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Abstract Linear Hashing is an efficient and widely used version of extendible hash-
ing. LH∗ is its distributed version that stores key-value pairs on up to hundreds of
thousands of sites in a distributed system. LH∗ implements the dictionary data struc-
ture efficiently by not using a central component and allows the key-based operations
of insertion, deletion, actualization, and retrieval aswell as the scan operation. Because
it does not use a central addressing component, clients or servers in LH∗ can commit
an addressing error by sending a request to a wrong server. This server then forwards
the message to the correct server either directly or in one but never more than one
additional forward operation. We discuss here methods to avoid this double forward,
which, while rare, still might breach quality of service guarantees. We compare our
methods with LH∗RSP2P that pushes information about changes in the file structure to
clients, whether they are active or not. A second problem especially relevant in high
churn environments such as modern data centers is that sites can suddenly become
inaccessible. The various high and scalable reliability versions of LH∗ then reconstruct
the data lost on this site elsewhere. We present a solution to the resulting “wandering
bucket” problem that allows clients to find the data at their new location.
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1 Introduction

Cloud computing has brought distributed computing to the masses. The popular Map-
Reduce framework allows distributed and parallel scanning of a large file, followed
by the aggregation of values to obtain an end result. In the popular implementations
by Google and Yahoo (Hadoop), the file grows only by appending fixed-sized blocks.
Scalable Distributed Data Structures (SDDS) such as LH*, which uses a linear hash
partitioning [14], and RP*, which uses range partitioning [12], avoid this problem. In
these SDDS, the file is stored in fixed-sized buckets and the file grows through bucket
splits that add an additional bucket to it. One of the most attractive features of an
SDDS is the absence of a central component that allows a client to find the address of
a record. Instead, clients use a local view of the file to determine the bucket containing
the record and the location of the bucket. An SDDS file adjusts to changes in the
number of records by splitting and merging buckets. Consequentially, the views of
clients become outdated. The client then can commit an addressing error by sending
a request to the wrong server.

In LH∗, clients that commit such an address error receive additional information
about thefile.Any request is resolvedwith atmost twoadditional forwardingmessages.
Theoretical and empirical analysis shows that most addressing errors are resolved
with one forward and only few with two forward messages. In this paper, we are
investigating a method to avoid double forwards, since they might cause havoc with
cloudQuality ofService (QoS) guarantees.Ourmethod spreadsfile information among
servers. In contrast, Yakouben [16,20] proposes to pushfile information to clients. This
method guarantees that there are no double forwards, but has a highmessage overhead.
We compare both methods.

Cloud environments see many node failures. Indeed, often node failures result
from administrative shutting down of physical nodes. The applications are supposed
to tolerate this [1]. The scalable availability version of LH∗, called LH∗RS, provides
this tolerance [10]. It reconstructs unavailable buckets elsewhere using additional
parity data. Each reconstruction leads to a second type of addressing error, where a
client sends to the correct bucket, but at the wrong node address.

This paper proposes changes to deal with these two types of addressing errors. To
deal with the first type of addressing errors, we avoid pushing information to inactive
clients, since in a cloud environment clients can be very transitory and frequently fail
abruptly. Our alternative strategy pushes information about changes to servers so that
double forwards become rare. To deal with the second type, we use LH∗ itself to store
the association between bucket number and network addresses at the LH∗ buckets
and use the normal interaction between clients and servers to let clients update their
localization information.

The rest of the article is organized as follows: We review shortly relevant work
in Sect. 2. Section 3 briefly reviews the most important aspects of LH∗ and LH∗RS
without going into details that are not necessary for the understanding of our contribu-
tions here. We present an efficient address resolution protocol in Sect. 4 that solves the
wandering bucket problem without the need of involving a central component. Sec-
tion 5 presents fast LH∗, our solution to avoiding double forwards and to limit single
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forwards. Section 6 presents an analytic and experimental evaluation of the methods
proposed. We then draw our conclusions.

2 Related Work

Litwin introduced Linear Hashing in 1980 [7] and (with Neimat and Schneider) LH∗
in 1993 [13,14]. This is not the only distributed data structure based on hashing; among
the proposalsDDH[4] andExtendibleHashing [5] stand out.Other scalable distributed
data structures are RP∗ [11] that uses range partitioning and predates this aspect of
Bigtable [3], distributed k-d trees [18], and distributed search trees [6], to name a few.
LH∗ has seen been expanded to a variety of schemes providing availability [8]. LH∗RS
is the most attractive of these possibilities since its failure tolerance increases with the
likelihood of failures [10].

High availability creates the problem of the wandering bucket where after a site
unavailability a bucket is recreated at an address unknown to clients who need to
access it. Litwin et al. solve this problem by having the client request help from
the coordinator, turning the coordinator into a potential bottleneck. Yakouben and
colleagues propose to push file state information to clients [16,20]. Pushing file state
information also avoids double forwards. The method of LH∗RSP2P is preferable to
ours if the set of active clients is stable. If however clients come and go, which would
be a typical situation in cloud computation, then administering clients and sending
the push messages create a big overhead in LH∗RSP2P . The work on avoiding double
forwards was presented earlier at SBAC-PAD 2013 [2].

3 LH∗ and LH∗RS
Linear Hashing (LH) is a widely adopted form of extendible hashing. It stores records
in buckets, whose number automatically adjusts to the total number of records. The
number of buckets (the extent) determines the file state. A simple address calculation
based on the file state determines the location of the record from its record identifier.
The LH-file maintains a load factor defined to be the average number of records in
a bucket. If the load factor becomes higher than a certain preset value or if a bucket
overflows (by containing too many records), a new bucket is created through a split
from another bucket. In contrast to other forms of dynamic hashing such as Fagin’s
extendible hashing [5] or Devine’s DDH [4], the bucket to be split is not necessarily
the one that caused the overflow. Buckets are numbered contiguously starting with 0
and split in a fixed order 0; 0, 1; 0, 1, 2, 3; 0, . . . 7; . . . 0, 1, . . . 2k −1; . . ., where each
round splits the buckets from 0 to 2k − 1 with increasing k = 0, 1, . . . . The design of
LH results in slightly worse storage utilization than with extendible hashing, but also
in considerably faster record lookups because no central directory structure is needed
[19]. If there is an underflowing bucket or if the storage utilization is too small, then
a merge operation undoes the last split operation.
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3.1 General File Structure

The distributed version of LH, LH∗ stores records that consist of a record identifier
and the contents. The latter can be structured according to the needs of an application.
In contrast to LH, LH∗ stores the buckets in different servers. These buckets tend to be
much larger (several hundreds MB vs. three or four records) and are often organized
as a linear hash file. As in LH, the LH∗ file uses split and merge operations to adjust
the number of buckets to the file size.

While LH∗ can start with any number of initial buckets, we discuss here the simpler
variant with only one initial bucket. In this case, the file state consists of two integer
parameters, the file level i and the split pointer s. The total number N of buckets
is always N = 2i + s. Reversely, a number N of buckets determines the level as
i = �log2(N )� and the split pointer as s = N − 2i .

LH* supports the record based operations of insert, delete, update, and read as well
as the global operations of scanning, which for all records with a certain pattern in
their contents, and function shipping, as long as the functions have only a single record
as their argument. The latter capability was a precursor of the map-reduce scheme.

3.2 Addressing

Each record is identified by a unique Record IDentifier (RID). Given a key c treated as
an integer, the bucket number a where the record resides is given by the LH-addressing
algorithm:

(LH) a = hi (c) if a < s : a = hi+1(c)

with hash functions h j defined by h j (c) = c mod 2 j and where s and i constitute the
file state.

Each client uses its version of the file state, called its image. This file state can
be identical to the actual state of the LH* file, but it can also be outmoded. In this
case, many address calculations will still succeed, as we will see. However, the client
can also send a request to the wrong bucket. Any bucket needs to check whether it
has the record and if necessary calculate the bucket, where the record should be. This
calculate could also be based on out-of-date information, but LH∗ can be shown to
find the correct address in at most two forwarding operations. If a client has made an
addressing mistake and sent the request for a record to an incorrect bucket, the bucket
that has the record will eventually send the answer together with an Image Adjustment
Message (IAM) that updates the image of the client.

3.3 Bucket File State

Each bucket maintains a single value, called its level j , in order to reroute misdirected
requests from clients. The bucket level counts the number of times a bucket has been
split, starting with the level of the bucket from which it has split. As we will see, this
implies that j = i or j = i + 1. (Recall that i is the file level).
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def check(self, key):
aprime = h(self.j, key)
if not aprime == a:

atwoprime = h(self.j-1, key)
if atwoprime > a and atwoprime < aprime:

aprime = atwoprime
return aprime

Fig. 1 Competency check executed when a server with address a receives a message with key key.
self.j is the bucket level

def updIm(self, j, a):
self.i = j-1
self.s = a+1
if n >= 2**self.i:

self.n = 0
self.i = self.i+1

Fig. 2 Image update algorithm for the file state image at a client that receives an IAMmessage with bucket
level j and bucket address a. The algorithm updates the local file state self.i and self.j

If a bucket receives a request from a client for a record with key key, it executes
the algorithm in Fig. 1 to determine whether the bucket itself should have the record
or whether the request should be forwarded to another bucket [14]. In this algorithm,
self.j is the level of the bucket and h is the hash function, which takes the level as
its first parameter. The bucket address is a.

3.4 Client Image Adjustment

A client maintains a view of the file state (i ′, n′). If the client makes an address mistake
and the requested record is found at bucket a, then bucket a sends an IAM with its
level and address. The client executes the file state image adjustment algorithm given
in Fig. 2.

Knowing that a bucket exists does not imply that one knows the network address.
We deal with this problem by maintaining a parallel, but much smaller LH∗ structure
using the same buckets where we store network addresses. In addition, we assume
that IAM messages contain address information of all servers involved. Each client
maintains a table of buckets and their (last-known) locations.

3.5 Splitting and Merging Buckets

When a bucket overflows, it informs the split coordinator who causes the bucket
pointed to by the split pointer to split. Let the current file state have level i and split
pointer s. The coordinator creates a bucket 2i + s with level i + 1. It applies the hash
function h j+1 (defined by h j+1(x) = x mod 2 j+1) to all the records in bucket s.
Since the keys of these records have the same value modulo 2 j and are assumed to be
uniformly distributed, about half of the records in bucket s now belong to bucket 2i +s
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Fig. 3 The global file state
self.split, self.level
is updated after a split to
represent the additional bucket

def stateUpdate(self):
self.split = self.split + 1
if self.split >= 2**self.level:

self.split = 0
self.level = self.level + 1

Fig. 4 Development of a
growing LH* file

File State Bucket States j
i= 0,s = 0: B0: 0
i= 1,s = 0: B0: 1, B1: 1
i= 1,s = 1: B0: 2, B1: 1, B2: 2
i= 2,s = 0: B0: 2, B1: 2, B2: 2, B3: 2
i= 2,s = 1: B0: 3, B1: 2, B2: 2, B3: 2, B4: 3
i= 2,s = 2: B0: 3, B1: 3, B2: 2, B3: 2, B4: 3, B5: 3
i= 2,s = 3: B0: 3, B1: 3, B3: 2, B3: 2, B4: 3, B5: 3, B6: 3

Fig. 5 Algorithm to calculate
the address of the predecessor,
i.e. the bucket that was split in
order to generate the current
bucket

def preDecessor(fileState):
if fileState.split == 0:

prevLevel = fileState.level-1
prevSplit = 2**prevLevel-1

else:
prevSplit = fileState.split-1

return prevSplit

and are therefore moved there. Afterwards the global file state is updated according
to the algorithm presented in Fig. 3.

The resulting sequence of splits is 0, then 0, 1, then 0, 1, 2, 3, then 0, 1, 2, . . . 7 and
so on, running through all bucket numbers from 0 (included) until 2i − 1 where i is
the current level (Fig. 4).

When a buckets underflows and reports this to the split coordinator, then the coor-
dinator will start a merge operation. Amerge operation always merges the bucket with
the largest bucket number with the bucket from which it was last split. To be more
precise, assume that the current file state has level i and split pointer s and accordingly
N = 2i + s buckets. The coordinator sends a message to bucket N − 1 telling it
to merge with its direct ancestor. We calculate the address of the direct ancestor by
“rolling back” the file state changes by a split operation moving the system from N −1
to N buckets with the algorithm given in Fig. 5.

The critical step in this algorithm treats the case where the change from N − 1 to
N has changed the level. In this case, the split pointer is now 0 and we need to reset
the level and calculate the previous split pointer.

If buckets have vanished through merging, a client can wrongly send a request
to the corresponding server. In LH∗, the server just sends an error message to the
client who decrements the split pointer and recalculates the address. Under many
circumstances, an LH∗ file does not shrink in the long run and the merge operation
becomes unnecessary.
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Fig. 6 LH∗RS file incrementing its availability level. On top, the file encompasses 8 buckets, organized
into two reliability groups each with a parity bucket. Below the result after splitting Bucket 0. The new
Bucket 8 is for the moment the only data bucket in the new third group. The first and the third group now
have two parity buckets, but the second one remains with one parity bucket

3.6 Example

We illustrate the development of an LH∗ file from one to six buckets in Fig. 4. Assume
a client with an out-of-date file state of i = 0 and s = 0 that wants to retrieve record
with ID c = 101000101b in the last state. The client uses the hash function h0 which
always returns 0 and accordingly sends the request to Bucket 0. There, the bucket
checks the request using the algorithm in Fig. 1. Since the bucket has j = 3, it applies
h3 to obtain a′ = 101b = 5. Accordingly, it calculates a′′ = h2(c) = 1 and returns
1. Therefore, the request is send to Bucket 1. That bucket has j = 3, sets a′ = 5 and
a′′ = 1, but returns a′ = 5. This is the correct bucket. The bucket sends an Image
Adjustment Message to the client that changes its state to s = 2 and i = 2.

This example illustrates how LH∗ uses local knowledge. The client only “knew”
of Bucket 0. Bucket 0 knew when it was last split (in order to create Bucket 4, but did
not know whether Bucket 1 was already split in order to generate Bucket 5. Therefore,
it only forwarded to Bucket 1. Bucket 1 however knew about Bucket 5 because it was
generated by splitting it.

3.7 LH∗RS
Even in a normal distributed system, nodes fail and buckets become unavailable, and
these unavailabilities are more pronounced in the harsh environment of the cloud.
A variety of data structures were proposed to provide availability to LH∗, but we
concentrate here on LH∗RS that provides scalable availability [9]. Scalable availability
means that the protection against unavailable buckets increases with the total number
of buckets. LH∗RS groups buckets into bucket groups and adds to each bucket group a
variable number of parity buckets. The parity buckets consists of parity records that are
generated using erasure resistant coding from one record each of the data buckets in
the group. The number of parity buckets per bucket group determines the availability
level of the LH∗RS file. The number of parity buckets per group is the same in all
reliability groups unless the availability level is currently being increased. To increase
the availability level and hence the resilience of the file against unavailabilities, we
wait until the split mechanism reaches the first bucket in a bucket group. We then add
a parity bucket to the current bucket group. The new bucket is for the time being the
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only bucket with data in the new bucket group which is created with a number of parity
buckets equal to the increased availability level. Figure 6 gives an example, where the
availability level is changing from one to two. Once the split pointer in this example
reaches Bucket B4, Group 1 and the newly formed Group 3 will also encompass two
parity buckets.

The availability of LH∗RS and similar data structures introduces a new type of
addressing error, caused by a “wandering bucket”. A wandering bucket is a bucket
that becomes unavailable and then is reconstructed elsewhere changing its physical
(IP) address. LH∗ has a client who cannot find a bucket contact the coordinator, but this
creates a hot spot if there are many clients and more than a few wandering buckets. A
client using a wrong address might direct itself to a non-existing node or to a different
service residing at the address. The client then has to use a time-out to decide that
something is wrong, which increases the length of resolving the request. Since LH∗RS
allows for out-of-band reconstruction for records demanded by a client and for out-of-
band insertion and deletion, a client can in general expect rapid service once a bucket
has been flagged as unavailable. Only if the client is so unlucky to try to interact with
an unavailable bucket before it has been flagged as such, will the client experience
bad service. We address the problem of not finding a wandering bucket here by using
the distributed Address Resolution File and by a mechanism that informs clients of
bucket locations.

4 ARF: Address Resolution File

LH∗ clients and nodes store information about bucket addresses in a table associating
bucket numbers with node addresses. Since node addresses are between 4B and 16B,
each client or node can easily maintain an association table for hundreds of thousands
of buckets. Buckets only need to maintain a small table of their direct descendants
in order to allow forwarding. By piggy-backing information on replies to forwarded
messages, a single- or a double-forward adds to the client’s association table.

4.1 The Address Resolution File

Unfortunately, the wandering bucket problem cannot be solved with just this simple
device. Instead, we form an Address Resolution File (ARF) that is stored in buck-
ets together with existing buckets of the LH∗ file. It is a distributed version of the
association table that each client maintains. It allows a client or a bucket to find a
reconstructed bucket quickly and a new client to quickly generate its private associ-
ation table or possibly even replace it. For its proper functioning, the ARF needs to
have the following properties:

– The address of a bucket is not stored at the bucket itself.
– The ARF tolerates failures.
– A single bucket address is replicated at various buckets of the ARF and requests
for this address are guided to different replicas to avoid hot spots.

– Only few buckets need to be updated if a bucket is reconstructed elsewhere.
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Fig. 7 Pseudo-code for the
calculation of the mixed vector
from a category A address a, a
category B address b, a mixing
vector, and a size, all treated as
an unsigned integer

def mixer(a, b, mixing, size):
result = 0
power = 1
for i in range(size):

cCur = mixing%2
mixing = mixing//2
if cCur == 0: #choose from a

cur = a%2
a = a//2

else: #choose from b
cur = b%2
b = b//2

result = cur*power+result
power *= 2

return result

– Information on a new bucket address needs to be sent to only a few buckets.

The load of an ARF bucket depends on the number of clients that want to access a
wandering bucket and that do not have the new address. TheLH∗ structure however has
only access to the total number of LH∗ buckets and not to the number of clients in this
situation, but it can react to the number of requests received by an ARF bucket to grow
and thereby dilute the load. At the same time, each replica of a bucket address—IP
address record needs to be updated when a bucket is reconstructed.

4.2 LH-Files Governed by Two Categories

A normal linear hash file grows based on a single factor, the number of records in it.
We want to control growth of the AFR based on two independent parameters, namely
the LH∗ file extent—the number of buckets in it—and the likely number of clients
that need information. We can assume that both parameters only grow. We now adapt
the LH addressing mechanism to these two categories.

The key idea is that of mixing two different addresses. Let c = (cn, . . . , c0) be a
binary vector, themixing vector, and let a = (ar , . . . , a0) and b = (bs, . . . , b0) be two
addresses, also given as binary vectors. The combined address is made up of the bits in
a and b in order. Let zi denote the position of the i th zero in c from the right and ui the
position of the i th one in c taken from the right. For example, if c = (110110110110),
then z0 = 0, z1 = 3 and z2 = 6 and u0 = 1, u1 = 2, and u2 = 4. We observe
that both series together iterate through all positions 0, 1, . . . of c and that we can
therefore invert them. The combined addressm is defined by the following rule for its
i th coordinate

mi =
{
a j if z j = i
b j if u j = i

With words, starting from the left, we put coordinates from a whenever the mixing
vector coordinate is a 0 and coordinates from b whenever the coordinate is 1, where
we exhaust all coordinates from a and b. Perhaps, the pseudo-code in Fig. 7 is an
easier definition.
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Fig. 8 Left Bucket allocation where category A has file state jA = 2 and sA = 1, category B has file state
jB = 3 and sB = 0 and mixing vector (011010). Right Bucket allocation after changing the category A
file state to jA = 2 and sA = 2

Example:Let c = (1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0). Then the combined address
of a = (a12, a11, . . . , a0) and b = (b12, b11, . . . , b0) is

(b10, b9, b8, b7, b6, a3, b5, b4, b3, a2, b2, b1, a1, b0, a0)

We can now come to the definition of the LH file determined by two growth cat-
egories A and B. In our case, the categories will be the number of bucket addresses
stored, category A, and the number of replica of each address, category B. Thus, A
controls the size of the information stored and B controls the load resulting from
address request for a wandering bucket.

The file state now consists of two traditional file states, one for category A and
one for category B, and the mixing vector. The mixing vector has a length equal to
the sum of the levels of the file states in each category. A client addresses a bucket
using both file states to calculate a category address and then mixing them using the
mixing vector to obtain a combined address. Addressing errors are dealt with in the
usual manner and lead to updates of the client’s file state.

The big difference between normal LH∗ and two-category LH∗ is the costs of
extending the address range in one of the categories. We define a super-bucket in
category A by taking a category A address a and defining SA(a) to be the sets of
buckets with a combined address of a and any other current category B address.
We define SB(b) for a category B address b to be the set of buckets obtained by
combining any current valid category B address with b. The number of buckets in a
set SX , X ∈ {A, B}, is given by the extent of the other file in the other category.

Originally, the file is stored in a single bucket 0. A bucket calculates the load for each
category and sends an overflow message to the split coordinator whenever it perceives
a overload. This is simple for category A. If a bucket stores too many addresses,
it suffers an overload. The observed number of requests for address information on
buckets depends on the number of bucket addresses stored (which is also controlled by
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category A), the total number of clients, the proportion of clients that obtain address
information through other mechanisms, and the activity level of clients, which might
also be variable. Thus, controlling in category B is more difficult, leading potentially
to over-provisioning.

When the split coordinator receives an overloadmessage in one category, let it be X ,
the coordinator increases the extent of the file in that category by splitting the address
c pointed to by the split pointer of the category. As a consequence, the coordinator
sends split messages to all buckets in SX (c). If the split pointer is pointing to Bucket
0, then the coordinator also needs to increment the length of the mixing vector and set
its new coordinate to reflect the current category.
Example: Figure 8, left, shows the buckets used by a double category LH∗ files.
Category A has file state with level jA = 2 and split pointer sA = 1, category B has
file state with level jB = 3 and sB = 0, and mixing vector (011010). Assume that
a client accesses a record with address 3 = 112 for category A and 5 = 1012 for
category B. According to the mixing vector, the combined address is 15 = 0011112.
Assume now that the coordinator wants to split according to category A. This changes
the file state to jA = 2 and sA = 2 and splits SA(1). SA(1) consists of all buckets that
are mixed from A-address 1, i.e., all those with binary representation ∗ ∗ 0 ∗ 1b where
the asterisk stands for any binary digit. Therefore SA(1) = {1, 3, 9, 11, 17, 19, 25, 27}
or the second column in Fig. 8. The right side gives the result of the split. According to
LH∗ addressing and the combination rules, the new buckets used have bucket numbers
added by 32. Finally, assume that the coordinator now decides on a category B split,
changing the file state to jB = 4 and sB = 1. First, the coordinator needs to extend the
mixing vector to (1011010). The split of category B address 0 creates a new address
8. SB(0) consists of all buckets whose bucket number has a binary representation
∗00 ∗ 0∗2, which is the first row in Fig. 8, right, and consists of Buckets 0, 1, 4, 5, 32
and 33. It produces the new Buckets 64, 65, 68, 69, 96 and 97.

Whenweapply this scheme toour twocategories of replication andbucket addresses
stored, we restrict splits so that we do not create buckets for the ARF where no bucket
of the original LH∗ file exist. Finally, we need to guarantee that the address of a bucket
never gets stored at the bucket itself. To do so, we assume that the category of bucket
addresses stored has at least extent 2. Therefore, a valid bucket address has at least one
binary digit in this category. We now calculate the ARF category address by inverting
the last digit, i.e. flipping it from 0 to 1 or from 1 to 0. We also assume that the mixing
vector assigns the last digit of the address to this category. It then follows, that a record
about the address of Bucket b never gets assigned to Bucket b itself. For the replication
category, we assign each client a unique identifier or just let the client assign a random
identifier to itself.
Example continued: Category A gives the address of buckets and category B gives
the replication. Assume that a client with identifier 432 needs to find the new address
of Bucket 101 in the situation of Fig. 8. The category A address is based on the bucket
number 101 = 11001012. We flip the last digit to obtain 11001002 and obtain a
category A address of 8 = 1002. The category B address is based on the client identifier
of 432 = 1101100002. It is 0. After mixing, the combined address is 1000002 = 32.
Should Bucket 32 also fail to respond, then the client adds one to its client identifier, so
that the category B address changes to 1 = 0012. Therefore, the client now contacts the

123



720 Int J Parallel Prog (2016) 44:709–734

bucket with combined address 1000102 or Bucket 34 for information on the location
of Bucket 101.

4.3 Pushing New Address Information to Clients

Wepropose and evaluate below a simple gossiping strategy that is based on the capabil-
ity to quickly recognize that information is not outdated. We use algebraic signatures
[15] for this comparison.

Each clientmaintains its local copy of theARF split into pages based on the category
A addressing used above. Whenever the client interacts with a server that has part of
the ARF, it uses algebraic signatures to ascertain that the information that the client
has is the same as the information that the server has. We use version numbers to
distinguish between the unlikely case that the server has not the actual information
(because the coordinator did not succeed to push changes to all copies) and the much
more likely case that the client has out-of-date information. The reason to use algebraic
signatures in addition to version numbers is that they depend directly on the contents
while they can be quickly updatedwhen information changes. For example, calculating
the algebraic signature of a combination of two pages can be done without rescanning
both pages so that managing splits is easier.

If the client has an out-of-date page, it receives a new version of the ARF file. The
methods for remote file comparisons [17] could be used to cut down on the amount of
information sent, but this seems hardly necessary.

Finally, in order to tune the amount of interaction between client and server, we
can have the client request a comparison only with a given probability p.

5 Fast LH∗
LH∗ allows an active client to access buckets in general in a single hop without
maintaining a list of active clients to which address information is pushed. A new or
a dormant client that reactivates will quickly obtain a complete or almost complete
view of the file through IAM messages. However, the client achieves this by making
addressing mistakes that involve one or two additional hops. Fast LH∗ limits the
number of addressing mistakes by pushing information on file views to servers (not
to clients) in order to make forwarding more efficient by allowing a server to forward
directly to the server with the information that the client needs to access. The costs
of changing the algorithm are some increase in the communication between servers.
Since a typical bucket contains hundreds of megabytes or even gigabytes of records,
the number of servers is in general not very high and the operational costs of our
changes slight. We concentrate on avoiding double forwards in order to allow tighter
service time guarantees.

Our strategy is to spread information about changes in the file state to servers and
not to clients. Instead of just maintaining the bucket file state level j , we use a complete
image of the file state (equivalent to the supposed number of buckets in the file). We
update this image at a bucket through piggy-backing on messages between servers
and by additional messages.
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Fig. 9 Number of non-compulsory and double forwardswith 1000 clients and a total of 1,000,000messages
in a stationary LH* system. The clients were preloaded with knowing only Bucket 0 (1), Buckets 0 and 1
(2), Buckets 0, 1 and 2 (3) and Buckets 0, 1, 2, and 3 (4)

5.1 LH* Forwarding

A client that only knows Bucket 0 will commit an addressing error with its first request
for a record located in another bucket. We call this a compulsory forward. As the client
interacts with the system, it receives an IAMwith every addressing error. If the system
is stationary (without split or merge operations), the clients will eventually learn the
true file state. The number of IAM necessary depends on the luck of the client and the
size of the system.

Figure 9 gives the result of a simulation of a system with one thousand clients and
various numbers of buckets. We simulated a total of one million messages sent by
random clients with random RIDs. At the end of the simulation, the client image of
most of the clients is exact, while only some do not know about the last or the last
and second-last bucket. We then give the number of non-compulsory forwards and the
number of double forwards. We assumed that the clients start out with a file image of
i = 0 and s = 0, corresponding to a system with only Bucket 0. As we can see, the
number of forwards and double forwards depends verymuch on the number of buckets
in the system, with a peak if a system bucket number is a power of two and a minimum
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right afterwards. If we have clients that have a different initial state corresponding to
“knowing” the first two, three, or four initial buckets in the system, represented by
the scatterplots in Fig. 9, the behaviour stays roughly the same, but the peak moves
slightly to the right. The behavior is explained by the power of the first IAMmessage,
that gives much knowledge of the file state. As the number of buckets increases, so
does the number of forwards, as it now takes more IAMs in order to learn the complete
state of the system. As the clients are almost all up to date after a million messages, a
second set of messages would add just a tiny bit to the number of total non-compulsary
forwards, namely when a client requests an operation on a record in the last (or more
rarely next-to-last) bucket, but if these buckets are not included in the view of the file
state that the client has.

We also see that double forwards, while more than ten times rarer than single
forwards, follow roughly the same pattern, at least for systems with a larger number of
buckets. If the number of buckets is small, there are situations where a double forward
is never necessary.

5.2 Pushing File States to Servers

In contrast to LH∗RSP2P , we propose to push information about a changed file state to
servers instead of clients. The rationale is simple: Buckets have to be always active
whereas many clients will become inactive. In order to be able to do so, we need to
increase the amount of file information that LH∗ stores at the servers (namely only the
bucket file state j) and instead store a complete view that is—as we recall—equivalent
to specifying the number of buckets in the system. This knowledge is initialized when
the bucket is involved in a split or a merge. At this moment, the view of the file state
that the bucket has is correct. With the first additional split or merge operation, the
information becomes out-of-date and we need to update it, but in a lazy manner in
order to not cause a message storm in the system when a split has happened. For
the actual functioning in a cloud system, is it important that LH∗ and our variants
function perfectly correctly even if buckets rely on stale information for the file state.
The following proposition implies this.

Definition Given a bucket b, we call Nb the number of buckets in the LH∗ file when
Bucket b was created, split, or merged.

Proposition For any Bucket b, Nb ≤ N, where N is the total number of buckets in
the file at any time.

Proof The file state and the number of buckets only change with merge and split
operations. After each change, the bucket numbers form a continuous range starting
with 0 and ending with N − 1.

We prove the statement by induction on the steps in the file development. At the
time when Bucket b was created, Nb = N = b. If Bucket b vanishes through a merge
operation, then the Proposition is a vacuous statement until the bucket is created again.
This lays the base case. Assume now that the proposition is true before a split or merge
operation changes the state of the file.A split operation that does not involve the bucket,
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def updIm2(self, nrBuckets)
self.fileLevel = int(floor(log(2,nrBuckets))
self.splitPointer = nrBuckets - 2**self.i

Fig. 10 Modified IAM algorithms for use with buckets that maintain their own file state image consisting
of file level and split pointer

def check(self, key):
a = h(self.level,key)
if a < self.split:

a = h(self.level+1,key)
if self.id == a:

ACCEPT AND PROCESS REQUEST
else:

forward(a, key, clientRequest, self.id, forward=True)

Fig. 11 Check in the update on double forward protocol. The server receives a message with key key

only increases N , but not Nb. A split operation that splits the bucket updates Nb to N .
A merge operation that involves the bucket either removes the bucket, or has it merge
with the last bucket split from it. In this case, Nb = N . This leaves us with a merge
operation that does not touch the bucket. Since Nb ≤ N before the merge and since
the merge operation does not touch Bucket b, Nb < N . Therefore, Nb ≤ N after N
has decremented through the operation. q.e.d �	

According to the proposition, a server with Bucket b can safely update clients by
sending Nb to the client. This results in the modified IAM algorithm presented in
Fig. 10. This algorithm calls Nb nrBuckets and uses it to calculate the file state
corresponding to Nb buckets. The file state might not be exact (because of intervening
split operations) but will never have the client send a request to a non-existing bucket.

5.3 Algorithm B0: Fast Client Initiation

A new client has only one bucket in the range of its file state image, Bucket 0. Our first
change to LH∗ is B0, in which every change to the file state is sent directly to Bucket
0. If Bucket 0 receives an erroneously addressed request, it updates the client’s file
state with the correct image. A new client or a client lucky enough to make an error
involving Bucket 0 will immediately be updated to the correct file state. However, the
file state can change afterwards, so that the client can still commit further errors. If the
client is quite inactive, the file state can change so dramatically that a double forward
is still possible.

The reason for treating Bucket 0 differently follows directly from the design of
LH∗. Bucket 0 is the only bucket that is guaranteed to exist. It is usually colocated
with the coordinator on the same system, so that updating of the bucket state only
involves local messaging. Additionally, as we just observed, Bucket 0 is the entry
point for any new client, and also, if merges are implemented, for clients that have
reached an inaccessible bucket.
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def receiveClientRequest(self, client, key):
...
self.gossipCount -= 1
if self.gossipCount == 0:

self.gossip()
self.gossipCount = SERVERGOSSIPNUMBER

...

def gossip(self):
if(self.nextBucket < self.bucketNr):

adjust(self.nextBucket, self.nrBuKnown)
nextBucket += 1

Fig. 12 Gossip algorithm to update servers

5.4 Algorithm UDF: Update on Double Forward

A design principle underlying LH∗ and other scalable, distributed data structures is
the avoidance of hot spots and bursts of activity. The elegance of LH∗ stems from
the avoidance of update messages among servers. However, while updating servers at
each split is against its design principles, LH∗ still has forwarding messages between
servers. We propose now an algorithm that uses server updates in the case of double
forwards to avoid further double forwards. As before, this algorithm updates client
state file images based on the number of buckets. It also changes the procedure for
receiving client requests at a sender.

A server now stores three pieces of metadata: its identity (self.id), and its file
state image consisting of level (self.level) and split pointer (self.split).

When a server receives a request from a bucket, it can directly use the file state to
check whether the request needs to be handled by the bucket or needs to be forwarded.
If the message is forwarded, then the server includes its bucket number. The algorithm
to check whether a request is a double forward is given in Fig. 11.

When a server receives a forwarded message, it checks whether the sender of the
message is the one that sent the forwarding message. If this is not the case, then it is
a double forward and the server sends an image adjustment message to the original
server. This image adjustment message just sets the file state of the original server
to the state of the receiving sender. Thus, the original server cannot repeat the same
mistake, but has all the information to determine that the receiving sender is the server
where the record in question should reside.

5.5 Gossiping Algorithms

Any system that wants to limit forwards to only compulsory forwards needs to main-
tain file state at all servers and push information to clients, whether they commit an
addressing mistake or not. At the same time, the principles of scalable distributed data
structures need to be maintained, which precludes maintaining an exact global state
at all clients. A compromise between these two incompatible design decisions lies in
updating server and client information in a lazy manner.
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Fig. 13 Markov state model for
determining addressing mistakes
based on a wandering bucket

We introduce two simple gossiping mechanism, one for updating bucket servers,
the other one for updating clients. In contrast to the usual sense of the word, in our
scheme gossip messages are not randomly triggered. Each bucket maintains a gossip
counter called gossipCount, Fig. 12, and a value nextBucket that is the next
bucket to be updated. Whenever the bucket is created or whenever the bucket is split,
and thereby “knows” that the total number of buckets in the scheme has increased, it
sets these numbers to their initial values. The value of nextBucket becomes 0 and
thegossipCount is set to a system parameter representing the eagernesswithwhich
information is shared. At each processing of a client request, the bucket decrements
the value of gossipCount until it reaches 0. In this case, the value is restored to
the initial value and a message is sent to the bucket indicated by nextBucket with
the information of the number of buckets in the system. The bucket that receives the
message (i.e. Bucket nextBucket) updates its image of the file state to reflect the
new information, but only if it does not have better one. In the case of a file that only
grows, the decision about which information is better is simple: The state with more
buckets is newer. In the case of a file that allows bucket merges, the file state image
needs to contain a time stamp by the split coordinator.

If client accesses are very regular, then a deterministic gossiping protocol creates
floods of gossiping messages. We believe that most LH∗ applications would not show
this regularity, but an implementation might do well to switch to a random scheme and
send gossip messages with probability 1/gossipCount in order to be more robust.

Our second gossiping mechanism is for client updates. A client maintains a similar
counter. The counter is decremented whenever the client sends a request to a bucket.
If the counter reaches 0, then the client sets a flag in the message requesting a file
image adjustment from the responding bucket. In contrast to normal IAMs, there is
no guarantee that the client receives new information.

6 Evaluation

We first evaluate the probability of addressing mistakes and the efficiency of the
Address Resolution File (ARF).
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6.1 Probability of Addressing Mistakes

We determine analytically the probability that a client commits an addressing mistake
triggered by a wandering bucket. We assume a client that interacts regularly with
buckets. We assume that these interactions can be described by a Poisson process with
parameter λ. We describe the position of the client with regards to a single bucket in a
state model given in Fig. 13. The client is normally in State 0, where the client has the
correct address of the bucket. If the bucket fails, then the client enters the “Vulnerable
I” state. If the client makes a request to the Bucket in this state, then we have an
addressing mistake: the client sends the request to the wrong address, the request
times out (or is maybe answered with a “no such bucket is present here” message,
depending on the type of unavailability), and the client uses the backup mechanism
in order to find the new address of the bucket. It is even possible that the client is
the first one to discover the unavailability of the bucket and that the bucket with the
addresses informs the coordinator to undertake a reconstruction. When another bucket
has triggered the reconstruction, the new bucket is available, and the address has been
distributed to the sites with the ARF, then the client enters the “Vulnerability II” state,
where the correct address information exists, but the client is unaware. Now a race
conditions exists. If the client interacts with another bucket with the correct address
information, then its state returns to State 0, otherwise, if the client tries to access the
relocated bucket, it commits an addressing error.

We assume that the transition fromState 0 to State “Vulnerable I” happens according
to a Poisson process with rate ρ. The transition from State “Vulnerable II” to State 0 is
npλwhere n is the number of buckets capable of pushing the new address information,
p is the probability that an interaction with the client triggers the address update, and
λ is the rate at which the client accesses a given bucket. (Here, we make a simplifying
assumption, since in LH∗, a recently split bucket has about half the number of records
than a bucket yet to be split and hence has half the rate of client accesses. While we
are only interested in the averages, the probabilities of being already split are higher
for the buckets with the ARF.) The transition from State “Vulnerable I” to “Vulnerable
II” is more difficult, since it models a Poisson process for the detection by the first
client to make a request and the reconstruction of the unavailable bucket elsewhere.
The remaining two transitions are the error transitions. They happen with a rate of λ.

In LH∗RS, a relocated bucket can commence serving requests even before all its
data are reconstructed. If a record is needed to satisfy such a request, but is not yet
available at the new bucket, then the record is reconstructed outside of the normal
reconstruction procedure. Unfortunately, these details are implementation dependent.
We can assume that there is only a small, fixed time lag Tr needed between a client
observing an unavailable bucket and a replacement bucket becoming available.

The probability of not committing an address error is the combination of a number
of independent events: (a) The client is not the first one to discover the failed bucket.
(b) The client does not try to access during time Tr . (c) The client updates the bucket
address before accessing the bucket. The probability for the first step is given by
(Ncl − 1)/Ncl where Ncl denotes the total number of clients, for the second step by
exp(−λTr ), and for the third step by npλ/(np + 1)λ. Therefore, the probability of
committing an address error is
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Fig. 15 LeftMarkov model for the evaluation of gossiping. Right Probability of not committing an address
error (with 7, 11 and 27 buckets from bottom to top)

1 − Ncl − 1

Ncl

np

(np + 1)
exp(−λTr )

We give two examples in Fig. 14 assuming a million clients. As we can see, the
probability of not committing an address error is high for reasonably small values of
λ and reasonably high values of np. With other words, pushing ARF information to
clients is quite successful. Obviously, if the number of (active) clients is very small,
then the scheme looses effectiveness.

6.2 Analytical Evaluation of Gossiping Protocols

We now evaluate the efficiency of gossiping algorithms. We restrict ourselves to the
typical case where LH∗ files grow relatively slowly compared to the total number of
buckets. We can then use the Markov model depicted in Fig. 15. This model describes
the situation for a single client and a single new bucket. The client will make an
address mistake if the client accesses the new bucket before receiving information on
the existence of the bucket by interacting with another bucket. The information about
the split is diffused to other buckets at a constant rate μ, which depends on the traffic
by clients and the eagerness with which the information is spread. The gossiping rule
has a Bucket i push this information to Bucket i−1 depending on the number of client
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requests that Bucket i receives. The central row of states in Fig. 15, States 0, 1, . . . , n
describes this behavior, where i is the number of servers informed about the split and
n is the number of buckets before the split. For each state, there is a race condition
between the client trying to access a record in the newly generated bucket and the
client accessing a bucket with information on the split. The client accesses a record
into the new bucket according to a Poisson process with parameter λ. If the client
tries to access a record in the new bucket in State 0, the client will commit an address
error, modeled by a transition to the terminal failure state, State f . If the system is in
State 1, the client will access the single bucket with information about the split with
probability 1/2 before trying to access the new bucket and therefore not commit an
addressing error; this is modeled by a transition to the terminal success state, State g.
However, with the opposite probability 1/2, the client will still commit an addressing
mistake and the system will transition to State f . In general, if the system is in State
i , the transition from State i to one of the two terminal states is taken with probability
i/(i +1) to State g and with probability 1/(i +1) to State f . Since the client accesses
the new bucket at a constant rate λ, the transition rates are λi/(i + 1) from State i to
State g and λ/(i + 1) from State i to State f .

The Markov model is linear in the number of buckets, which limits our capability
for a numerical evaluation of the model. We solved the resulting set of Chapman–
Kolmogorov differential equations for n = 7 (bottom, Fig. 15), n = 11 and n = 27
and calculated the probability of avoiding an address error. This probability depends
only on the ratio μ/λ. Figure 15 (right) gives the resulting graph with a logarithmic
x-axis. As a rule of thumb, the probability is reasonably good if log10(μ/λ) > 1 or
μ > 10λ. For example, if we have 1000 active clients making a request to a bucket at
rate λ and if a site gossips after approximately every tenth access, then μ = 100λ and
the probability of avoiding an addressing mistake is at least 80% for a small LH∗ file
and much better for a larger file.

6.3 Experimental Evaluation of Fast LH∗

For the experimental evaluation, we focus only on growing LH∗ files. Shrinking files
are not only rare, but also ideosyncratic and modelling them requires making assump-
tions that are hard to justify.

Our first scenario is one where the file is stationary and clients make a large number
of request. We already applied this scenario in Fig. 9. If we apply algorithm B0 in this
scenario and the clients all start out fresh, then there will be only compulsory forwards
(one per client) and no double forwards at all. This is of course different if clients have
different initial states, since their file state image only gets updated to the correct state
if they erroneously address Bucket 0 or if they obtain the correct state by addressing
records in the last bucket created.

Our second scenario has an LH∗ file that is growing at different speeds.We simulate
1000 clients though the total number of clients could bemuch higher.We determine the
number of forwarding and double forwarding operations. In the low growth scenario,
one of our sample clients makes on the average one request before a split occurs. In
the moderate growth scenario, a client makes on average 0.05 requests before the file
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grows. Finally, in the fast growth scenario, a client makes on average 0.005 operations
before the file increases by an additional bucket. The moderate and fast growth sce-
narios occur if there are millions of active clients who insert records frequently. The
more typical scenario should be the low growth one, where our algorithms succeed in
eliminating almost all double forwards.

As a comparison point, we evaluate first LH∗RSP2P . LH∗RSP2P uses a client ID and
then uses LH∗ addressing to assign each client to a tutor, which is a server that pushes
its bucket file state to its assigned clients whenever it changes. A client can get a new
tutor when its previous tutor splits or if the current tutor is merged with another bucket.
That server then becomes the new tutor. It can be shown that LH∗RSP2P has no double
forwards because each client is updated by its tutor once as the file grows from 2k − 1
to 2k+1 buckets (for any k ∈ N).

We then evaluated the baseline behavior and our less involved adaptations of B0
(fast new client initiation by always keeping Bucket 0 actualized), and UDF (update
servers on double forwards). We then evaluated two variants of gossiping, one where
servers update another after 100 requests (Gossip 100) and one where servers update
another server after 10 service requests and where clients request an update with every
fifth operation that they make (Gossip 10 5).

Our evaluation uses simulation (written in Python). In order to avoid influences
of the starting configuration, we only report the averages of simulations where we
start with k buckets, k ∈ {20, 21, . . . 500} and 1000 clients. For the gossip protocols,
the clients have a file state that correctly reflects the initial configuration, otherwise
the client’s view only has Bucket 0. The total number of buckets created depends on
the growth rate. We observe the effects of 500,000 requests, each originating from a
random client (among the 1000) and with a random RID.

Our results in Table 1 show first that single forwards are a reasonably frequent
occurrence in these scenarios, but that double forwards are rare. Avoiding double
forwards is thus more important for maintaining QoS agreements than for keeping
average access costs down. In our scenarios, the costs of pushing information to clients
in LH∗RSP2P pays off, even in the fast growth scenario, where there is a considerable
amount of unsolicited update traffic between tutors and their assigned clients. We
discuss this more below, Table 3.

Secondly, they show that B0—fast new client initiation—has the biggest effect in
lowering the rate of single and double forwards. Only when there is fast growth do
active clients experience a sufficiently dearth of activity that their image of the file state
is so far away from the actual file state that double forwards appear at all. Indeed, in the
moderate growth scenario, B0 performs (surprisingly to us) better than the gossipping
protocol gossip 1000 that takes time to update the file state image maintained at B0.

Third, they show that the differences between B0 and UDF are minute. In fact,
even while not identical, their graphs in Fig. 16 overlap. Only the aggressive gossiping
algorithms can do better.

While our numbers for LH∗RSP2P make it attractive, they do not take into account
the overhead caused by pushing update information to the clients. All clients, whether
active or not, receive one update message from their tutor, the bucket to which they
are assigned. In our scenarios, these gives a message overhead that makes our other
protocols at least competitive, if not better. In practice, the results will depend on
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Table 2 Percentage of client requests forwarded once and twice for gossiping protocols

Protocol Single forwards (%) Double forwards (%)

gossip 2 (server), 2 (client) 7.195755 0.007473

gossip 5 (server), 2 (client) 7.200378 0.007582

gossip 10 (server), 2 (client) 7.203034 0.007687

gossip 100 (server), 2 (client) 7.205120 0.007976

gossip 1000 (server), 2 (client) 7.205322 0.007986

gossip 2 (server), 5 (client) 8.043643 0.010941

gossip 5 (server), 5 (client) 8.044891 0.011090

gossip 10 (server), 5 (client) 8.046876 0.011058

gossip 100 (server), 5 (client) 8.048471 0.011275

gossip 1000 (server), 5 (client) 8.048615 0.011275

gossip 2 (server), 10 (client) 8.404569 0.012958

gossip 5 (server), 10 (client) 8.404756 0.012913

gossip 10 (server), 10 (client) 8.406508 0.012866

gossip 100 (server), 10 (client) 8.408157 0.013090

gossip 1000 (server), 10 (client) 8.408270 0.013079

the difference between activity levels between clients, which in turn depends on the
nature of the application and does not lend itself to general rules. These numbers can
be greatly higher if we have a substantial amount of churn, since each new client
needs to find its tutor to get updated. We give the numbers for our simplified scenario
in Table 3. For example, in the fast growth scenario, we have 8.87 times that a tutor
updates its pupil, which amounts to a tutor-to-pupil message overhead of 1.78% per
client request. Since we assume no churn, true numbers should be higher.

We then investigated various parameter choices for the fast-growth environment.
Our results are shown in Table 2. The gossiping protocols all update Bucket 0 imme-
diately with every split. As we can see clearly, the rate at which clients update their file
image has a much higher impact than the rate at which servers update each other. The
explanation lies in the resilience of the original LH∗ protocol. The process of bucket
splits maintains servers reasonably well informed about the number of buckets in the
file. Just based on the bucket level, the server knows the powers of two limiting the
total number of buckets in the file. While the speed of server updates has a small, but
predictable effect on the total number of messages that need to be forwarded, the num-
ber of double forwards sometimes ends in a statistically dead head or can even ever so
slightly increase with higher growth rates. This is a perverse effect of the efficiency of
the system, since less forwarding mistakes mean less load at lower-numbered buckets
and therefore fewer updates from there. We observed it when studying the raw data,
not the cumulative data given in Table 2. It only happens when we start the simulation
with a system with already more than 300 servers and clients that have file state views
that are exact.

As we can see from Fig. 16, the number of forwards becomes slightly lower as the
LH∗ files become larger. This is because a client with slightly inaccurate image will
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Fig. 16 Non-compulsory single forwarding messages in the low, moderate, and fast growth scenario
depending on the starting size (in buckets) of the LH∗ file

not be as likely to make an addressing mistake.We can also see how statistically stable
the ranking of the various protocols are, but the small but negligible contribution of
UDF over B0 is not visible.

As opposed to spreading information among servers, pulling information from
servers to clients has a very noticeable effect both on lowering the number of sin-
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Table 3 Client update messages in LH∗RSP2P

Scenario Updates per client Overhead per client request (%)

Low growth 1.830420 0.366084

Moderate growth 5.599402 1.119880

Fast growth 8.876860 1.775372

gle forwards (an improvement by 24%) and especially of double forwards, with an
improvement of over 800%.

In conclusion, we observe that for our scenarios, pulling information via piggy-
backing is a mechanism that is successful in limiting the number of double forwards
and single forwards messages. Depending on the growth of the file, it can slightly
outperform LH∗RSP2P (Table 3).

7 Conclusions

Large scalable distributed data structures such as Bigtable [3] are already used for
big computations in cloud environments. We presented here ways of making one
particular data structure, LH∗, which was proposed two decades ago, fit for the harsh
environment of large data centers where level of service guarantees are important, but
failures frequent, and where clients of services can be short-lived.

First, we presented alternatives to the approach of LH∗RSP2P that work by pushing
information on the file state only to active clients. Relatively small changes in the
scheme were shown to have reduce the possibility of interactions taking too long
by double forwards. In this part, we update clients at the LH∗ level. Our second
contribution shows how to solve the problem of changes in bucket addresses, i.e. at the
TCP/IP level, through pushing information only to active clients. Both contributions
show that LH∗ is a cloud-ready data structure that is of light weight and presents a
strict key-value pair architecture.
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