
Int J Parallel Prog (2016) 44:735–771
DOI 10.1007/s10766-015-0372-7

Performance Estimation of Task Graphs Based on Path
Profiling

Marco Lattuada1 · Christian Pilato1,2 ·
Fabrizio Ferrandi1

Received: 10 April 2014 / Accepted: 6 July 2015 / Published online: 23 July 2015
© Springer Science+Business Media New York 2015

Abstract Correctly estimating the speed-up of a parallel embedded application is
crucial to efficiently compare different parallelization techniques, task graph trans-
formations or mapping and scheduling solutions. Unfortunately, especially in case
of control-dominated applications, task correlations may heavily affect the execution
time of the solutions and usually this is not properly taken into account during per-
formance analysis. We propose a methodology that combines a single profiling of the
initial sequential specification with different decisions in terms of partitioning, map-
ping, and scheduling in order to better estimate the actual speed-up of these solutions.
We validated our approach on a multi-processor simulation platform: experimental
results show that our methodology, effectively identifying the correlations among
tasks, significantly outperforms existing approaches for speed-up estimation. Indeed,
we obtained an absolute error less than 5% in average, even when compiling the code
with different optimization levels.

Keywords Performance estimation · Path profiling · Hierarchical Task Graph

B Marco Lattuada
marco.lattuada@polimi.it

Christian Pilato
pilato@cs.columbia.edu

Fabrizio Ferrandi
fabrizio.ferrandi@polimi.it

1 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy

2 Present Address: Department of Computer Science, Columbia University, New York, NY, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-015-0372-7&domain=pdf

736 Int J Parallel Prog (2016) 44:735–771

1 Introduction

Nowadays, creatingMultiprocessor System-on-Chip (MPSoC) architectures is a well-
established solution for the design of efficient embedded systems [1]. On one hand,
these architectures can deliver significant computational power thanks to a variety of
processing elements, like general purpose processors, digital signal processors and
specialized hardware accelerators. On the other hand, designing the applications for
these systems is challenging due to several complex and interdependent steps to be
performed [2–5]. First, the application has to be decomposed into multiple tasks that
can be potentially executed in parallel or accelerated by dedicated components (par-
titioning). Then, these tasks need to be assigned to the available processing elements
(mapping) and, finally, it is necessary to determine the execution order of the tasks
assigned to the same resources (scheduling). When exploring this large design space
(either by hand or by automatic methodologies), these combined solutions demand an
accurate performance estimation before taking the final decisions [4].

Different approaches have been proposed for estimating the performance of parallel
applications running on the top of MPSoCs. Accurate evaluations can be obtained by
running the design solutions directly on the target platforms, but in most of the cases
these are not available in the early stages of the design. Alternatively, it is possible to
use cycle-accurate simulators [6,7], but they can be too slow to be adopted during the
design exploration phase, whenmultiple solutions have to be evaluated and compared.
Fast estimation techniques, based on mathematical models [8,9], are thus usually
preferred in this phase. They are indeed less accurate but much faster, allowing the
possibility of exploring more solutions in less time.

Additionally, depending on the nature of the application, different representations
can be used to describe the solutions and to estimate the performance. Applications
running on embedded systems can be dominated either by data (e.g. audio/video/image
processing, digital communications) or by control (e.g. device control, packet process-
ing). Data-oriented applications are often represented through data-flow models and
their analysis methods usually focus more on architectural aspects rather than on the
application behavior, which is assumed to be highly predictable [10]. However, there is
a wide range of applications that cannot be well represented by these models, mainly
due to the large presence of coarse-grained parallelism and conditional constructs
(e.g. data-dependent loops, branches, function calls), which can significantly vary
the execution time of the single parts of the application. In this scenario, task graph
models [11] are widely adopted to represent partitioned solutions and derive mapping
decisions [2,5].

Multiple techniques have been proposed for estimating the performance of a task
graph and most of them model the task execution time as a constant value [12] or as
a stochastic variable [9]. These task estimations are then combined to estimate the
execution time of the entire application, but without considering code correlations
that may exist [13]. This can easily lead to wrong estimations that can, in turn, lead
to the adoption of sub-optimal solutions. Conversely, the application behavior can
be collected dynamically through code profiling [14], but this information is usually
exploited only at task level, reducing the accuracy of the task graph estimation.

123

Int J Parallel Prog (2016) 44:735–771 737

In this paper we present a methodology to accurately estimate the performance
of control-dominated applications for heterogeneous embedded systems. To collect
precise information about the control flow of the application (e.g. how many times
the different sequences of branch transitions are executed), we extend the well-known
Efficient Path Profiling [15] with a novel technique, calledHierarchical Path Profiling,
which allows us to better correlate the profiling information with the structure of
the partitioned application. Since the behavior and the correlations of the control
constructs depend only on the input data, the profiling is independent from any parallel
implementations or target architectures. For this reason, the profiling can be performed
only once, on the sequential specification, and on a generic host machine, which is
usually much faster than the target architecture. Our approach then combines these
profiling data with task graph information to accurately estimate the speed-up of
multiple parallel solutions with respect to the sequential version. We also integrate
performance models of the different processing elements [16] and predictions of the
synchronization costs [17] to have more accurate estimations of the specific target
architecture.Weappliedourmethodology tomultiple embedded applications in several
scenarios, which have been obtained by varying the number of processors in the target
architecture and the compiler optimization levels. We then validated our estimations
by comparing them with the benchmark execution on anMPSoC simulation platform.
This shows that our methodology is effectively able to accurately predict the speed-up
with an absolute error that is smaller than 5% in average.

The rest of this paper is organized as follows. Section 2 presents a motivating
example, which clearly shows why classical techniques are inadequate for estimating
the performance of control-dominated applications running on MPSoCs. Section 3
discusses previous work, while Sect. 4 provides preliminary definitions and discusses
the applicability of the approach to different architectures. Our methodology is then
detailed in Sect. 5 and evaluated in Sect. 6. Finally, Sect. 7 concludes the paper.

2 Motivation

Estimating the speed-up introduced by a parallel implementation of a control-
dominated application is challenging since the execution times of the tasks can vary
significantly and, additionally, control constructs in distinct portions of the code can
be correlated. To exemplify this problem, let us consider the function fun_0 shown
in Fig. 1a. One of its parallelization is described through some annotations borrowed
from the OpenMP formalism [18] and shown in Fig. 1b, while the corresponding task
graph is shown in Fig. 2. Let us also assume that the target architecture is composed
of two processors (i.e. CPUα and CPUβ), and the following information is known:

– the estimated execution time of each statement oi (including the calls to functions
fun_1, fun_2 and fun_3) is fixed and known, as reported in Table 1 (the
identifier i of oi is reported on the left-hand side of Fig. 1a);

– the probability of condition c1 being true is 0.5, the probability of condition c2
being true is 0.5 and the condition c3 is always true;

– the architecture requires 50 cycles to create the tasks and 10 cycles for either
synchronizing or destructing the created tasks.

123

738 Int J Parallel Prog (2016) 44:735–771

(a
)

(b
)

F
ig
.1

Im
pl
em

en
ta
tio

n
of

th
e
ex
am

pl
e
fu
nc
tio

n
f
u
n
_
0
.O

n
ea
ch

lin
e,
th
e
nu
m
be
r
on

th
e
le
ft
-h
an
d
si
de

is
th
e
id
en
tifi

er
as
so
ci
at
ed

w
ith

th
e
st
at
em

en
t,
w
hi
le
th
e
nu
m
be
r
on

th
e
ri
gh
t-
ha
nd

si
de

is
th
e
id
en
tifi

er
of

th
e
ba
si
c
bl
oc
k
to

w
hi
ch

th
e
st
at
em

en
tb

el
on
gs
.a

Se
qu
en
tia
li
m
pl
em

en
ta
tio

n
of

fu
nc
tio

n
f
u
n
_
0
.b

Pa
ra
lle
li
m
pl
em

en
ta
tio

n
of

fu
nc
tio

n
f
u
n
_
0

123

Int J Parallel Prog (2016) 44:735–771 739

Fig. 2 Task Graph extracted
from function fun_0 Entry

Task0

Task1 Task2 Task3

Task4

Exit

TG

Table 1 Estimation of clock cycles delay of each statement

Statement n. cycles Statement n. cycles Statement n. cycles

o1 1 o8 1 o15 1

o2 1 o9 1 o16 2050

o3 1 o10 1 o17 1

o4 2050 o11 101 o18 10

o5 1 o12 2 o19 4

o6 1 o13 1

o7 1 o14 1

Finally, let us also assume that there exists a correlation between c1 and c2, which
controls the execution of fun_1 and fun_3, respectively. The following situations
are considered:

a© c1 and c2 always have the same value (either true or false) during an execution
of fun_0: fun_1 and fun_3 are both invoked (true) or none of them is invoked
(false).
b© c1 and c2 always have opposite values during the same execution of fun_0:
fun_1 and fun_3 are called in mutual exclusion.

Table 2 reports the maximum and the average execution time for all the tasks. It is
important to note how the execution of fun_1 and fun_3 heavily impacts on the
execution time of Task1 and Task3.

Now we consider the two following mapping and scheduling solutions to be eval-
uated:

– SolA: Task1 and Task2 are mapped onto CPUα (with Task1 scheduled before
Task2) and Task3 is mapped onto CPUβ ;

– SolB: Task1 and Task3 are mapped onto CPUα (with Task1 scheduled before
Task3) and Task2 is mapped onto CPUβ .

Right part of Table 3 (Real) reports the different real speed-ups of fun_0 in each
of the possible cases obtained by combining the two conditions situations (a© and b©)
with the two mapping solutions (SolA and SolB). Results show that SolA has a larger
speed-up in situation a© , while SolB is the best solution in situation b©. Table 3 also
reports the estimations that can be obtained by using traditional techniques [19] based

123

740 Int J Parallel Prog (2016) 44:735–771

Table 2 Task execution times with different conditions

Task Conditions c1=true c1=false Maximum Average

Task0 a© 1 1 1 1

b© 1 1 1 1

Task1 a© 2054 5 2054 1029.5

b© 2054 5 2054 1029.5

Task2 a© 1061 1061 1061 1061

b© 1061 1061 1061 1061

Task3 a© 2052 3 2052 1027.5

b© 3 2052 2052 1027.5

Task4 a© 4 4 4 4

b© 4 4 4 4

a© : the probability of condition c1 being true is 0.5 and c1 = c2. b© : the probability of condition c1
being true is 0.5 and c1 = !c2. In both the cases, c3 is always true and the loop is executed 10 times

Table 3 Estimated and real speed-ups obtained with different mapping and scheduling solutions and
conditions correlations

Conditions Speed-up

Maximal time (MT) Average time (AT) Real

SolA SolB SolA SolB SolA SolB

a© 1.62 1.23 1.44 1.47 1.45 1.18

b© 1.62 1.23 1.44 1.47 1.18 1.47

Average speed-up offun_0when the probability of condition c1 being true is 0.5, c3 is always true and a©
c1 = c2 or b© c1 = !c2; MT is the speedup estimated when execution time of the tasks is considered
constant and equal to the maximal execution time; AT is the speedup estimated when execution time of the
tasks is considered constant and equal to the average execution time; Real is the real speed-up

on average (AT) and maximum (MT) execution times. The former technique averages
the different execution times of each task in all the situations, while the latter adopts the
maximum execution time for each of them. These techniques present the same results
for the two situations a© and b© and these results may also lead to choose inefficient
mapping and scheduling solutions. Specifically, the MT technique always suggests to
choose SolA, which is not correct in situation b©. On the contrary, the AT technique
always leads to slightly prefer SolB, which is not the best solution in situation a©.

These results show that, especially in case of control-dominated applications, the
best mapping and scheduling solution can depend on the correlations that may exist
among control constructs in the source code. For this reason, a methodology for a
correct performance estimation of such applications has to necessarily take this aspect
into account.

3 Related Work

Performance estimation is a crucial step in the design of efficient MPSoCs, where
multiple design solutions have to be properly compared to determine the best deci-

123

Int J Parallel Prog (2016) 44:735–771 741

sions. Several methodologies have been proposed for evaluating the performance of
parallel applications on MPSoCs. These methods can be roughly divided into three
categories: direct measures, estimations by simulations, estimations by use of mathe-
matical models.

Most of methodologies based on direct measures (e.g. [17]) are not affordable since
integrating direct measurements in a design exploration framework is a long, difficult
and error-prone task. Additionally, it cannot be completely automated and most of the
work is thus manually performed by the designers, limiting the number of solutions
that can be effectively evaluated. Techniques based on estimations are thus usually
preferred.

In simulation-based methods, the single components or the entire system are esti-
mated with simulations at different levels of accuracy (e.g. with ARMn [20], MPARM
[6], ReSP [7], gem5 [21]). For example, in [22], a complete simulation is required to
evaluate each design solution. However, accurate simulators are usually quite slow,
especially in case of MPSoCs where they need to simulate multiple architectural
aspects. For this reason the estimation problem is usually decomposed into sub-
problems, where the simulation is performed only at a higher level of abstraction.
For example, in [23], the performance of the single tasks is estimated by accurately
annotating the source code, while the entire application is estimated through TLM
simulations.

Estimations can be also obtained by exploiting mathematical models that correlate
some numerical features of a design solution, which are collected through static or
dynamic analyses, with its performance. In general, they are less accurate than the
ones based on simulators, but they are much faster so they allow the designer to
compare much more solutions. Also in this case, these techniques adopt a two-stage
approach to perform first the estimation of the single tasks and then of the entire
application. For example, [12] exploits the intermediate representation of the SUIF
compiler [24] to estimate the execution time of each task and, then, interval analysis
to predict the execution time of the whole application. In a similar way, in [25], GCC
is modified to automatically generate the workload models of the tasks, while [26]
combines performance estimation of single processors to estimate the performance of
JPEG encoder and decoder applications on a pipelined MPSoC. [27] considers an ILP
formulation for automatically parallelizing a hierarchical task graph representation, but
the cost estimation is performed by simply associating a weight with each instruction,
without analyzing the correlations between the control constructs.

While all these approachesmodel the execution time of a task as a constant, there are
performance models where the execution times of tasks and task graphs are variable.
In [28], the execution time of single tasks is modeled as a function of the variations in
memory accesses count and requests rate, but ignoring any other details of its internal
behavior, such as conditional constructs correlations. Finally, also stochastic variables
have been used in the performance models of both tasks and task graphs. For example,
[8] estimates the performance of a task graph as a stochastic variable, which is based
on the stochastic variables associated with the execution times of the single tasks.
Similarly, in [29], stochastic variables are used to model the access time of different
tasks to resources in contention, while in [19] they are used to model the execution
time of the single tasks, based on multiple profiling runs executed with different data

123

742 Int J Parallel Prog (2016) 44:735–771

sets. The authors suggest also two possible deterministic techniques: the worst-case
estimation, which considers the 99.9’th percentile of the execution time of each task,
and the average-case estimation, which considers the average execution time. In [30]
Distributionally Robust Monte Carlo Simulation (DRMCS) is combined with a task-
accurate performance estimation method to guarantee a robust task graph estimation.
It requires to annotate each task with an interval estimation of its execution time.
DRMCS is then applied to compute the worst-case execution time of the entire task
graph, along with a confidence level for this estimation.

However, all these approaches are based on the assumption that the execution times
of the tasks are independent and this can lead to a wrong evaluation of the design
solutions, as shown in Sect. 2. The correlation effects among the workload of parallel
tasks have been actually examined in [13], but only to correctly model the energy
consumption of the analyzed solution and not for an accurate performance analysis.

To correctly model the tasks correlations induced by control constructs, we rely
on path profiling [15]. Path profiling is a well-known technique that adopts an instru-
mentation of the branch constructs, followed by a series of executions of the resulting
code with different data sets. This allows the designer to collect information about
the dynamic behavior of the application. For this reason, several estimation methods
have been based on this technique, but they are usually applied only to sequential
applications. Ernst and Ye [31] discusses the performance estimation of sequential
applications for real-time embedded systems. This work exploits the concept of path-
based analysis to determine best and worst execution times. Similarly, Malik et al. [32]
describes several static timing analysis techniques targeting embedded systems com-
posed of a single processor. However, all the discussed techniques have high computa-
tional complexity, since they aim at verifying hard or soft constraints of real time sys-
tems. Moreover, these techniques are limited by the number of generated paths, since
they do not exploit any techniques for path decomposition as proposed by [15]. For
this reason, they cannot be applied to large applications. In [33], the path information
is used instead to analyze the synchronizations among the threads: the synchronization
operations are speculatively anticipated if they are on the most executed paths. The
path profiling information has been thus used to optimize the communication between
the threads, rather than to estimate the performances of parallelized specifications.

To the best of our knowledge, none of the existing approaches is able to estimate the
performances of entire task graphs by analyzing the correlations among the task exe-
cutions due to conditional constructs. In [34], we proposed a preliminary approach that
is able to consider such correlations by leveraging path profiling information. How-
ever, it does not consider heterogeneous architectures nor information about mapping
and scheduling. It is thus not possible to take into account the effects of executing the
code on different processing elements, as well as the overhead introduced by resource
contention. This paper extends this approach with the following main contributions:

– we provide the support to heterogeneous embedded systems by integrating per-
formance models of different processing elements, along with information about
mapping and scheduling decisions;

– we present a comprehensive validation of our approach by comparing the esti-
mated speed-up with the one obtained with an open-source simulation platform

123

Int J Parallel Prog (2016) 44:735–771 743

forMPSoCs, and by considering different architectures and compiler optimization
levels for the applications.

4 Preliminaries

This section introduces the concepts we leverage for estimating the performance of
partitioned control-oriented applications. Specifically, Sect. 4.1 presents some basic
definitions to better understand our approach, while Sect. 4.2 discusses its applicability
to different architectural templates.

4.1 Definitions

Our methodology works on the top of the following intermediate representations,
which are built for each function of the input application:

– Control Flow Graph (CFG) [35], a directed graph GCFG = (V, ECFG), which is
an abstract representation of the paths (i.e. the sequences of branches) that might
be traversed during the execution of the function; each vertex vi ∈ V represents
a basic block BBi ; two additional vertices Entry and Exit are introduced to
represent entry and exit points of the function execution, respectively; edges that
close a loop of a path starting from the Entry node are named feedback edges
[36];

– Control Dependence Graph (CDG) [37], a directed graph GCDG = (V, ECDG),
which represents the control dependences of the basic blocks;

– Control Dependence Region (CDR) [37], a partitioning of the basic blocks such
that two basic blocks are in the same region if and only if they have the same set
of control dependences in the CDG; the function γ : Cc = γ (BBi) returns the
Control Dependence Region Cc to which the basic block BBi belongs;

– Loop Forest [36], a representation of the loop hierarchy inside the CFG;
– Hierarchical Task Graph [38], a representation of the application decomposition
induced by the partitioning specified by the designer.

Given the example of Fig. 1a, its CFG is represented in Fig. 3; the only feedback
edge is the dashed edge e9,5. The CDG and the CDRs of the same example are shown
in Fig. 4, where, for example, e1,2 represents that BB2 is executed if and only if BB1
has completed its execution and the value of its final condition is true. Conversely,
BB4 has no control dependences with BB1, BB2 and BB3, so they can be executed in
parallel provided that data dependences are satisfied. The example contains one loop,
which has BB5 as header and includes basic blocks BB5, BB6, BB7 and BB8. In the
rest of the paper, we identify a loop with the number of its basic block header (e.g.
L5). The entire function fun_0 is considered as a main loop, called L0.

Partitioned applications are usually represented through a task graph, which is
a directed graph whose vertices are the tasks induced by the partitioning and the
edges represent precedences among them. Similarly to [38] and [39], we adopt the
Hierarchical Task Graph (HTG) as the intermediate representation of a partitioned
application. Specifically, the HTG is an acyclic directed graph whose vertices can be:
simple (i.e. a taskwith no sub-tasks), compound (i.e. a task that consists of other tasks in

123

744 Int J Parallel Prog (2016) 44:735–771

Fig. 3 The Control flow graph
of fun_0

Entry

BB1

BB2 BB3

BB4

BB5

BB6

BB7

BB8

BB9 BB10

BB11 BB12

BB13

Exit

T
F

T

F

F

T
F

T

Entry

BB1 BB4 BB5 BB13 BB10 Exit

BB2 BB3 BB6

BB7 BB8

BB9 BB11 BB12

T
F T T T

F

T T

A

B

C D E F G

H I

Fig. 4 The CDG of function fun_0; dashed boxes identify CDRs named with capital letters

a HTG, for example higher-level structures such as subroutines) or loop (i.e. a task that
represents a loopwhose body is a HTG itself). In this work, to describe the parallelism,
we adopt a sub-set of OpenMP formalism [18]. OpenMP is a C/C++/Fortran extension
widely adopted to describe the application partitioning directly inside the source code
bymeans of pragmas [4]. For this reason, it is possible to activate sequential or parallel
execution with simple compiler flags. It is however important to note that a complete
support of OpenMP is out of the scope of this work. On the contrary, we only selected
few annotations (parallel sections and section) that allow the designer to
statically specifywhich parts of the code aremeant to be executed in parallel, that is the
structure of theHTG. Indeed, otherOpenMPpragmas (e.g.,task) prevent the building
of the task graphs at design time. We create the HTGs by analyzing the intermediate
representation produced by the compiler after the optimization phase. In such a way,
we are able to take into account the effects of compiler optimizations on the code
associated with each task. For example, given the annotated code shown in Fig. 1b,

123

Int J Parallel Prog (2016) 44:735–771 745

Entry0

Task0

Task1

Task2b

Task3

Task4

Exit0

HTG0

Task2a
(HTG5)

Entry5

Task6

Exit5

HTG5

(a)

(b)

Fig. 5 Hierarchical Task Graph extracted from function fun_0. a Task Graph of L0. b Task Graph of L5

we create the corresponding HTG, which is shown in Fig. 5, as follows. The HTGs
associated with each function are created starting from the innermost ones. For this
reason, the HTG associated with fun_0 is created after HTGs of all called functions.
Then, a simple task is created for Task0 since it contains no function calls or loops. It
also represents the fork of the OpenMP parallel sections, which is composed
of three sections. The first section corresponds to a compound task (i.e. Task1) since
it contains the call to function fun_1. The corresponding HTG is associated with the
same task. The second section contains a loop, followed by a function call. For this
reason, two distinct tasks are generated: Task2a, which is associated with HTG5 (i.e.
the HTG associated with the loop), and Task2b, which contains the remaining code
of the section. Note that both Task6 (i.e. the task representing the loop body) and
Task2b are compound tasks since they contain function calls. Similarly to the first
section, the third one corresponds to a compound task (i.e. Task3) due to the presence
of a function call. An additional task is created to represent the join of the OpenMP
parallel sections (i.e. Task4) and it contains the remaining code. Note that, in
Fig. 5, dotted vertices identify compound tasks (i.e. Task1, Task2b, Task3, Task6),
dashed vertices identify loop tasks (i.e. Task2b) and continue vertices identify simple
tasks (i.e. Task0 and Task4).

Finally, mapping decisions are specified through custom code annotations, as in
[39], and the information is associated with each task of graph.

4.2 Supported Target Architectures

This work targets embedded systems composed of a set of processors, which feature
local memories for instructions and data [5,39], and no operating system, but with
a bare-metal synchronization, as in [39,40]. We currently support ARM processors
(with or without support for out-of-order execution) and DSPs. Supporting additional
processors only requires to generate the proper model (see [16]), which can estimate
the performance of the assigned tasks based on their source code. Our methodology
then leverage any of these models, as described in the following sections, to estimate
the performance of task graph solutions.

123

746 Int J Parallel Prog (2016) 44:735–771

We support different communication infrastructures. The processing elements can
be indeed interconnected through a shared bus, a network-on-chip or point-to-point
links [40]. From the point of view of estimations, this simply corresponds to a different
communication overhead for each data transfer based on the infrastructure adopted
for its implementation.

Moreover, there is no communication between parallel tasks: communication
between parallel tasks and other tasks (e.g. fork and join task) can be explicit (per-
formed at the beginning and at the end of their execution through direct data transfers)
or implicit (performed during all the execution through exploitation of shared mem-
ory). The delay for the first type of communication is well modeled by the proposed
methodology since it is incorporated in task overhead cost. On the contrary, the second
type of transfers can introduce approximations in the estimations since the proposed
methodology does not take explicitly into account cache memories. We also assume
that there is no synchronization during the execution of parallel tasks (e.g. shared
variables protected by mutexes). These situations are managed only at task bound-
aries [17], when tasks are created or destroyed. In fact, this is a common practice to
effectively allow the parallel execution of the tasks.

With these assumptions, we are able to target both commercial platforms (e.g.
Atmel Diopsis 940HF [41], TI OMAP 4 [42]) and prototype architectures obtained
with commercial system-level design tools (e.g. Xilinx Vivado IP Integrator [43]).
These architectures are also supported by multiple MPSoC simulators, which can be
adopted for virtual prototyping (e.g. [6,7,21,44,45]). These solutions can be thus eas-
ily combined to analyze themutual effects of partitioned applications and architectural
decisions (e.g. size of caches, number of processors, communication infrastructures).
In this work, we adopt ReSP [7], an in-house simulation platform, to demonstrate this
potentiality.

5 Proposed Methodology

Our methodology is composed of two consecutive steps, as shown in Fig. 6. First,
we profile the sequential version of the application, which is obtained by ignoring
any partitioning or mapping pragma annotations, in order to collect information about
the behavior of the application, which is then associated with its internal representa-
tion. In this step, we adopt the Hierarchical Path Profiling (HPP) (i.e. our extension
to the Efficient Path Profiling [15]) to collect path information in a way that is suit-
able to be combined with the HTG representation adopted in the subsequent task
graph estimations. This part is detailed in Sect. 5.1. Then we estimate the speed-
up introduced by any of its parallel implementations. Specifically, considering the
partitioning solution to be analyzed, the methodology estimates the execution time
of each path by computing the contribution of all the tasks and, then, by combin-
ing these contributions following the structure of the HTG. The final estimation
is obtained by a weighted average of these estimations where the weights are the
frequency of the corresponding paths. The process is repeated at each level of the
hierarchy, starting from the innermost loops to the outermost ones, as detailed in
Sect. 5.2.

123

Int J Parallel Prog (2016) 44:735–771 747

Fig. 6 Overview of the proposed methodology

5.1 Hierarchical Path Profiling

Before describing the HPP technique, we need to introduce the definition of path. Let
GCFG = (V, ECFG) be the CFG of a function. Note that our methodology does not
have any requirements about the structure of the CFG nor about the structure of its
loops. The path Pp is defined as the sequence of basic blocks BBi ∈ V :

Pp = BB1−BB2− . . . −BBn

where each pair of basic blocks BBi–BBj is connected by an edge ei, j ∈ ECFG . Since
the CFG represents all the paths that might be traversed during a program execution, it
is possible to count their occurrences and so how many times the corresponding basic
blocks are executed. This technique is usually called path profiling. According to this
definition, the basic blocks that belong to a path are executed in sequence, without any
interleaving.

However, it is worth noting that each cycle inside a cyclic CFG (i.e. a CFG with
a feedback edge) is still a path. Then, any sequence composed of n repetitions of
this path is again a path and so the number of paths may be infinite. For this reason,
it is not possible to collect information about any admissible path. We thus need to
select a subset of these paths, which we call valid paths, and collect information only
about them. Our HPP considers as valid only the paths that correspond to an entire
loop iteration (or function execution when considering the loop L0). In particular,
given the CFG GCFG = (V, ECFG) and the set F of its feedback edges, a path
Pp = {BBi – BBi+1 – . . . – BBj } is considered valid when it satisfies one of the
following conditions:

– (BBj , BBi) ∈ F : i.e. the last basic block BBj is reconnected to the first basic
block BBi through a feedback edge;

– BBi = BBEntry ∧ BBj = BBExit : i.e. the path starts from the initial basic block
(BBEntry) and terminates in the final basic block (BBExit).

Based on these conditions, the paths can be clustered in sets, called Hierarchical
Paths (HPi), according to the innermost loop Li where they are completely contained.
Specifically, the path Pp = BBi–BBi+1–. . .–BBj is contained into HPi since it refers
to loop Li , which has BBi as header. In our example, the path BB5–BB6–BB7–BB9
is contained into HP5 while the path BBEntry–BB1–BB3–BB4–BB5–BB10–BB11–

123

748 Int J Parallel Prog (2016) 44:735–771

BB13–BBExit is contained into HP0 since it refers to the loop L0 (i.e. the path starts
from the function entry).

However, according to this definition of valid paths, cyclic paths are still admit-
ted and, for this reason, the number of paths that can be identified in a cyclic CFG
is still potentially infinite. To avoid this problem, given a path Pp ∈ HPi that con-
tains the execution of a nested loop L j , we replace the sequence of basic blocks
belonging to L j with the symbol L∗

j . This represents that, during the execution
of the path Pp, a certain number of iterations of L j may be executed. Following
this definition, both the paths BBEntry–BB1–BB3–BB4–BB5–BB10–BB11–BB13–
BBExit and BBEntry–BB1–BB3–BB4–BB5–BB6–BB8–BB9–BB5–BB10–BB11–
BB13–BBExit can be represented with the same path BBEntry–BB1–BB3–BB4–
L∗
5–BB5–BB10–BB11–BB13–BBExit . Indeed, they provide the same information for

computing the execution time of HTG0. Then, details about the basic blocks executed
during the nested loop L5 are used to compute the execution time of HTG5 (i.e. the
one associated with the loop).

It is worth noting that, in the EPP technique proposed in [15], the paths extracted
from the execution trace are a complete partition of the trace itself; as a result, each
execution of a basic block is counted as part of one and only one path. On the contrary,
in the HPP, the execution of a basic block can be considered as part of multiple paths
and, thus, overlapping paths are admitted. For example, the execution trace BBEntry–
BB1–BB3–BB4–BB5–BB6–BB8–BB9–BB5–BB10–BB11–BB13–BBExit contains
the execution of two different and valid paths: BBEntry–BB1–BB3–BB4–L∗

5–
BB5–BB10–BB11–BB13–BBExit and BB5–BB6–BB8–BB9. Then, for example, the
execution of BB6 is included in both the paths. Indeed, while the latter naturally
contains the basic block in the loop iteration, the former implicitly contains the contri-
bution of BB6 through the contribution of L∗

5. As a result, including the contribution of
L∗
5 in the outermost path automatically includes the performance estimation of the cor-

responding loop. We will use this observation to hierarchically build the performance
estimation of the entire application.

The HPP keeps track of the current path in the same way of the EPP. Specifically, a
variable is used to store the encoded representation of the path, which is updated every
time an edge of the CFG is traversed. When a valid path terminates (i.e. the execution
reaches its final basic block), the corresponding counter is incremented and a new path
starts. However, while in EPP only one path is alive at a time, multiple paths can be
simultaneously alive in the HPP, due to the path overlapping that has been described
before. In this case, when a new loop starts (i.e. the execution reaches its header), the
current path becomes “idle” and a new path starts to keep track of the loop execution.
The idle path then returns active only after the termination of the nested loop. More
details about this aspect can be found in [34].

Once HPP has been applied and all paths have been hierarchically clustered, they
are projected onto the CDRs defined in Sect. 4: each path can be represented as the set
of executed CDRs. We call this projection Control Region Path (CRP). In particular,
let Pp ∈ HPl be a path belonging to loop Ll , the CRPp associated with path Pp is
defined as:

CRPp = {CDRi |∃BBj ∈ Pp : CDRi = γ (BBj)} (1)

123

Int J Parallel Prog (2016) 44:735–771 749

where γ is the function that associates a basic blockwith its CDR. Since the function γ

is surjective (i.e. more basic blocks can belong to the same CDR), the size of a control
region path CRPp results equal or smaller than the size of the corresponding path Pp,
without loosing any information since the CDR represents all the basic blocks that
have to be executed under the same control conditions.

By elaborating path profiling information, it is then possible to derive information
about the average number of iterations for each loop. The average number Nl of
iterations of a loop Ll , which is nested in L j , can be computed as:

Nl =
∑

CRPp∈HPl f p∑
CRPq∈HPj :γ (BBl)∈CRPq fq

(2)

where f p corresponds to the number of times that path Pp is executed. The numerator
is the total number of iterations of Ll , which is computed as the sum of the number
of executions of all paths contained in HPl . The denominator corresponds to how
many times the loop Ll is executed, which is computed as the sum of the number of
executions of paths of L j which enter Ll .

Note that, we compute a unique speed-up for each partitioned solution. However,
for many control-dominated applications, the behavior of the application and, in turn,
the results of the path profiling depend on the input data. So, in case of multiple
input data sets, the path profiling information will be obtained by averaging the results
obtained on the single runs. Computing the single speed-up for each input data set
is possible, but this approach has some criticalities. In fact, if we obtain that the best
solution is different for each data set, multiple solutions have to be implemented at the
same time in the final system, which can introduce resource problems (e.g. memory
to be reserved for object code). Additionally, it would be necessary to implement a
runtime mechanism to automatically determine the solution to be adopted based on
the input data set and this is a challenging task.

Appendix 1 shows the results of applying the HPP to the example shown in Sect. 2.

5.2 Task Graph Estimation

This section shows how we combine the path profiling information obtained with the
HPP with the HTG representation and the mapping and scheduling decisions in order
to produce a performance estimation.

For doing this, given a HTG to be estimated, this is transformed into HTG to take
into account the mapping and scheduling information of each task, extracted from the
design solution. Specifically, an edge is added from Taski to Task j when: Taski
and Task j (or the tasks contained in them) share a processing element (mapping) and
Taski is scheduled before Task j (scheduling).

Our methodology analyzes all the tasks of the application, starting from the task
graphs at the innermost levels of the hierarchy. First, we estimate the execution time
of each path by combining the contribution of its statements. Since each path may tra-
verse multiple tasks during its execution and these tasks may be assigned to different
processing elements, the contribution of each statement is computed according to the
performance model of the processing element where the corresponding task has been

123

750 Int J Parallel Prog (2016) 44:735–771

Algorithm 1 Pseudo-code of HTCl = estimate(HTGl(Vl , El)).
1: for all task vt ∈ Vl do
2: BCi,t = f (os1, os2, . . . , osn)

3: if vt is a loop task containing HTGm then
4: BCi,t = BCi,t + HTCm
5: else
6: BCi,t = BCi,t
7: end if
8: for all BBi : BCi,t > 0 do
9: CCc,t = CCc,t + BCi,t where c = γ (BBi)
10: end for
11: for all CRPp ∈ HPl do
12: for all CDRi ∈ CRPp do
13: T PCp,t = T PCp,t + CCi,t
14: end for
15: T PC p,t = T PCp,t + OCt
16: end for
17: end for
18: for all task vt ∈ Vl in topological order do
19: for all CRPp ∈ HPl do
20: ST ARTp,t = max(ST OPp,u)

21: ST OPp,t = ST ARTp,t + T PC p,t
22: end for
23: end for
24: for all CRPp ∈ HPl do
25: PCp = ST OPp,Exit
26: end for
27: HTCl = weightedSum(PCp)

mapped. Then, if the path contains one ormore loops, their contributions are also taken
into account. In this case, the average execution time of a loop iteration ismultiplied by
its average number of iterations, which is equal to one in case of L0 (i.e. the HTG asso-
ciated with the entire function). Since different execution paths can be traversed during
a loop iteration, the average execution time of the loop iteration is estimated by consid-
ering independently each execution path and then by performing aweighted average of
their contributions according to their frequency. Finally, to compute the performance
estimation HTC0 of HTG0 (i.e. a function), HTG0 is hierarchically analyzed with
the procedure described by Algorithm 1. Three main steps can be identified:

1. Task Analysis (lines 1–17): we compute the task contributions to the different
paths;

2. TaskGraphAnalysis (lines 18–23):we analyze the vertices of HTGl in topological
order to compute start and end times of each task;

3. Task Graph Performance Estimation (lines 24–27): the end time of task Exit is
used to estimate the performance of the entire HTGl .

Before analyzing a HTG, all nested HTGs have to be already analyzed since contri-
butions of the innermost loops or of the called functions have to be taken into account.
For example, the performance estimation of HTG0 can be computed only after esti-
mating the performance of HTG5. Similarly, the HTGs associated with fun_1,
fun_2, fun_3 and fun_4 must be estimated before estimating the HTG associ-

123

Int J Parallel Prog (2016) 44:735–771 751

ated with fun_0. The contribution of a function call is estimated as fixed and not
depending on the particular call site, potentially introducing an approximation in the
estimated parallel solution. An alternative solution is to create a clone of the complete
function HTG for each call site in order to produce better estimation results. However,
this can significantly increase the complexity of the proposed methodology. Note that
recursive functions are not supported by the proposed methodology.

Before estimating the performance HTCl of the HTGl , several intermediate esti-
mations need to be performed to compute the contribution of each task to each path and
then of each path to the entire task graph. These contributions are computed starting
from the contributions of the single statements which compose the path, aggregated
according to the structure of the HTG and the CFG of the specification. To estimate the
contribution of the statements, different methods can be adopted, such as analytical
models [16,46] or cycle-accurate simulators [20]. In this work, we adopt estimations
based on analytical models. In particular, given a statement to be characterized, we
adopt as features the sequence of low-level instructions (i.e. RTL instructions pro-
duced by compiler for the target processing element) that correspond to the specific
statement and to the preceding ones in the execution flow. The performance model,
which is built by means of linear regression on a set of characteristic applications,
takes as input the sequence of low-level instructions associated with the statement and
produces as output the estimation of the corresponding execution time. Additional
details can be found in [16]. After the estimation of the execution time of the single
instructions, we perform the following intermediate estimations:

1. BCi,t (line 2) is the contribution of a basic block to the execution time of a task.
It is computed as the estimated execution time of the statements of BBi which
belong to the task vt :

BCi,t = f (os1, os2, . . . , osn) (3)

where osi is a statement of BBi which belongs to the task vt and f (. . .) is the
estimation of the execution time of the statements, which takes into account also
the processing element where the task vt has been mapped as described above.

2. BCi,t (line 4 and line 6) is the contribution of a basic block to the execution of
a task and includes also the contributions of nested loops. If a task is a loop and
HTGi is the nested HTG, the estimated loop performance HTCi is added to the
contribution of the header BBi :

BCi,t

{
BCi,t + HTCi if vt is a loop task containing HTGi (4a)
BCi,t otherwise (4b)

3. CCc,t (line 9) is the contribution of a CDR to the execution time of a task. It is
computed as the sum of the contributions of the basic blocks belonging to the
CDR:

CCc,t =
∑

∀BBi :c=γ (BBi)

BCi,t (5)

4. TPCp,t (line 13) is the execution time of the task t when the path Pp is executed.
It is computed as the sum of the contributions of all the CDRs belonging to Pp:

123

752 Int J Parallel Prog (2016) 44:735–771

TPCp,t =
∑

∀c:CDRc∈CRPp

CCc,t (6)

5. TPCp,t (line 15) is the overall execution time for the task t (including the task
management overhead, if any) when the path Pp is executed. It is computed as the
sum of the execution time plus the overhead cost:

TPCp,t = TPCp,t + OCt (7)

6. ST ARTp,t (line 20) is the time from the beginning of the execution of an iteration
of Ll in which the task t starts the execution of the path Pp, while ST OPp,t (line
21) is the time in which the task t ends the execution of the path Pp. PCp (line
25), is the contribution of each path Pp to the average performance of the task
graph. The start time ST ARTp,t is computed as:

STARTp,t = maxvu∈pred(vt)STOPp,u (8)

where pred(vt) is the set of the predecessors of vt in HTGl . Equation 8 states
that the start time of a task is the maximum between end times of the tasks that
precede vt in HTGl . The end time ST OPp,t is computed as:

STOPp,t = STARTp,t + T PC p,t (9)

Equation 9 states that the end time of a task vt during the execution of path Pp is
the start time of the task plus the time required for its execution (T PC p,t). Finally,
PCp (i.e., the contribution of path Pp to HTCl) is computed as:

PCp = STOPp,Exit (10)

Equation 10 states that the contribution of each path is the end time of the task
Exit .

7. HTCl (line 27) is the overall task graph execution time. It is computed as a
weighted average of the contributions given by all paths:

HTCl = Nl ·
∑

Pp∈HPl (PCp · f p)
∑

Pp∈HPl f p
(11)

where Nl is the average number of iteration of Ll (N0 = 1) and f p represents how
many times the path Pp is executed.

Let S0 be the performance of the sequential specification, the estimated speed-up μ

introduced with the parallelization is then computed as:

μ = S0
HTC0

(12)

123

Int J Parallel Prog (2016) 44:735–771 753

5.3 Analysis of the Proposed Methodology

It is worth noting that the estimation presents some approximations because of the
simplifications that have been necessarily introduced. First, the execution time of each
called function is estimated to be constant and equal to its average execution time:
calling contexts and inter-functions correlations are not analyzed as discussed above.
In the same way, the correlations between statements belonging to different loops
are not taken into account and the execution time of the nested loops is estimated to
be constant (i.e. the average execution time of an iteration multiplied by the average
number of iterations). However, applying the proposed methodology to the two cases
presented in Sect. 2, we obtain 2648.5 and 2122 cycles respectively (details are shown
in Appendix 1), and these results have been confirmed by the execution times obtained
with simulation. This shows that, by exploiting profiling information, the proposed
methodology is able to take into account the contribution of each statement when
estimating the overall performance of the application.

The algorithm complexity is O(|C | · |HPl | · |Vl |) where C is the number of CDRs,
HPl is the set of paths for Ll and Vl is the set of tasks for HTGl , as it results from line
13 of Algorithm 1. In the Eqs. 4, 5, 6, a linear additive model is adopted to combine
the contributions of the different path components. T PCp,t is the estimation of the
execution time for the task statements sequentially executed: it is possible to easily
integrate more complex models for estimating the overall execution time of these
sequences of statements, but this requires to compute independently all the T PCp,t

starting from the single statements,whichmay increase the complexity of the approach.

6 Experimental Evaluation

We tested ourmethodology on several C-based benchmarksmapped on different archi-
tectures. Section 6.1 describes the experimental setup, while Sect. 6.2 shows the results
that have been obtained.

6.1 Experimental Setup

Our methodology has been integrated in PandA [47], a hardware/software co-design
framework based on GCC [48]. We tested this methodology on several benchmarks,
which have been extracted from different benchmark suites for embedded systems:
MiBench [49], OpenMP Source Code Repository (OmpSCR) [50] and Splash 2 [51].
Their characteristics are reported in Tables 4 and 5. The parallelism has been described
with OpenMP: some of these benchmarks already contain such annotations, while the
remaining ones have been manually partitioned. We then applied our framework to
the resulting code and we exploit the intermediate representation of the GCC to build
the corresponding HTG representation as described in Sect. 4.1.

To implement the HPP, we added the proper instrumentations and we execute
the resulting code on the host machine to collect information about the executed
paths. Additional details can be found in [34]. Note that this instrumentation usu-
ally introduces an execution overhead that ranges from 20 to 200% with respect to

123

754 Int J Parallel Prog (2016) 44:735–771

Table 4 Characteristics of analyzed benchmarks

Suite Benchmark name Lines Fun. Loops MD If Par Tasks

OmpSCR Array delay 429 8 15 2 8 2 8

fft 666 17 36 5 17 2 7

MiBench basicmath 764 11 39 4 16 4 16

Blowfish 2646 14 54 2 55 3 10

dijkstra 222 6 7 2 12 1 4

Grad 944 11 39 4 16 2 8

Large corner detection 4823 19 83 4 501 4 14

Large edge detection 4823 19 83 4 501 4 14

Short math 944 11 39 4 16 1 4

Small corner detection 4823 19 83 4 501 4 14

Small edge detection 4823 19 83 4 501 4 14

Splash 2 jpeg 931 7 23 4 5 1 4

Square root 944 11 39 4 16 2 6

String search 2821 3 8 2 17 1 4

Lines is the number of source code lines; Fun. is the number of functions; Loops is the number of loops;
MD is the maximum depth of the loop trees; I f is the number of conditional constructs; Par is the number
of parallel sections; Tasks is the number of parallel tasks

Table 5 Execution times of the
benchmarks when executed on
the uniprocessor architecture

O0 and O2 are the cycles
execution times of the
benchmarks, compiled with
−O0 and −O2 respectively,
when simulated on a single
processor architecture

Suite Benchmark Name O0 O2

OmpSCR Array delay 7.20 × 108 6.02 × 108

fft 2.31 × 106 1.63 × 106

MiBench Basicmath 4.29 × 108 3.79 × 108

Blowfish 4.73 × 106 4.62 × 106

dijkstra 3.41 × 108 1.60 × 108

Grad 3.82 × 107 1.94 × 107

Large corner detection 3.94 × 107 1.71 × 107

Large edge detection 1.84 × 106 1.71 × 106

Short math 2.96 × 108 3.79 × 108

Small corner detection 1.84 × 106 9.12 × 105

Small edge detection 8.42 × 105 6.01 × 105

Splash 2 jpeg 5.30 × 106 3.11 × 106

Square root 4.97 × 107 1.04 × 107

String search 3.48 × 106 2.03 × 106

the non-instrumented execution on the same machine. However, since the profiling is
performed directly on the host system, which is usually much faster than the target
architecture or its cycle-accurate simulator, the actual overhead of the instrumented
application with respect to the original application executed on the target architecture
is significantly less. For some architectures, the instrumented execution on the host
system can be even faster than non-instrumented execution on target. Additionally, the

123

Int J Parallel Prog (2016) 44:735–771 755

path profiling is performed only once on the sequential application and the evaluation
of multiple parallel solutions does not require to perform multiple path profilings. For
these reasons, the instrumentation overhead is acceptable. Applying the optimizations
proposed in [15] (e.g. the use of registers to store intermediate results) would allow to
further decrease this overhead, but this is out of the scope of this paper.

In our experiments, the target architectures are composed of ARMprocessors (from
1 to 4), with a shared 32 Mbyte memory connected through a shared bus. We adopted
the ARM922T processors [52] with 333 Mhz clock frequency, based on ARM9TDMI
core (ARMv4T architecture) with a 8KB instruction cache and a 8KB data cache.
Different performance models have been created with the methodology proposed in
[16] to consider the effects of different compiler optimizations sets on the application
performance. In particular, we built performance models for applications compiled
with no optimizations (-O0) and with a standard set of active optimizations (-O2).
The task management costs have been obtained by applying the profiling technique
proposed in [17]. Mapping decisions for these architectures have been obtained by
applying the methodology proposed in [4] and then specified as source code annota-
tions [39]. This approach automatically produces a partitioning of the resources among
parallel tasks at each level of the hierarchy. The scheduling decisions are instead auto-
matically computed by applying a topological sorting on the task graphs. Thanks to
these assumptions, given a hierarchical task graph HTGl , there are no interferences
between tasks at different levels of the hierarchy and the dependences added to create
HTGl are sufficient to effectively compute the performance estimation.

To validate the speed-up estimations produced by our methodology, we adopt ReSP
(Reflective Simulation Platform) [7], which is freely downloadable from [53]. ReSP
is a highly configurable Virtual Platform targeted to the modeling and analysis of
MPSoC systems and built on top of the SystemC and TLM libraries at different levels
of abstraction. Note that, in our experiments, the cache coherence is guaranteed by
a directory-based mechanism, which overhead is directly managed by the simulation
platform itself.

6.2 Experimental Results

We evaluated the benefits of considering profiling information by comparing our
methodology with the following traditional techniques [19]:

– Maximal Time (MT) the weight of each task is the estimation of its worst-case
execution time and the profiling information is used to compute the maximum
number of iterations for unbounded loops;

– Average Time (AT) the weight of each task is the estimation of its average execution
time and the profiling information is used to compute the average number of loop
iterations, along with the branch probabilities.

Note that, in both the cases, the execution time of the task graph HTG is estimated
as the longest path in the transformed task graph HTG.

These techniques have been applied to the benchmarks listed in Table 4, compiled
with different levels ofGCCoptimizations (-O0 and-O2). The results have been com-
pared with the results obtained with our path-based methodology (called PB) under

123

756 Int J Parallel Prog (2016) 44:735–771

Table 6 Average absolute estimation error of analyzed techniques

Technique −O0 −O2

Error (%) Std. Dev. (%) Error (%) Std. Dev. (%)

Error on the 2-processor architecture

Maximal time 24.35 23.93 22.42 25.30

Average time 14.27 23.03 15.04 25.14

Path based 3.72 2.90 4.60 5.28

Error on the 3-processor architecture

Maximal time 24.62 24.49 25.20 26.84

Average time 14.91 23.30 16.01 25.52

Path based 3.79 2.94 3.30 3.16

Error on the 4-processor architecture

Maximal time 56.54 72.41 60.32 74.78

Average time 35.33 74.83 40.06 78.03

Path based 2.76 2.98 4.82 6.63

the same conditions. For each application, we created eight situations to be analyzed:
the two code optimization levels combined with the four considered architectures, i.e.,
from 1 to 4 processors. Each of these eight situations is analyzed with the three esti-
mation techniques (i.e. MT, AT and PB) and then simulated with ReSP for validation.

Table 6 shows the average error produced by the three techniques when estimating
the speed-up for the multiprocessor architectures with respect to the uniprocessor one.
The error is computed as SUEst−SUReal

SUReal
where SUEst is the estimated speed-up and

SUReal is the measured speed-up.
First, there are no significant differences in the accuracy of the estimations with

different optimization levels for all the techniques. Indeed, applying code optimiza-
tions increases the error in estimating the performance of the single tasks, but the
overall effects on the speed-up estimation are mitigated since the error is introduced
in the estimations of both the sequential and the parallel versions of the applications.
The results also show that our technique (i.e. PB), by properly adopting the complete
path profiling information, is able to achieve better results (3.83%) than state-of-
the-art techniques (i.e. MT and AT). Additionally, the AT technique produces better
estimations than the MT technique (22.60 vs. 35.57%) since it exploits more profil-
ing information (e.g. the branch probabilities). The error introduced when estimating
architectures with 4 processors with AT and MT techniques grows significantly, as
explained in the following.

The results for each benchmark are reported in Tables 7, 8 and 9: the estimation error
is reported for each combination of estimation technique, compiler optimization level
and target architecture. Note that the error is positivewhen the technique overestimates
the real speed-up, negative otherwise. For the PB technique, we report also the results
obtained without taking into account the mapping information during the estimation:
it is worth noting that this is equivalent to consider a target architecture composed
of a number of processors equal or larger than the maximum degree of parallelism
of the benchmark. In fact, in this case, there is no contention on the computational

123

Int J Parallel Prog (2016) 44:735–771 757

Table 7 Estimated speed-up for the architecture with two processors

Benchmark name OL Real MT AT PB

Not Mapped Mapped

SU Err. SU Err. SU Err. SU Err.

Array delay 0 1.132 1.665 47.1 1.144 1.1 1.233 8.9 1.144 1.1

2 1.097 1.465 33.5 1.194 8.8 1.247 13.7 1.194 8.8

Basicmath 0 1.558 1.573 1.0 1.605 3.0 2.564 64.6 1.605 3.0

2 1.573 1.607 2.2 1.607 2.2 2.684 70.6 1.584 0.7

Blowfish 0 1.339 1.717 28.3 1.564 16.8 1.702 27.1 1.369 2.3

2 1.420 1.707 20.2 1.560 9.9 1.800 26.8 1.366 −3.8

dijkstra 0 1.000 1.891 89.2 1.891 89.2 0.993 −0.7 0.997 −0.3

2 1.000 1.994 99.5 1.994 99.5 0.993 −0.7 0.997 −0.3

fft 0 1.223 1.591 30.1 1.254 2.5 1.602 31.0 1.254 2.5

2 1.236 1.523 23.2 1.201 −2.9 1.454 17.6 1.201 −2.9

Grad 0 1.427 1.484 4.0 1.484 4.0 1.959 37.3 1.484 4.0

2 1.606 1.580 −1.6 1.580 −1.6 2.218 38.1 1.580 −1.6

jpeg 0 1.150 1.348 17.2 1.229 6.9 1.365 18.7 1.163 1.1

2 1.075 1.251 16.3 1.132 5.3 1.212 12.7 1.064 −1.1

Large corner detection 0 1.674 1.976 18.0 2.004 19.7 3.010 79.8 1.839 9.8

2 1.509 1.892 25.3 1.904 26.1 2.560 69.6 1.704 12.9

Large edge detection 0 1.099 1.453 32.2 1.318 19.9 1.180 7.3 1.169 6.3

2 1.092 1.442 32.1 1.294 18.5 1.750 60.3 1.074 −1.6

Short math 0 1.785 1.796 0.6 1.779 −0.3 2.914 63.3 1.779 −0.3

2 1.790 1.795 0.3 1.795 0.3 2.923 63.3 1.774 −0.9

Small corner detection 0 1.594 1.876 17.7 1.873 17.5 2.801 75.7 1.681 5.5

2 1.527 1.673 9.6 1.704 11.6 2.562 67.8 1.632 6.9

Small edge detection 0 1.030 1.453 41.1 1.218 18.3 1.114 8.2 1.069 3.8

2 1.090 1.452 33.2 1.224 12.3 1.250 14.7 1.075 −1.4

Square root 0 1.488 1.699 14.2 1.579 6.1 2.188 47.0 1.579 6.1

2 1.384 1.604 15.9 1.579 14.1 2.224 60.7 1.579 14.1

String search 0 1.991 1.997 0.3 1.995 0.2 3.943 98.1 1.995 0.2

2 1.979 1.997 0.9 1.998 1.0 3.965 100.4 1.998 1.0

Bold values identify the smallest estimation error for each benchmark
OL is the optimization level; Real is the speed-up measured with Resp; SU is the estimated speed-up;
Err. is the speed-up estimation error

resources and the estimation computed considering mapping information corresponds
to the one obtained by ignoring the mapping decisions. Results show that ignoring
mapping and scheduling information introduces a large error in estimating the speed-
up on the architectures with fewer processors (i.e. two or three) since, in this cases,
the contention on the resources is much more relevant and ignoring this information
leads to wrong estimations.

Analyzing the results, we can identify different classes of benchmarks. In particular,
benchmarks like basicmath, grad and string search are characterized by a substantial

123

758 Int J Parallel Prog (2016) 44:735–771

Table 8 Estimated speed-up for the architecture with three processors

Benchmark name OL Real MT AT PB

Not Mapped Mapped

SU Err. SU Err. SU Err. SU Err.

Array delay 0 1.130 1.664 47.2 1.143 1.1 1.233 9.1 1.143 1.1

2 1.104 1.464 32.6 1.145 3.7 1.247 13.0 1.145 3.7

Basicmath 0 1.817 1.890 4.0 1.852 1.9 2.564 41.1 1.910 5.1

2 1.840 1.907 3.6 1.797 −2.3 2.684 45.9 1.784 −3.0

Blowfish 0 1.449 2.054 41.8 1.869 29.0 1.702 17.5 1.504 3.8

2 1.511 1.947 28.9 1.798 19.0 1.800 19.1 1.604 6.2

dijkstra 0 0.996 1.891 89.9 1.891 89.9 0.993 −0.3 0.995 −0.1

2 1.000 1.994 99.5 1.994 99.5 0.993 −0.7 0.995 −0.5

fft 0 1.226 1.591 29.8 1.254 2.3 1.602 30.7 1.254 2.3

2 1.241 1.523 22.7 1.202 −3.1 1.454 17.2 1.202 −3.1

Grad 0 1.426 1.482 3.9 1.482 3.9 1.959 37.3 1.482 3.9

2 1.606 1.577 −1.8 1.577 −1.8 2.218 38.1 1.577 −1.8

jpeg 0 1.226 1.660 35.4 1.339 9.2 1.365 11.3 1.297 5.8

2 1.087 1.671 53.7 1.305 20.0 1.212 11.5 1.138 4.7

Large corner
detection

0 1.674 1.876 12.0 1.953 16.6 3.010 79.8 1.839 9.8

2 1.509 1.889 25.2 1.901 26.0 2.560 69.6 1.701 12.7

Large edge
detection

0 1.097 1.443 31.5 1.218 11.0 1.180 7.6 1.069 −2.6

2 1.089 1.439 32.2 1.288 18.3 1.750 60.7 1.071 −1.6

Short math 0 2.272 2.242 −1.3 2.267 −0.2 2.914 28.2 2.267 −0.2

2 2.265 2.241 −1.1 2.240 −1.1 2.923 29.0 2.240 −1.1

Small corner
detection

0 1.595 1.876 17.6 1.873 17.4 2.801 75.6 1.681 5.4

2 1.526 1.576 3.3 1.737 13.8 2.562 67.9 1.587 4.0

Small edge
detection

0 1.013 1.443 42.4 1.218 20.2 1.114 9.9 1.069 5.5

2 1.083 1.449 33.8 1.221 12.7 1.250 15.4 1.072 −1.0

Square root 0 1.467 1.697 15.7 1.577 7.5 2.188 49.1 1.577 7.5

2 1.594 1.604 0.7 1.579 −0.9 2.224 39.6 1.579 −0.9

String search 0 2.973 2.978 0.2 2.978 0.2 3.943 32.6 2.975 0.1

2 2.921 2.974 1.8 2.977 1.9 3.965 35.8 2.977 1.9

OL is the optimization level; Real is the speed-up measured with Resp; SU is the estimated speed-up;
Err. is the speed-up estimation error

data parallelism (e.g. parallel execution of different iterations of the same loop), which
covers most of the application execution. These applications contain few conditional
constructs, without any specific correlation among the execution times of their tasks.
All techniques are thus able to estimate their speed-up with a good accuracy. Profiling
information can be useful to obtain good speed-up estimations also in case of data par-

123

Int J Parallel Prog (2016) 44:735–771 759

Table 9 Estimated speed-up for the architecture with four processors

Benchmark name OL Real MT AT PB

Not Mapped Mapped

SU Err. SU Err. SU Err. SU Err.

Array delay 0 1.225 1.751 43.0 1.233 0.7 1.233 0.7 1.233 0.7

2 1.187 1.659 39.8 1.247 5.1 1.247 5.1 1.247 5.1

Basicmath 0 2.226 2.298 3.2 2.302 3.4 2.564 15.2 2.206 −0.9

2 2.199 2.297 4.5 2.301 4.7 2.684 22.1 2.226 1.2

Blowfish 0 1.658 2.655 60.1 2.154 29.9 1.702 2.7 1.702 2.7

2 1.761 2.557 45.2 2.059 16.9 1.800 2.2 1.800 2.2

dijkstra 0 0.991 3.850 288.7 3.850 288.7 0.993 0.2 0.993 0.2

2 0.991 3.949 298.4 3.949 298.4 0.993 0.2 0.993 0.2

fft 0 1.379 2.259 63.9 1.438 4.3 1.602 16.2 1.438 4.3

2 1.403 2.064 47.1 1.337 −4.7 1.454 3.6 1.337 −4.7

Grad 0 1.855 1.959 5.6 1.959 5.6 1.959 5.6 1.959 5.6

2 2.305 2.218 −3.8 2.218 −3.8 2.218 −3.8 2.218 −3.8

jpeg 0 1.302 2.025 55.6 1.475 13.3 1.365 4.9 1.365 4.9

2 1.120 2.040 82.1 1.475 31.7 1.212 8.2 1.212 8.2

Large corner
detection

0 2.482 3.340 34.6 3.733 50.4 3.010 21.3 2.750 10.8

2 2.091 3.502 67.5 3.479 66.4 2.560 22.4 2.350 12.4

Large edge
detection

0 1.118 1.973 76.5 1.404 25.6 1.180 5.6 1.120 0.2

2 1.138 1.937 70.3 1.440 26.6 1.750 53.8 1.126 −1.0

Short math 0 2.882 2.983 3.5 2.914 1.1 2.914 1.1 2.914 1.1

2 2.899 2.982 2.9 2.923 0.8 2.923 0.8 2.923 0.8

Small corner
detection

0 2.440 3.338 36.8 3.451 41.5 2.801 14.8 2.450 0.4

2 1.868 3.259 74.5 3.245 73.7 2.562 37.2 2.325 24.5

Small edge
detection

0 1.062 1.973 85.7 1.403 32.1 1.114 4.9 1.092 2.8

2 1.124 1.993 77.4 1.404 25.0 1.250 11.3 1.120 −0.3

Square root 0 2.105 2.823 34.1 2.188 4.0 2.188 4.0 2.188 4.0

2 2.287 2.982 30.4 2.224 −2.8 2.224 −2.8 2.224 −2.8

String search 0 3.936 3.948 0.3 3.946 0.3 3.943 0.2 3.943 0.2

2 3.952 3.982 0.8 3.965 0.3 3.965 0.3 3.965 0.3

OL is the optimization level; Real is the speed-up measured with Resp; SU is the estimated speed-up;
Err. is the speed-up estimation error

allelism and tasks with similar execution times that are executed in parallel. In fact, for
example, benchmarks like array delay and blowfish are characterized by the presence
of parallel sections consisting of parallelized loop iterations. In these benchmarks, the
speed-up obtained in the single parallel sections can be easily estimated as their tasks
have the same execution time. However, profiling information has to be necessarily

123

760 Int J Parallel Prog (2016) 44:735–771

considered also in this situation due to the proportion of the tasks composing sequen-
tial and parallel parts of the application, as stated by the well-known Amdahl’s Law.
Since the MT technique is not able to correctly estimate this proportion, its speed-up
estimation can lead to a significant error also in this case. In particular, for its intrinsic
characteristics of adopting the maximum time, the MT technique systematically over-
estimates the execution time of the single tasks. Then, if the tasks composing the same
parallel section are quite similar, as in the case of data parallel applications, all the tasks
are overestimated in the same way. The MT technique thus overestimates the weight
of the parallel part much more than the sequential one, overestimating the speed-up
introduced by the parallelization. On the contrary, simple profiling information, such
as the branch probabilities and the loop average iterations adopted by theAT technique,
provides sufficient information to correctly estimate this proportion and, in turn, the
overall speed-up. In these cases, the PB technique obtains almost the same results
since the profiling of executed paths does not introduce any additional information to
improve the estimation since no correlations are contained into the code. Conversely,
when different tasks are correlated, adopting the path profiling information becomes
critical. For example, in the susan benchmarks (corner detection and edge detection),
there are parts of the code executed in parallel that are actually in mutual exclusion.
Thus, the profiling information adopted by the AT technique is not sufficient and leads
to optimistic estimations, as shown also in Sect. 2. Finally, consider the results about
the dijkstra benchmark: in this case we introduced a false parallelism in the appli-
cation since the code contained in parallel tasks is always in mutual exclusion. This
situation has been artificially created to show how the proposed methodology is able
to properly analyze also these situations. Indeed, our methodology correctly predicts
a slow-down in the application due to the synchronization overhead of the tasks. The
other techniques, instead, are not able to detect the mutual exclusion and, thus, they
predict an incorrect positive speed-up.

Finally, Table 10 highlights how the estimation error changes when increaing the
number of processors. In the benchmarks with substantial data parallelism (e.g. grad),
there is no significant difference in the estimation error for all the techniques when
considering more processors. Moreover, if the benchmark is characterized by parallel
sections with four tasks that are equivalent from the performance point of view, there
is not any benefit in increasing the number of processors from two to three. In fact,
on the architecture with two processors, each processor has to execute two of the
parallel tasks in sequence, while on the architecture with three processors, one of
them has still to execute two tasks. For this reason, there is no difference in the
speed-up. However, the additional cost required for creating more tasks induces a
slow-down in the application execution, as correctly modeled by all techniques. On
the contrary, if there is a correlation between the execution times of the parallel tasks,
the errors in estimating the parallel version of the application and, in turn, of the
speed-up increase when increasing the number of processors, as shown, for example,
in the jpeg benchmark. When the tasks are completely correlated (e.g. they are in
mutual exclusion as in dijkstra), these effects become very significant and can lead to
large errors. On the contrary, the PB technique is able to take into account all these
task correlations and, thus, the error is not significantly affected when increasing the
number of processors.

123

Int J Parallel Prog (2016) 44:735–771 761

Table 10 Relationship between the number of processors and the estimation error

Benchmark OL Technique 2 processors 3 processors 4 processors

SU Err. SU Err. SU Err.

grad 0 Real 1.427 – 1.426 – 1.855 –

Maximal time 1.484 4.0 1.482 3.9 1.959 5.6

Average time 1.484 4.0 1.482 3.9 1.959 5.6

Path based 1.484 4.0 1.482 3.9 1.959 5.6

2 Real 1.606 – 1.606 – 2.305 –

Maximal time 1.580 –1.6 1.577 –1.8 2.218 –3.8

Average time 1.580 –1.6 1.577 –1.8 2.218 –3.8

Path based 1.580 –1.6 1.577 –1.8 2.218 –3.8

jpeg 0 Real 1.150 – 1.226 – 1.302 –

Maximal time 1.348 17.2 1.660 35.4 2.025 55.6

Average time 1.229 6.9 1.339 9.2 1.475 13.3

Path based 1.163 1.1 1.297 5.8 1.365 4.9

2 Real 1.075 – 1.087 – 1.120 –

Maximal time 1.251 16.3 1.674 53.7 2.040 82.1

Average time 1.132 5.3 1.305 20.0 1.475 31.7

Path based 1.064 –1.1 1.138 4.7 2.212 8.2

dijkstra 0 Real 1.000 – 0.996 – 0.991 –

Maximal time 1.891 89.2 1.891 89.9 3.850 288.7

Average time 1.891 89.2 1.891 89.9 3.850 288.7

Path based 0.997 –0.3 0.995 –0.1 0.993 0.2

2 Real 1.000 – 1.000 – 0.991 –

Maximal time 1.991 99.5 1.994 99.5 3.949 298.4

Average time 1.994 99.5 1.994 99.5 3.949 298.4

Path based 0.997 –0.3 0.995 –0.5 0.993 0.2

OL is the optimization level; T echnique is the technique adopted for the estimation; SU is the estimated
speed-up; Err. is the speed-up estimation error

7 Conclusions

In this paper, we proposed a methodology to better estimate the speed-up of a parallel
code that takes into account the assignments of the tasks to the processing elements
of the architecture and the correlation that may exist among their execution times. In
particular, such estimation is computed by combining the HTG representation with a
single profiling of the sequential version of the application, which is collected on a
generic host machine. We applied our methodology to estimate the speed-up of a set
of parallel benchmarks on different MPSoC architectures, which have been obtained
by varying the number of processors, and we validated the results on a simulation
platform.The results show that the proposedmethodology is effectively able to produce
muchmore accurate estimationswith respect to classical approaches based on constant
execution time for the tasks.

123

762 Int J Parallel Prog (2016) 44:735–771

Appendix 1: Example ofApplication ofTaskGraphEstimationTechnique
based on Path Profiling

Entry0

Task0

Task1

Task2bTask3

Task4

Exit0

HTG0

Task2a
(HTG5)

Entry5

Task6

Exit5

HTG5

(a)

(b)

Fig. 7 HTG created from HTG considering SolB. a Task Graph of L0. b Task Graph of L5

Table 11 Results of applying the Hierarchical Path Profiling Technique to the example of Fig. 1

ID Basic blocks CRP Results

a© b©
1© BBEntry–BB1–

BB2–BB4–L
∗
5–BB5–

BB10–BB11–BB13–
BBExit

A,B,C,F 5 0

2© BBEntry–BB1–
BB2–BB4–L

∗
5–BB5–

BB10–BB12–BB13–
BBExit

A,B,C,G 0 5

3© BBEntry–BB1–
BB3–BB4–L

∗
5–BB5–

BB10–BB11–BB13–
BBExit

A,B,D,F 0 5

4© BBEntry–BB1–
BB3–BB4–L

∗
5–BB5–

BB10–BB12–BB13–
BBExit

A,B,D,G 5 0

5© BB5–BB6–BB7–
BB9

B,E,H 100 100

6© BB5–BB6–BB8–
BB9

B,E,I 0 0

ID is the identifier of the path, Basic blocks is the sequence of the basic blocks composing the path,CRP are
the corresponding Control Dependence Regions,Results shows howmany times the sequence of basic block
is executed as counted by the HPP on 10 execution of function fun_0 when the probability of condition
c1 being true is 0.5, condition c3 is always true and a© c1 = c2 or b© c1 = !c2

123

Int J Parallel Prog (2016) 44:735–771 763

Table 12 Contribution BCi,t

(a) Contribution BCi,t for HTG5

BB Task6

1 0

2 0

3 0

4 0

5 1

6 2

7 101

8 2

9 1

10 0

11 0

12 0

13 0

(b) Contribution BCi,t for HTG0

Task

BB Task0 Task1 Task2a Task2b Task3 Task4

1 1 2 0 0 0 0

2 0 2050 0 0 0 0

3 0 1 0 0 0 0

4 0 1 0 0 1 0

5 0 0 1 0 0 0

6 0 0 0 0 0 0

7 0 0 0 0 0 0

8 0 0 0 0 0 0

9 0 0 0 0 0 0

10 0 1 0 0 1 0

11 0 0 0 0 2050 0

12 0 0 0 0 1 0

13 0 0 0 10 0 4

This appendix shows how the proposed methodology is applied to estimate the
performance of the example presented in Sect. 2 when SolB is considered: Task1
and Task3 are assigned to CPUα, Task2a and Task2b are assigned to CPUβ . The
resulting HTG is shown in Fig. 7: the edge < Task1, Task3 > is added to represent
the scheduling order, as discussed in Sect. 5.2. The estimation starts with the applica-
tion of the Hierarchical Path Profiling on the host machine, which results are reported
in Table 11. For the sake of readability, we report also the sequence of basic blocks

123

764 Int J Parallel Prog (2016) 44:735–771

Table 13 Contribution BCi,t

(a) Contribution BCi,t for HTG5

BB Task6

1 0

2 0

3 0

4 0

5 1

6 2

7 101

8 2

9 1

10 0

11 0

12 0

13 0

(b) Contribution BCi,t for HTG0

Task

BB Task0 Task1 Task2a Task2b Task3 Task4

1 1 2 0 0 0 0

2 0 2050 0 0 0 0

3 0 1 0 0 0 0

4 0 1 0 0 1 0

5 0 0 1051 0 0 0

6 0 0 0 0 0 0

7 0 0 0 0 0 0

8 0 0 0 0 0 0

9 0 0 0 0 0 0

10 0 1 0 0 1 0

11 0 0 0 0 2050 0

12 0 0 0 0 1 0

13 0 0 0 10 0 4

which compose each path, even if this information is equivalent to the one provided
by the corresponding CRP. The order of the Control Dependence Regions in a Control
Region Path is not relevant since the basic blocks are interleaved during the execution.
The table shows how HPP is able to profile the paths 1©, 2©, 3© and 4© and to collect
correlations about the execution of basic blocks before and after a loop, even if it is
executed, with a representation that can be easily mapped onto the HTG.

Before estimating the execution time (HTC0) of func_0, HTC5 is estimated as
follows:

123

Int J Parallel Prog (2016) 44:735–771 765

Table 14 Contribution CCi,t

(a) Contribution CCi,t for HTG5

CDR Task6

A 0

B 1

C 0

D 0

E 3

F 0

G 0

H 101

I 2

(b) Contribution CCi,t for HTG0

CDR Task0 Task1 Task2a Task2b Task3 Task4

A 0 0 0 0 0 0

B 1 4 1051 10 2 4

C 0 2050 0 0 0 0

D 0 1 0 0 0 0

E 0 0 0 0 0 0

F 0 0 0 0 2050 0

G 0 0 0 0 1 0

H 0 0 0 0 0 0

I 0 0 0 0 0 0

Table 15 Contribution T PCp,t

(a) Contribution T PCp,t for HTG5

Path Task

Id CDRs Task6

5© B,E,H 105

6© B,E,I 6

(b) Contribution T PCp,t for HTG0

Path Task

Id CDRs Task0 Task1 Task2a Task2b Task3 Task4

1© A,B,C,F 1 2054 1051 10 2052 4

2© A,B,C,G 1 2054 1051 10 3 4

3© A,B,D,F 1 5 1051 10 2052 4

4© A,B,D,G 1 5 1051 10 3 4

123

766 Int J Parallel Prog (2016) 44:735–771

Table 16 Contribution T PC p,t

(a) Contribution T PC p,t for HTG5

Path Task

Id CDRs Task6

5© B,E,H 105

6© B,E,I 6

(b) Contribution T PC p,t for HTG0

Path Task

Id CDRs Task0 Task1 Task2a Task2b Task3 Task4

1© A,B,C,F 1 2104 1101 20 2062 4

2© A,B,C,G 1 2104 1101 20 13 4

3© A,B,D,F 1 55 1101 20 2062 4

4© A,B,D,G 1 55 1101 20 13 4

1. the contribution BCi,t of each basic block is computed (line 2 of Algorithm 1):
the results are reported in Table 12a (e.g. BC9,6 = f (o13) = 1 since o13 is the
only statement of BB9);

2. the contribution BCi,t of each basic block including nested loops is computed
(lines 4 and 6—Table 13a—e.g. BC7,6 = BC7,6 since Task6 is simple);

3. the contribution CCc,t is computed summing the contribution of the single basic
blocks (line 9—Table 14a—e.g. CCE,6 = BC6,6 + BC6,9 = 3 since CDRE is
composed of BB6 and BB9);

4. the contributions of the single Control Dependence Regions are summed to com-
pute the contributions T PCp,t (line 13—Table 15a—e.g. T PC 6©,6 = CCB +
CCE + CCI = 6 since path 6© is composed of B, E and I);

5. the overhead for the task management is added to T PCp,t to compute T PC p,t ;
since there is not any overhead cost in this task graph, T PC p,t = T PCp,t (line
15—Table 16a—T PC 6©,6 = T PC 6©,6 since Task6 has not overhead cost);

6. the start and end times of each task are computed (lines 20 and 21—Table 17a—e.g.
ST ART 6©,6 = ST OP 6©,Entry5 since Entry5 is the only predecessor of Task6;

ST OP 6©,6 = ST ART 6©,6 + T PC 6©,6); the execution times of the two paths
are computed as the end time of task Exit (line 25—last line of Table 17a—e.g.
PC 6© = ST OP 6©,Exit5);

7. the estimation of the whole HTG5 can be computed (line 27):

HTC5 = N5 ·
PC 5© · f 5© + PC 6© · f 6©

f 5© + f 6© = 10· 105 · 100 + 6 · 0
100 + 0

= 1050 (13)

After HTC5 has been estimated, HTC0 can be estimated in the same way and
Fig. 8 shows how the different contributions are combined. These contributions are:

123

Int J Parallel Prog (2016) 44:735–771 767

Table 17 Starting and ending
times of tasks

(a) Starting and ending times of tasks of HTG5

Tasks Paths

5© 6©
Entry5 STARTp,Entry5 0 0

STOPp,Entry5 0 0

Task6 STARTp,6 0 0

STOPp,6 105 6

Exit5 STARTp,Exit5 105 6

STOPp,Exit5 105 6

PCp 105 6

(b) Starting and ending times of tasks of HTG0

Tasks Paths

1© 2© 3© 4©

Entry0 STARTp,Entry0 0 0 0 0

STOPp,Entry0 0 0 0 0

Task0 STARTp,0 0 0 0 0

STOPp,0 1 1 1 1

Task1 STARTp,1 1 1 1 1

STOPp,1 2105 2105 56 56

Task2a STARTp,2a 1 1 1 1

STOPp,2a 1102 1102 1102 1102

Task2b STARTp,2b 1102 1102 1102 1102

STOPp,2b 1122 1122 1122 1122

Task3 STARTp,3 2105 2105 56 56

STOPp,3 4167 2118 2118 69

Task4 STARTp,4 4167 2118 2118 1122

STOPp,4 4171 2122 2122 1126

Exit0 STARTp,Exit0 4171 2122 2122 1126

STOPp,Exit0 4171 2122 2122 1126

PCp 4171 2122 2122 1.126

1. the contribution of each basic block BCi,t (lines 2), obtained from the clock cycles
of Table 1; the results are reported in Table 12b;

2. the contribution of each basic block including nested loops BCi,t (lines 4 and 6);
the results are reported in Table 13b; note in particular that BC5,2a = BC5,2a +
HTC5 = 1 + 1050;

3. the contribution of each Control Dependence Region CCc,t (line 9); the results
are reported in Table 14b;

123

768 Int J Parallel Prog (2016) 44:735–771

OP

BB

CDR

TASK

PATH

TASK
GRAPH

HTC5

f(2) f(1, 3) f(6) f(14) f(8) f(18) f(15) f(7) f(19) f(4) f(5) f(16) f(17)

1 1 1 1 1 1 1 1 1 1 1 1 1

BC1,0

BC1,1

BC4,1

BC10,1

BC5,2a

BC13,2b

BC10,3

BC4,3

BC13,4

BC2,1

BC3,1

BC11,3

BC12,3

2

2

2

2

2

2

2

2

2

2

2

2

2

BC1,0

BC1,1

BC4,1

BC10,1

BC5,2a

BC13,2b

BC10,3

BC4,3

BC13,4

BC2,1

BC3,1

BC11,3

BC12,3

3 3 3 3 3 3 3 3 3 3

CCB,0 CCB,1 CCB,2a CCB,2b CCB,3 CCB,4 CCC,1 CCD,1 CCF,3 CCG,3

4 4 4 4 4 4 4 4 4 4 4 4

TPC
1 ,0

TPC
1 ,1

TPC
1 ,2a

TPC
1 ,2b

TPC
1 ,3

TPC
1 ,4

TPC
4 ,0

TPC
4 ,1

TPC
4 ,2a

TPC
4 ,2b

TPC
4 ,3

TPC
4 ,4

5

5

5

5

5

5

5

5

5

5

5

5

TPC
1 ,0

TPC
1 ,1

TPC
1 ,2a

TPC
1 ,2b

TPC
1 ,3

TPC
1 ,4

TPC
4 ,0

TPC
4 ,1

TPC
4 ,2a

TPC
4 ,2b

TPC
4 ,3

TPC
4 ,4

6 6

PC
1

PC
4

7

HTC0

Fig. 8 Composition of contributions to produce HTC0 when c1 and c2 have always the same values;
contributions (rounded rectangles) are computed from top to bottom of the graph using operations described
in the proposed methodology (rhombuses); the corresponding levels are reported in the left of the figure

123

Int J Parallel Prog (2016) 44:735–771 769

4. the contribution of each path to each task T PCp,t (line 13); the results are reported
in Table 15b;

5. the contribution of each path to each task, along with the overhead cost, T PC p,t

(line 15); the creation cost (50) is added to Task1 and Task2a; the synchronization
and destruction cost (10) is added to Task3 and Task2b; the results are reported
in Table 16b;

6. ST ARTp,t and ST OPp,t (lines 20 and 21); the results are reported in Table 17b,
where the selected topological order is: Entry0-Task0-Task1-Task2a-Task2b-
Task3-Task4-Exit0;

7. the contribution of each path PCp (line 25): the results are reported in the last line
of Table 17b;

8. HPC0 in the two cases presented in Sect. 2:

a© the CRPs executed are P 1© and P 4©, so the execution time estimated for the
parallel version is:

HTC0 = PC 1© · f 1© + PC 4© · f 4©
f 1© + f 4© = 4171 · 5 + 1126 · 5

5 + 5
= 2648.5 (14)

b© the CRPs executed are P 2© and P 3©, so the execution time estimated for the
parallel version is:

HTC0 = PC 2© · f 2© + PC 3© · f 3©
f 2© + f 3© = 2122 · 5 + 2122 · 5

5 + 5
= 2122 (15)

Finally, the speed-up for the two situations presented in Sect. 2 can be computed.
The execution time of the sequential specification is 3123 cycles in both the cases, so
the estimated speed-ups are 1.18 and 1.47, respectively.

References

1. Wolf, W.: The future of multiprocessor systems-on-chips. In: Proceedings of the 41st Annual Design
Automation Conference, DAC ’04, pp. 681–685 (2004)

2. Niemann, R.,Marwedel, P.: An algorithm for hardware/software partitioning usingmixed integer linear
programming. Des. Autom. Embed. Syst. 2(2), 165–193 (1997)

3. Marwedel, P.: Embedded SystemDesign: Embedded Systems Foundations of Cyber-Physical Systems,
2nd edn. Springer, Berlin (2010)

4. Ferrandi, F., Pilato, C., Tumeo, A., Sciuto, D.: Mapping and scheduling of parallel C applications
with ant colony optimization onto Heterogeneous reconfigurable MPSoCs. In: Proceedings of the 15th
IEEE Asia and South Pacific Design Automation Conference, ASP-DAC ’10, pp. 799–804, January
2010 (2010)

5. Ferrandi, F., Lanzi, P.L., Pilato, C., Sciuto, D., Tumeo, A.: Ant colony heuristic for mapping and
scheduling task and communications on heterogeneous embedded systems. IEEE Trans. Comput.
Aided Des. Integ. Circ. Syst. 29(6), 911–924 (2010)

6. Benini, L., Bertozzi, D., Bogliolo, A., Menichelli, F., Olivieri, M.: MPARM: Exploring the Multi-
Processor SoC Design Space with SystemC. J. VLSI Sign. Process. 41(2), 169–182 (2005)

7. Beltrame, G., Fossati, L., Sciuto, D.: ReSP: A Nonintrusive Transaction-Level Reflective MPSoC
Simulation Platform for Design Space Exploration. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 28(12), 1857–1869 (2009)

123

770 Int J Parallel Prog (2016) 44:735–771

8. Li, Y.A., Antonio, J.K.: Estimating the execution time distribution for a task graph in a heterogeneous
computing system. In Proceedings of the 6th Heterogeneous Computing Workshop, HCW ’97, pp.
172–184, (1997)

9. Manolache, S.: Analysis and optimisation of real-time systems with stochastic behaviour. Technical
report, Linkoping University (2005)

10. Poplavko, P., Basten, T., Bekooij, M., van Meerbergen, J., Mesman, B.: Task-level timing models for
guaranteed performance in multiprocessor networks-on-chip. In: Proceedings of the 2003 international
conference on Compilers, architecture and synthesis for embedded systems, CASES ’03, pp. 63–72,
(2003)

11. Coffman, E.G.: Computer and Job Shop Scheduling Theory. Wiley, New York (1976)
12. Sahu, A., Balakrishnan, M., Panda, P.R.: A generic platform for estimation of multi-threaded pro-

gram performance on heterogeneous multiprocessors. In: Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’09, pp. 1018–1023 (2009)

13. Yaldiz, S., Demir, A., Tasiran, S., Ienne, P., Leblebici, Y.: Characterizing and exploiting task-load
variability and correlation for energy management in multi-core systems. In: ESTImedia, pp. 135–140
(2005)

14. Hubert, H., Stabernack, B., Wels, K.-I.: Performance and memory profiling for embedded system
design. In: Proceedings of the International Symposium on Industrial Embedded Systems, SIES ’07,
pp. 94–101 (July 2007)

15. Ball, T., Larus, J. R.: Efficient path profiling. In: MICRO-29: Proceedings of the 29th Annual
ACM/IEEE International Symposium on Microarchitecture, pp. 46–57 (1996)

16. Lattuada, M., Ferrandi, F.: Performance modeling of embedded applications with zero architectural
knowledge. In: Proceedings of the Eighth IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and Cystem Cynthesis, CODES/ISSS ’10, pp. 277–286 (2010)

17. Ferrandi, F., Lattuada, M., Pilato, C., Tumeo, A.: Performance modeling of parallel applications on
MPSoCs. In: IEEE International Symposium on System-on-Chip, SOC ’09, pp. 64–67 (2009)

18. OpenMP. Application Program Interface, version 2.5 (May 2005)
19. Satish, N.R., Ravindran, K., Keutzer, K.: Scheduling task dependence graphs with variable task

execution times onto heterogeneous multiprocessors. In: Proceedings of the 8th ACM international
conference on Embedded software, EMSOFT ’08, pp. 149–158, New York, NY, USA. ACM (2008)

20. Zhu, X., Malik, S.: Using a communication architecture specification in an application-driven retar-
getable prototyping platform for multiprocessing. In: Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’04, pp. 1244–1249 (2004)

21. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hestness, J., Hower, D.R.,
Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish, N., Hill, M.D., Wood, D.A.: The
Gem5 simulator. SIGARCH Comput. Archit. News 39(2), 1–7 (2011)

22. Miele,A., Pilato,C., Sciuto,D.:A simulation-based framework for the exploration ofmapping solutions
on heterogeneous MPSoCs. Int. J. Embed. Real Time Commun. Syst. 4(1), 22–41 (2013)

23. Lin, K.-L., Lo, C.-K., Tsay, R.-S.: Source-level timing annotation for fast and accurate tlm computation
model generation. In: Design Automation Conference (ASP-DAC), 2010 15th Asia and South Pacific,
pp. 235–240, (2010)

24. Wilson, R., French, R., Wilson, C., Amarasinghe, S., Anderson, J., T. S., Liao, S., Tseng, C., Hall,
M., Lam, M., Hennessy, J.: The SUIF Compiler System: a Parallelizing and Optimizing Research
Compiler. Technical report, Stanford, CA, USA (1994)

25. Kreku, J., Tiensyrjä, K., Vanmeerbeeck, G.: Automatic workload generation for system-level explo-
ration based on modified GCC compiler. In: Proceedings of the Conference on Design, Automation
and Test in Europe, Date ’10, pp. 369–374, (2010)

26. Javaid, H., Janapsatya, A., Haque, M.S., Parameswaran, S.: Rapid runtime estimation methods for
pipelined MPSoCs. In: Proceedings of the Conference on Design, Automation and Test in Europe,
DATE ’10, pp. 363–368 (2010)

27. Cordes, D., Marwedel, P., Mallik, A.: Automatic parallelization of embedded software using hierar-
chical task graphs and integer linear programming. In: Proceedings of the Eighth IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis, CODES/ISSS ’10,
pp. 267–276 (2010)

28. Kim, S., Ha, S.: System-level performance analysis of multiprocessor system-on-chips by combining
analytical model and execution time variation. Microprocess. Microsyst. 38(3), 233–245 (2014)

123

Int J Parallel Prog (2016) 44:735–771 771

29. Kumar, A.,Mesman, B., Corporaal, H., Ha, Y.: Iterative probabilistic performance prediction for multi-
application multiprocessor systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(4),
538–551 (2010)

30. Xu, Y., Wang, B., Hasholzner, R., Rosales, R., Teich, J.: On robust task-accurate performance estima-
tion. In: Proceedings of the 50th Annual Design Automation Conference, DAC ’13, ACM, New York,
NY, USA, pp. 171:1–171:6 (2013)

31. Ernst, R., Ye,W.: Embedded program timing analysis based on path clustering and architecture classifi-
cation. In: Proceedings of the 1997 IEEE/ACM International Conference on Computer-Aided Design,
ICCAD ’97, pp. 598–604, (1997)

32. Malik, S., Martonosi, M., Li, Y.S.: Static timing analysis of embedded software. In Proceedings of the
34th Annual Design Automation Conference, DAC ’97, pp. 147–152 (1997)

33. Zhai, A., Colohan, C.B., Steffan, J.G.,Mowry, T.C.: Compiler optimization of scalar value communica-
tion between speculative threads. In: Proceedings of the 10th International Conference onArchitectural
Support for Programming Languages and Operating Systems, ASPLOS-X, pp. 171–183 (2002)

34. Ferrandi, F., Lattuada, M., Pilato, C., Tumeo, A.: Performance estimation for task graphs combining
sequential path profiling and control dependence regions. In: Proceedings of the 7th IEEE/ACM Inter-
national Conference on Formal Methods and Models for Codesign, MEMOCODE ’09, pp. 131–140
(2009)

35. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools. Addison-Wesley
Longman Publishing Co., Inc, Melbourne (1986)

36. Sreedhar, V.C., Gao, G.R., Lee, Y.: Identifying loops using DJ graphs. ACM Trans. Program. Lang.
Syst. 18(6), 649–658 (1996)

37. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and its use in optimization.
ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987)

38. Girkar, M., Polychronopoulos, C.: Automatic extraction of functional parallelism from ordinary pro-
grams. IEEE Trans. Parallel Distrib. Syst. 3(2), 166–178 (1992)

39. Bertels, K., Sima, V., Yankova, Y., Kuzmanov, G., Luk, W., Coutinho, G., Ferrandi, F., Pilato, C., Lat-
tuada,M., Sciuto, D., Michelotti, A.: Hartes: Hardware-software codesign for heterogeneousmulticore
platforms. IEEE Micro. 30, 88–97 (2010)

40. Thompson, M., Nikolov, H., Stefanov, T., Pimentel, A.D., Erbas, C., Polstra, S., Deprettere, E.F.: A
framework for rapid system-level exploration, synthesis, and programming of multimedia MP-SoCs.
In: Proceedings of the IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and
System Synthesis, CODES+ISSS ’07, pp. 9–14 (2007)

41. Atmel Corporation. DIOPSIS 940HF. http://www.atmel.com (2009)
42. Texas Instruments. TI OMAP 4. http://www.ti.com (2011)
43. Xilinx. Vivado Design Suite. http://www.xilinx.com (2013)
44. Gerstlauer, A.: Host-compiled simulation of multi-core platforms. In: Proceedings of the IEEE Inter-

national Symposium on Rapid System Prototyping (RSP), pp. 1–6 (June 2010)
45. Synopsys Inc. Platform Architect. http://www.synopsys.com/Systems/ArchitectureDesign (2012)
46. Oyamada, M.S., Zschornack, F., Wagner, F.R.: Applying neural networks to performance estimation

of embedded software. J. Syst. Architect. 54(1–2), 224–240 (2008)
47. PandA. PandA framework. http://trac.ws.dei.polimi.it/panda
48. GNU Compiler Collection. GCC, version 4.3. http://gcc.gnu.org/
49. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown. R.B.: MiBench: A free,

commercially representative embedded benchmark suite. In: Proceedings of the IEEE International
Workshop on Workload Characterization, WWC ’01, pp. 3–14 (2001)

50. Dorta, A.J., Rodriguez, C., de Sande, F., Gonzalez-Escribano, A.: The OpenMP Source Code Repos-
itory. In: Proceedings of the 13th Euromicro Conference on Parallel, Distributed and Network-Based
Processing, PDP ’05, pp. 244–250 (2005)

51. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 programs: characterization
and methodological considerations. In: Proceedings of the 22nd Annual International Symposium on
Computer Architecture, ISCA ’95, pp. 24–36 (1995)

52. ARM922T. Technical Reference Manual. http://infocenter.arm.com
53. Politecnico di Milano. ReSP web-site. http://code.google.com/p/resp-sim/ (2010)

123

http://www.atmel.com
http://www.ti.com
http://www.xilinx.com
http://www.synopsys.com/Systems/ArchitectureDesign
http://trac.ws.dei.polimi.it/panda
http://gcc.gnu.org/
http://infocenter.arm.com
http://code.google.com/p/resp-sim/

	Performance Estimation of Task Graphs Based on Path Profiling
	Abstract
	1 Introduction
	2 Motivation
	3 Related Work
	4 Preliminaries
	4.1 Definitions
	4.2 Supported Target Architectures

	5 Proposed Methodology
	5.1 Hierarchical Path Profiling
	5.2 Task Graph Estimation
	5.3 Analysis of the Proposed Methodology

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Conclusions
	Appendix 1: Example of Application of Task Graph Estimation Technique based on Path Profiling
	References

