed. There is no one process, either thread or task, in charge of the runtime
system duties. Instead each processor concurrently (1) performs its own scheduling
and (2) handles localized signals related to the actor being executed by the processor,
including enabling other actors and writing them to the global task queue. The TIDe-
Flow runtime system is fully distributed with regard to the processors, because none
of them is responsible for scheduling, but it is still centralized from the point of view
of the memory because the runtime system uses a single, global queue.

Development of a decentralized runtime system required advances in concurrent
algorithms and in the internal representation of actors and tasks. These advances
were achieved by work in concurrent algorithms for runtime systems [31] and in
task representation and management [32,33]. The resulting high performance queue
(Fig. 21, and described in detail by Orozco et al. [34]) was able to adequately support
task management with very low overhead.

10 Parallel Program Traces

Program traces are a powerful way to provide insight into the behavior of a paral-
lel program. Through profiling and traces, a programmer can take decisions about
parallelism, priorities, resource allocation and other things.

A program trace describes the activity that each processor executed at any point of
time. The information reported for each processor includes the task that the processor
was executing, and in some cases, the dependence relation between tasks.

TIDeFlow provides native support to create program traces. The runtime system
provides the option of logging all events and producing a report file afterwards. The
events observed by each processor are assembled together to produce a program trace
of the TIDeFlow program executed. The logs of events at each processor are placed
into a global queue that uses the CB-Queue algorithm, where they are read at the end
of the execution and dumped to a file.

Figure 22 shows an example of a program trace where the horizontal dimension
represents time, the vertical dimension represents the processors, and the color rep-

@ Springer

Int J Parallel Prog (2016) 44:278-307 301

Fig. 22 Execution trace of matrix multiplication

resents tasks. This specific trace, and its associated profile, were obtained from the
execution of an early version of matrix multiply.

Profiles, such as the ones in Fig. 22, are useful because they show where the time
is spent in the program and allows the programmer to identify sources of overhead.

A separate visualization tool is also provided with TIDeFlow to allow easy interpre-
tation of the profiler plots. The visualization tool can read profiler files and provides
an interactive environment where the programmer can zoom into parts of the program
to better analyze its behavior.

11 Experiments

In this section, we present the results of experiments designed to evaluate the usability,
scalability, and performance of the TIDeFlow model.

While we believe that TIDeFlow is competitive with other parallel execution models
designed with HPC in mind, such a study is beyond the subject of this paper and will be
examined in a later publication. Instead, the objective of this section is to demonstrate
the effectiveness of the TIDeFlow model and to evaluate its usability as a tool for the
design and execution of parallel programs in many-core architectures.

11.1 Experimental Testbed
11.1.1 IBM Cyclops-64

All experiments were executed on the IBM Cyclops-64, a many core architecture with
no cache and 160 non-preemptive execution units per chip, of which 156 are available
to the user.

Cyclops-64 has been described extensively in previous publications [7,15,28]. We
chose Cyclops-64 for our experiments because it possesses a large number of execution
units that are useful to study the scalability and parallelism of HPC programs.

@ Springer

302 Int J Parallel Prog (2016) 44:278-307

The TIDeFlow runtime system, associated tools, and the programs used in the
experiments were all written in C and compiled with ET International’s compiler with
compilation flags -03 -g.

As of the writing of this paper, physical Cyclops-64 chips are only available to the
US government. For this reason, the experiments were executed on FAST [7], a very
accurate Cyclops-64 simulator that has been demonstrated to produce results that are
within 10 % of those produced by the real hardware.

11.1.2 Test Programs

We tested the TIDeFlow approach through three key benchmarks. First, we simulated
the propagation of an electromagnetic wave in 1 and 2 dimensions using the FDTD
algorithm (FDTD1D and FDTD2D). Next, we utilized a 13-point Reverse Time Migra-
tion (RTM) kernel. Finally, we studied an implementation of a matrix multiplication
(MM) algorithm.

FDTD1D computes a problem of size 499,200 and tiles of size 800 for 3 timesteps.
FDTD2D computes a problem of size 750 x 750 and tiles of size 25 x 25 for 3 time-
steps. RTM was run for 8 timesteps with an input size of 132 x 132 x 132 and tiles of
size 6 x 6. The MM benchmark multiplies matrices of size 384 x 384, using tiles of
size 6 x 6. For this benchmark, we utilize the tiling described in [15]. The parameters
and sizes of the problems solved were chosen to be among the largest problem sizes
that could be simulated.

11.2 Scalability of the Runtime System

To investigate the scalability of the TIDeFlow model, each test program was run
with a wide range of active processing units. Figure 23 summarizes the experimental
results. The figure reports the speedup resulting from using multiple processors when
compared to an execution that used only a single execution unit. As can be seen, the
FDTD benchmarks results behave almost as a straight line until around 156 processors,
while the MM and RTM benchmarks are linear until 32 processors approx., becoming
a flat line after that number without decrease in performance. Examination of the
MM and RTM benchmarks reveal that the scalability becomes saturated around 32
processors due to the low amount of parallelism available, and not due to problems
with the TIDeFlow implementation, which is able to support high levels of parallelism,
as in the case of FDTD.

These results demonstrate that TIDeFlow is an excellent alternative for the compu-
tation of scientific programs using large numbers of processors.

@ Springer

Int J Parallel Prog (2016) 44:278-307 303

128 -
61 Scalability
32 A
S
3 16
[}
8 8
(%]
4 -
FDTD1D
2
—&— FDTD2D
1 T T T T T

1 2 4 8 16 32 64 128
Processors

Fig. 23 Scalability of several kernels using TIDeFlow

11.3 Performance of the Runtime System

Evaluation of the performance of a runtime system must be done with care to avoid
the common problem of evaluating the performance of the application and not that of
the runtime system itself.

A possible approach to evaluate the performance of the runtime system will be
to indirectly measure it by comparing many runs of several applications with varying
execution parameters such as memory traffic, system load, task size and so on. Althouth
this is a valid approach, its is indirect and extracting meaningful results from such
measurements is hard.

In our case, having the source code of the runtime system, we enjoy the advantage
of being able to fully instrument it, and together with access to a hardware counter in
the processor that counts the number of cycles elapsed since the processor booted, we
are able to exactly log the amount of time spent by the runtime system.

Our instrumentation consists of (1) one instruction to read the hardware cycle
counter in the processor upon entry in the runtime system code, (2) one instruction
to read the hardware cycle counter upon exit into the runtime system and (3) very
few instructions to store the values into memory (in practice, with a multiple store
instruction, and an atomic increment, it is possible to store both values and update a
pointer with only 2 instructions). At the end of the program, the runtime system dumps
the values read to be analyzed.

The data obtained from the profiler can be used to find how much time was spent
inside the runtime system. Each data entry provided by the profiler is composed of the
following fields: Start and end time for a task executed, a boolean value that is true
when there are more tasks available than the total number of available threads, and
the total time spent inside the runtime system,including idle time waiting for tasks to
become available.

We can easily identify the overhead of the runtime system if we look at the profiler
data for tasks that were executed when there where enough tasks available for all
threads. The overhead obtained this way would be a worst-case overhead, because the
scheduler will be working for the most number of threads. In all other situations, the
overhead will be equal or better (lower) than the one we measured.

@ Springer

304 Int J Parallel Prog (2016) 44:278-307

Inspection of the profiles in our applications has shown one case (MM) where 8580
tasks meet our criteria (the criteria is: tasks executing while there are enough tasks
to keep all threads running). The average overhead introduced by the runtime system
was 2 us (1065 cycles), and, for 89 % of all tasks, the overhead was between 1.24
and 1.26 ws (620 and 630 cycles). This is a remarkably low overhead, considering
that, for example, the overhead of the runtime in an OpenMP parallel for is
greater than 100 ws (50,000 cycles) in an optimized implementation [6]. Other cases
exhibit similar behavior. In RTM, our longest and most complex application, we have
found that 97 % of the time, the runtime overhead was below 1.8 ws (900 cycles), and
99.65 % of the time, the overhead was below 6 s (3000 cycles).

The speed of the runtime system can be put in perspective if it is compared to a
typical task, which is 60 ws (30,000 cycles) for hightly optimized, tiled, small assembly
tasks, or longer for more typical tasks writen in high programming languages. Even
in the case of small, assembly-written tasks, the runtime system has a very small
overhead of around 3 % or lower.

The runtime system is able to achieve a very high performance because it uses a very
high performance queue algorithm [34] complemented with the polytasks technique
[30] which allows compressed representation of tasks, increasing the efficiency of the
runtime system.

The profiling of our runtime system shows that it has performance comparable to
the hand-written assembly runtime system by Garcia [16]. Our profiling inspection
also shows that, like Garcia, we were able to closely approach the peak performance
of Cyclops-64.

12 Summary and Conclusions

This paper has introduced a novel parallel execution model named TIDeFlow for the
design and execution of HPC programs targeting many-core architectures.

Its main features were presented: the representation of a parallel loop as a single
actor using weighted nodes, the use of tokens in arcs to express loop-carried depen-
dencies, and its fully-distributed runtime system, where each processor schedules its
work.

The three major components of the TIDeFlow model have also been presented and
defined: The behavior of actors, explained using Finite State Machines; its memory
model; and the rules needed to describe loop-carried dependences as weighted arcs.

TIDeFlow exhibits several important characteristics for the design of efficient HPC
programs: Its graph programming model allows expressing parallelism with a greater
level of abstraction in comparison with traditional programming models based on
synchronization primitives; its composability property is an effective way to build
complex programs; its ability to express pipelining between tasks by adding tokens
to arcs and the parallel nature of its runtime system that results in automatic load
balancing.

The experiments, performed on a (simulated) 160-core architecture, showed that
TIDeFlow presents very good scalability and very low overhead in the execution of
HPC programs due to the distributed nature of its runtime system and the use of a
high-throughput queue algorithms.

@ Springer

Int J Parallel Prog (2016) 44:278-307 305

TIDeFlow is neither better not worse than other execution models not based in
dataflow (such as OpenMP, CUDA or OpenCL). It is different: TIDeFlow allows con-
trolling execution through dependencies rather than through control flow. In terms of
overhead of implementation, we have shown in Sect. 11 that the overhead of most of
TIDeFlow’s runtime operations is lower than the overhead of OpenMP’s runtime oper-
ations, however, this comparison is of limited usefulness since the intrinsic operations
of TIDeFlow (such as actor scheduling and signaling) are different to the intrinsic
operations of OpenMP (such as barriers).

We have searched the literature to find publications that would allow us to make
a comparison between TIDeFlow and other systems, and we have found that a direct
comparison is not possible because other studies do not use comparable hardware, they
do not have the same intrinsic operations, or they just focus on other issues such as raw
performance, memory latency, cache behavior, and other issues that do not apply go
our experimental testbed. As an example, typical issues with GPU programming deal
with memory bandwidth and processor utilization, not with scheduling or signaling
of tasks. Typical OpenMP papers deal with absolute performance, but rarely with
ease of programmability and so on. Some language extensions such as OmpSs[10]
complement OpenMP to allow dependencies, but publications on it focus on overall
runtime of some applications rather than on the individual cost of one runtime system
operation and their experiments have been conducted on architectures that are different.
As such a direct comparison will be of limited use.

13 Future Work

Future work will focus on improve resiliency to the failures that are inevitable in
exascale systems. Current techniques based on global synchronization rely on global
checkpoints to save the state of the processors. However, these techniques are inade-
quate for systems with hundreds or thousands of processors because failures in such
a machine occur more often and propagate faster than global checkpoints can handle.
A technique based on local checkpoints and redundant policies could be explored and
introduced into TIDeFlow.

A study in energy efficiency must also be performed in order to make TIDeFlow
energy-aware. The scheduling rules and the runtime system must be improved to sup-
port the design of HPC programs with a compromise between its energy consumption
and its computational performance.

Additionally, we will perform a detailed comparison of TIDeFlow and more con-
ventional GPU-based solutions. However, preliminary study suggests that the use of
task queues in TIDeFlow will relieve the programmer of the burden of grouping the
work in a manner designed to maximize occupancy on GPUs. Similarly, while we have
primarily focused our experiments on regular applications, irregular applications make
up a significant portion of scientific computing and are a highly researched problem
in GPU computing. Because of the dataflow inspired nature of TIDeFlow, we are able
to leverage existing work and techniques to better approach these problems [1].

@ Springer

306 Int J Parallel Prog (2016) 44:278-307

Finally, future research will address the inclusion of new features in the TIDeFlow
execution model such as the execution of actors with arbitrary priorities, the use of
mutual exclusion constructs, and the support for recursion.

Acknowledgments This research was made possible by the generous support of the NSF through Grants
CCF-0833122, CCF-0925863, CCF-0937907, CNS-0720531, and OCI-0904534.

References

1. Agrawal, G., Saltz, J.: Interprocedural data flow based optimizations for compilation of irregular
problems. In: Huang, C.H., Sadayappan, P., Banerjee, U., Gelernter, D., Nicolau, A., Padua, D. (eds.)
Languages and Compilers for Parallel Computing, Lecture Notes in Computer Science, vol. 1033, pp.
465-479. Springer, Berlin (1996). doi:10.1007/BFb0014218

2. Arvind, Culler, D.E.: Dataflow Architectures, pp. 225-253. Annual Reviews Inc., Palo Alto. http://
portal.acm.org/citation.cfm?id=17814.17824 (1986)

3. Blumofe, R., Leiserson, C.: Scheduling multithreaded computations by work stealing. In: Foundations
of Computer Science, 1994 Proceedings, 35th Annual Symposium on, pp. 356 =368 (1994). doi:10.
1109/SFCS.1994.365680

4. Butenhof, D.: Programming with POSIX Threads. Addison-Wesley Professional, Boston (1997)

5. Chapman, B.,Jost, G., van der Pas, R.: Using OpenMP: Portable Shared Memory Parallel Programming
(Scientific and Engineering Computation). MIT Press, Cambridge (2007)

6. del Cuvillo, J., Zhu, W., Gao, G.: Landing openmp on cyclops-64: an efficient mapping of openmp to a
many-core system-on-a-chip. In: CF "06: Proceedings of the 3rd Conference on Computing Frontiers,
ACM, New York, NY, USA, pp. 41-50, (2006a). doi:10.1145/1128022.1128030

7. del Cuvillo, J., Zhu, W., Hu, Z., Gao, G.R.: Toward a software infrastructure for the cyclops-64
cellular architecture. In: High-Performance Computing in an Advanced Collaborative Environment,
p- 9 (2006b). doi:10.1109/HPCS.2006.48

8. Del Cuvillo, J., Zhu, W., Hu, Z., Gao, G.: Tiny threads: a thread virtual machine for the cyclops64
cellular architecture. In: Parallel and Distributed Processing Symposium, 2005. Proceedings. 19th
IEEE International, IEEE, p. 8 (2005)

9. Dennis, J.B.: First version of a data flow procedure language. In: Programming Symposium, Proceed-
ings Colloque sur la Programmation. Springer, London, pp. 362-376 (1974). http://portal.acm.org/
citation.cfm?id=647323.721501

10. Duran, A., Ayguad, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X., Planas, J.: Ompss: a
proposal for programming heterogeneous multi-core architectures. Parallel Process. Lett. 21(02), pp.
173-193 (2011). doi:10.1142/S0129626411000151

11. Ebcioglu, K., Saraswat, V., Sarkar, V.: X10: programming for hierarchical parallelism and non-uniform
data access. In: Proceedings of the International Workshop on Language Runtimes, OOPSLA (2004)

12. Ellson, J., Gansner, E., Koutsofios, L., North, S., Woodhull, G.: Graphviz—open source graph drawing
tools. In: Mutzel, P., Jinger, M., Leipert, S.(eds.) Graph Drawing. Lecture Notes in Computer Science,
vol. 2265, pp. 483-484. Springer, Berlin Heidelberg (2002). doi:10.1007/3-540-45848-4_57

13. Gao, G.R.: A pipelined code mapping scheme for static data flow computers. PhD thesis, Massachusetts
Institute of Technology. http://hdl.handle.net/1721.1/37165 (1986)

14. Garcia, E., Orozco, D., Khan, R., Venetis, 1., Livingston, K., Gao, G.: A dynamic schema to increase
performance in many-core architectures through percolation operations. In: Proceedings of the 2013
IEEE International Conference on High Performance Computing (HiPC 2013), Bangalore. IEEE Com-
puter Society (2013)

15. Garcia, E., Venetis, L.E., Khan, R., Gao, G.: Optimized dense matrix multiplication on a many-core
architecture. In: Proceedings of the Sixteenth International Conference on Parallel Computing (Euro-
Par 2010), Part II, Springer, Ischia, Italy, Lecture Notes in Computer Science, vol. 6272, pp. 316-327
(2010b)

16. Garcia, E., Venetis, LE., Khan, R., Gao, G.R.: Optimized dense matrix multiplication on a many-core
architecture. In: Euro-Par 2010-Parallel Processing, pp. 316-327 (2010c)

17. Garcia, E., Orozco, D., Khan, R., Venetis, L.E., Livingston, K., Gao, G.R.: Dynamic percolation: a
case of study on the shortcomings of traditional optimization in many-core architectures. In: ACM
International Conference on Computing Frontiers 2012 (CF’12) (2012a)

@ Springer

http://dx.doi.org/10.1007/BFb0014218
http://portal.acm.org/citation.cfm?id=17814.17824
http://portal.acm.org/citation.cfm?id=17814.17824
http://dx.doi.org/10.1109/SFCS.1994.365680
http://dx.doi.org/10.1109/SFCS.1994.365680
http://dx.doi.org/10.1145/1128022.1128030
http://dx.doi.org/10.1109/HPCS.2006.48
http://portal.acm.org/citation.cfm?id=647323.721501
http://portal.acm.org/citation.cfm?id=647323.721501
http://dx.doi.org/10.1142/S0129626411000151
http://dx.doi.org/10.1007/3-540-45848-4_57
http://hdl.handle.net/1721.1/37165

Int J Parallel Prog (2016) 44:278-307 307

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

Garcia, E., Orozco, D., Pavel, R., Gao, G.: A discussion in favor of dynamic scheduling for regular
applications in many-core architectures. In: Parallel and Distributed Processing Symposium Workshops
and PhD Forum (IPDPSW), 2012 IEEE 26th International, IEEE, pp. 1591-1600 (2012b)

Garcia, E., Orozco, D., Pavel, R., Gao, G.R.: A discussion in favor of Dynamic Scheduling for regular
applications in Many-core Architectures. In: Proceedings of 2012 Workshop on Multithreaded Archi-
tectures and Applications (MTAAP 2012); 26th IEEE International Parallel & Distributed Processing
Symposium (IPDPS 2012), pp. 1591-1600. ACM, Shanghai (2012)

Gautier, T., Besseron, X., Pigeon, L.: Kaapi: A thread scheduling runtime system for data flow compu-
tations on cluster of multi-processors. In: Proceedings of the 2007 International Workshop on Parallel
Symbolic Computation, PASCO 07, pp. 15-23. ACM, New York, NY, USA (2007)

Gropp, W., Lusk, E., Thakur, R.: Using MPI-2: Advanced Features of the Message-Passing Interface.
MIT Press, Cambridge (1999)

Irigoin, F,, Triolet, R.: Supernode partitioning. In: Proceedings of the 15th ACM SIGPLAN-SIGACT
symposium on Principles of Programming Languages, pp. 319-329. ACM (1988)

Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541-580 (1989). doi:10.
1109/5.24143

Najjar, W.A., Lee, E.A., Gao, G.R.: Advances in the dataflow computational model. Parallel Comput.
25, 1907-1929 (1999)

Nemawarkar, S., Gao, G.: Measurement and modeling of earth-manna multithreaded architecture. In:
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems. MASCOTS ’96,
Proceedings of the Fourth International Workshop on, pp. 109-114 (1996). doi:10.1109/MASCOT.
1996.501002

Gulati, K., Khatri, S.P.: GPU architecture and the CUDA programming model. In: Hardware acceler-
ation of EDA algorithms, pp. 23-30. Springer US (2010). doi:10.1007/978-1-4419-0944-2_3
Orozco, D.: Tideflow: a parallel execution model for high performance computing programs. In: 2011
International Conference on Parallel Architectures and Compilation Techniques, p. 211 (2011)
Orozco, D., Gao, G.: Mapping the FDTD application to many-core chip architectures. In: Parallel
Processing. ICPP *09. International Conference on, pp. 309-316 (2009)

Orozco, D., Xue, L., Bolat, M., Li, X., Gao, G.R.: Experience of optimizing FFT on intel architectures.
In: Parallel and Distributed Processing Symposium. IPDPS 2007. IEEE International, IEEE, pp. 1-8
(2007)

Orozco, D., Garcia, E., Gao, G.: Locality optimization of stencil applications using data dependency
graphs. In: Proceedings of the 23rd International Conference on Languages and Compilers for Parallel
Computing, LCPC’10, pp. 77-91. Springer, Berlin (2011a)

Orozco, D., Garcia, E., Khan, R., Livingston, K., Gao, G.: High throughput queue algorithms. Tech.
rep., CAPSL Technical Memo 103 (2011b)

Orozco, D., Garcia, E., Pavel, R., Khan, R., Gao, G.R.: Polytasks: a compressed task representation
for hpc runtimes. In: Proceedings of the 24th International Conference on Languages and Compilers
for Parallel Computing, LCPC 11 (2011c¢)

Orozco, D., Garcia, E., Pavel, R., Khan, R., Gao, G.R.: Polytasks: a compressed task representation
for hpc runtimes. CAPSL Technical Memo 105 (2011d)

Orozco, D., Garcia, E., Khan, R., Livingston, K., Gao, G.R.: Toward high-throughput algorithms on
many-core architectures. ACM Trans. Archit. Code Optim. 8(4), 49 (2012)

Sarkar, V., Hennessy, J.: Partitioning parallel programs for macro-dataflow. In: Proceedings of the 1986
ACM Conference on LISP and Functional Programming, LFP 86, pp. 202-211. ACM, New York,
NY, USA (1986). doi:10.1145/319838.319863

Stone, J.E., Gohara, D., Shi, G.: Opencl: a parallel programming standard for heterogeneous computing
systems. Comput. Sci. Eng. 12(3), 66 (2010)

Theobald, K.: Earth: an efficient architecture for running threads. PhD thesis, University of Delaware
(1999)

Yan, Y., Chatterjee, S., Orozco, D., Garcia, E., Budimlic, Z., Shirako, J., Pavel, R., Sarkar, V., Gao, G.:
Hardware and software tradeoffs for task synchronization on manycore architectures. In: Proceedings of
the Seventeenth International Conference on Parallel Computing (Euro-Par 2011), Bordeaux, France,
Lecture Notes in Computer Science (2011)

Zuckerman, S., Suetterlein, J., Knauerhase, R.,Gao, G.: Using a codelet program execution model
for exascale machines: position paper. In: Proceedings of the 1st International Workshop on Adaptive
Self-Tuning Computing Systems for the Exaflop Era, pp. 64—-69. ACM (2011)

@ Springer

http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1109/MASCOT.1996.501002
http://dx.doi.org/10.1109/MASCOT.1996.501002
http://dx.doi.org/10.1007/978-1-4419-0944-2_3
http://dx.doi.org/10.1145/319838.319863

	The Design and Implementation of TIDeFlow: A Dataflow-Inspired Execution Model for Parallel Loops and Task Pipelining
	Abstract
	1 Introduction
	2 Background
	3 An Overview of the TIDeFlow Model
	4 Actors
	4.1 Definition
	4.2 States
	4.3 Execution
	4.4 Termination Signals and Token Generation
	4.5 Basic Program Examples
	4.5.1 Hello World
	4.5.2 Iterations and Time Instances
	4.5.3 Termination Signals

	5 Arcs and Tokens
	5.1 Representing Outer Loop Carried Dependencies
	5.2 Examples
	5.2.1 Overlapping Communication and Computation
	5.2.2 Using Outer Loop Carried Dependencies
	5.2.3 Expressing Pipelining Through Backedges
	5.2.4 A Matrix Multiplication Kernel
	5.2.5 A Program Where Actors Execute Only Once

	6 Composability
	7 Task Pipelining
	8 Memory Model
	9 TIDeFlow Implementation
	9.1 TIDeFlow C Interface
	9.1.1 Initializing the TIDeFlow Runtime System
	9.1.2 Creation of TIDeFlow Programs
	9.1.3 Running TIDeFlow Programs

	9.2 Intermediate Representation
	9.3 Compilation and Execution of a TIDeFlow Program
	9.4 TIDeFlow Runtime System
	9.4.1 Synchronization and Scheduling

	10 Parallel Program Traces
	11 Experiments
	11.1 Experimental Testbed
	11.1.1 IBM Cyclops-64
	11.1.2 Test Programs

	11.2 Scalability of the Runtime System
	11.3 Performance of the Runtime System

	12 Summary and Conclusions
	13 Future Work
	Acknowledgments
	References

