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Abstract Stream processing is a special form of the dataflow execution model that
offers extensive opportunities for optimization and automatic parallelization. To take
full advantage of the paradigm programmers are typically required to learn a new
language and re-implement their applications. This work shows that it is possible to
exploit streaming as a safe and automatic optimization of a more general dataflow-
based model—one in which computation kernels are written in standard, general-
purpose languages and organized as a coordination graph. We propose streaming
concurrent collections (SCnC), a streaming system that can efficiently run a subset
of programs supported by concurrent collections (CnC). CnC is a general purpose
parallel programming paradigm that integrates task parallelism and dataflow comput-
ing. The proposed streaming support allows application developers to reason about
their program as a general dataflow graph, while benefiting from the performance and
tight memory footprint of stream parallelism when their program satisfies streaming
constraints. In this paper, we formally define the application requirements for using
SCnC, and outline a static decision procedure for identifying and processing eligible
SCnC subgraphs. We present initial results showing that transitioning from general
CnC to SCnC leads to a throughput increase of up to 40x for certain benchmarks, and
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also enables programs with large data sizes to execute in available memory for cases
where CnC execution may run out of memory.

Keywords Streaming - Task parallelism - Dynamic parallelism - Dataflow

1 Introduction

Asmulticore computing becomes the norm, exploiting parallelism in everyday applica-
tions is an important concern. Parallel programming models based on stream process-
ing are of particular interest because they offer some of the best examples of high-
performance, fully automatic parallelization of implicitly parallel code. However, pro-
gramming languages built around stream programming, such as Streamlt [1], have
not become widespread, even for application areas such as digital signal processing
where they offer clear benefits. A possible reason for this is the intrinsic adoption
barrier faced by new languages—this is especially a problem since today’s streaming
languages often suffer from a narrow range of applicability and inability to compose
with larger software systems.

We propose a new solution to this problem that can enable efficient stream process-
ing within more general applications written using standard languages (in this paper,
Java). We do not, however, attempt to optimize streaming patterns within a fully
general-purpose language. Such an approach is possible, with specialized streaming
libraries, but suffers from the same drawbacks of stream programming languages: high
adoption barriers and the need for programmers to be aware that their application is
streaming. Instead, we advocate the use of the compiler to target stream-processing
patterns automatically located within a applications written for a general-purpose
graph-based parallel model such as concurrent collections [2].

Concurrent collections (CnC) is a dataflow language with a very dynamic nature
which makes it compatible with expressing a large set of applications. CnC allows the
user to dynamically launch tasks (“steps’) which read and write from key-value stores
(“collections”) which obey a dynamic single assignment rule. CnC is an effective
parallel programming model for many problems, but for streaming applications, as
with other task parallel models, it is rather inefficient: it incurs task scheduler overhead
and has further overhead to store stream elements in heavy-weight general-purpose
collections.

In this paper we introduce Streaming CnC (SCnC), a streaming system which
identifies streaming patterns based on metadata already available in CnC programs. For
compliant programs, SCnC uses an alternative code generator and streaming runtime
which improves the performance and memory usage of streaming applications relative
to standard CnC.

The main contributions of this paper are the following:

— The identification of a subset of a general task-parallel programming model which
makes feasible the compile-time identification of streaming patterns (in Sect. 3).
The recognized streaming patterns are more general than the usual pipeline/split-
join/loopback streaming graphs.
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— Asstatic analysis algorithm (Sects. 3.2 and 5) to identify when a program is streaming
(i.e. will run correctly on the streaming runtime), as well as algorithmic transfor-
mation to bring it to such a form, if possible (Sect. 4).

— A static analysis algorithm to determine safe bounds for stream buffers, ensuring
deadlock-free execution of streaming programs if the initial program is deadlock-
free (described in Sect. 5.1). Together, the static analysis algorithms ensure that the
streaming and the task-parallel executions of compliant programs are equivalent.

— A feature that identifies opportunities for converting stream data accesses to local
state accesses (Sect. 6.1). The support for dynamic parallelism (Sect. 6.2) integrates
well with the local state access, enabling each dynamic filter to have its own local
state accessible between iterations.! To our knowledge, no other streaming system
enables this.

— Experimental results on our implementation of SCnC show compelling perform-
ance and memory improvements compared to task-based execution of the same
applications.

2 CnC Background

This section briefly reviews concurrent collections (CnC) [2], the programming model
which forms the basis for streaming concurrent collections. CnC programs are com-
posed of three types of constructs: item collections, control collections and step col-
lections. These collections and their relationships are defined statically for each appli-
cation in a CnC graph specification file; the code of the application can be written in
any one of multiple host languages for which CnC has a runtime available. The main
program that initiates a CnC graph, provides its inputs, and reads its outputs is referred
to as the environment, and appears as a special node in the CnC graph.

Step collections group together dynamic instances (“step instances” or simply
“steps”) of tasks. A step instance is “prescribed”, analogous to a task being spawned or
a streaming filter performing an iteration). Steps are stateless and have no side effects
outside of producing and consuming items. In contrast to streaming, the CnC model
does not imply any ordering constraints between the execution of step instances of the
same step collection; however, step instances read and write data values called items
which introduce dataflow dependencies between them.

Item collections are CnC’s data layer and accessing items is the sole means of
synchronization between steps. Item collections are “append-only” key-value stores
with the keys referred to as item keys. Any step collection that shares an edge with
an item collection in the application graph can perform a put (key, wvalue) or
get (key) to read and respectively write items in that collection, according to the
direction of the edge. Each individual item is dynamic-single-assignment and its value
cannot be overwritten. A get on an unavailable item requires deferring the consumer
step until the item is put by another step instance.

! The OpenStream system, developed concurrently with this work, has a similar feature, but the OpenStream
state cannot be inferred from stream accesses.
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Table 1 Types of edges in CnC graphs

Edge type Source col. Destination col. Meaning

Item-put Step Item A source step may put items in the
destination item collection

Control-put Step Control A source step instance may put
control tags in the destination
collection

Item-get Item Step A destination step may get items

from the source collection

Prescription Control Step Any tag put in the source control
collection leads to the execution of
a step instance from the destination
collection

With step collections used for computation and item collections storing data, the
final collection type, control collections, serve as broadcast nodes, sending invocation
messages (also called control tags) to one or more step collections. These messages
prescribe the execution of a new step instance of receiving step collection. The oper-
ation on control collections through which this is done is put (controlTag).

The CnC graph specification is a textual representation of the statically known struc-
ture of the application, relating the application’s step, item, and control collections,
as well as including metadata relating the keys of items accessed to the control tag of
the step. The graph is used to generate code for the item and control collections and to
construct and execute the graph, so that the user need write only step implementations.
For graphical representations of CnC graphs, we use the following shapes, following
standard CnC conventions: step collections are circles, item collections are squares
and control collections are triangles. We classify the various types of edges of a CnC
graph as shown in Table 1.

It supports a wide range of application graphs and provably supports more parallel
execution graphs than the popular task-parallel language, Cilk: while Cilk supports
fully strict computations[3] that are also terminally strict [4], CnC can express any
terminally strict computation [5]. Compared to other dataflow languages, CnC allows
individual tasks to interact with a dynamic number of other tasks (the communication
pattern are decided when each tasks start running) and a dynamic number of times,
making it much more flexible than other dataflow models.

3 Streaming Concurrent Collections

Streaming concurrent collections (SCnC) provides a restricted version of the CnC
model (including the graph specification, corresponding code generator, and runtime
library) that enables efficient streaming execution of compliant CnC programs, as
opposed to task-based execution used for non-streaming CnC applications. Ultimately,
SCnC will execute CnC applications using the same source code and specifications
as CnC, but our current prototype has minor API differences, described in Sect. 7.
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CnC application

No Yes

Is the graph
well formed?
(Section 3.2)

Does
conversion
to well-formed
shape succeed?
(Section 4)

No

Does the access
pattern check succeed?
(Section 5)

Identify buffer sizes
for deadlock-freedom
(Section 5.1)

Take advantage of
stateful dynamic parallelism
(Section 6)

Use code generator Use code generator
and runtime and runtime
for task-parallel execution for streaming execution

Fig. 1 The sequence of tests performed by SCnC to choose the appropriate runtime for each application

In streaming (SCnC) execution (compared to dataflow task execution) the efficiency
increase comes mainly from two sources: lower task overhead (for streaming programs,
many short lived tasks can be replaced by fewer long lived tasks) and lower data access
costs (possible due to the more predictable data access patterns in streaming).

3.1 SCnC Workflow

Not any CnC application is a streaming application because streaming has restrictions
of both the shape of the application graph and on the data access patterns of the
application code. To make sure that we only use the streaming runtime if the application
is compatible with it, streaming compliance is validated through a sequence of compile-
time tests illustrated in Fig. 1.

First, the shape of the application graph must have some characteristics that we call
well-formed [for SCnC] described in Sect. 3.2. Most of these characteristics are needed
to ensure that the application is streaming, but some are engineering considerations, as
presented in Sect. 8. If the test fails because the application graph is not well-formed,
then we attempt to convert it to a well-formed shape, as discussed in Sect. 4; if the
conversion fails, we fall back to the task-parallel runtime. If it succeeds, additional
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tests must be performed on the item accesses performed by each step, to ensure they
respect the limitations expected from a streaming program, such as the limited lifetime
of items. The data access tests are described in Sect. 5. Once these tests passes, we size
the streaming buffers to the minimum size that is proven to ensure deadlock-freedom.
Finally, the task-based runtime is switched to the streaming runtime, using the safety
bounds inferred above to instantiate all relevant buffers.

As reflected in the figure, our current prototype makes an all-or-nothing decision
as to whether an application is streaming, forcing the user to explicitly factor out
streaming portions of their application into separate CnC specifications. However,
there is no reason that SCnC sub-programs cannot be automatically extracted in the
future.

3.2 SCnC Well-Formed Graphs

The SCnC runtime cannot run an arbitrary CnC graph. For a CnC program, the well-
formed graph shape guarantees that, if the application also respects the data access
patterns discussed in Sect. 5, then streaming execution is possible and will be deadlock
free (see also Sect. 5.1).

Definition A well-formed SCnC graph is a CnC graph that respects the following
conditions:

1. Control collections have only one step collection that performs put operations in
it and only one prescribed step collection.

2. Item collections have only one step collection that performs put and only one
that performs get.

3. The environment only puts control tags into a single control collection and has
no item-put edge. The control tags can be pairs that include the value of any items,
or the entry step itself may be the source of items.

Definition The CnC control graph is the CnC graph with the item collections, item
put-edges and item get-edges removed.

Theorem 1 For a well formed CnC graph, the CnC control graph rooted at the entry
control collection is a directed tree.

Proof We first prove the absence of cycles, relying on the following: the CnC control
graph is weakly connected, both step and control collections have only one predecessor
and can be reached from the environment. If there was a cycle, the nodes in that
cycle would have a predecessor in the cycle, so either the environment is in the cycle
(impossible, as the environment does not have any incoming edges) or the cycle is
unreachable from the environment (impossible). Because it does not have cycles, the
CnC control graph rooted in the entry control collection is a DAG. Further, because
of the constraint on the in-degree of control collections, the DAG must be a tree.

We can safely assume that there is a path from the environment to each step col-
lection (otherwise these unreachable step collection will never lead to steps being
executed, so they are dead code). As the entry control collection is the singular child
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of the environment, all paths must pass through it, so there must be a path from the
entry control collection to every node.

We now check for the proper direction of the edges: CnC control graph edges are
either from control collections to step collections or from step collections to control
collections. Each step collection has only one incoming edge (the prescription edge)
which connects the step collection to its parent in the tree, leaving the ether edges to
connect the step collection to children. Thus the CnC control graph rooted in the entry
control collection is a directed tree, with all edges transferring control away from the
environment. O

An intuition about the generality of the graph shapes allowed by SCnC is as follows.
Any directed tree can be a CnC control graph (if we imagine that each node is replaced
by a control/step-collection pair). On this directed tree backbone, adding any number
of item collections (streams) between step collections is permitted, as long as they
remain single-source/single-destination. This last restriction is relaxed in the following
section.

4 Converting CnC Graphs to Well-Formed Shape

In some cases, graphs that are not well-formed because they do not observe the single
producer or single consumer rules can be rewritten to a well-formed shape by applying
a sequence of transformations, as follows:

1. First, we reshape the environment node to only put control tags in a single control
collection. We add a new step collection and control collection for interaction with
the environment. This step collection (called the entry step collection) will serve
as source for the items that would have been put from the environment. Figure 2
illustrates this transformation.

2. We can then turn multi-prescription control collections to single-prescription con-
trol collections, by splitting each multi-prescription control collection into multiple
control collections, as shown in Fig. 3. The producing step will now need to per-
form a put with the same control tag that was used in the initial implementation,
but the put will be performed multiple times, once in each new control collection.

3. Next we eliminate any multiple-producer item collections by splitting the item
collection, as shown in Fig. 4. We also add a new step collection, prescribed by
one of the original producers, that functions as a custom join step: it gets items
from all split collections and puts them into a single result item collection. The
join step must be able to decide, based on its control tag, what item collection
and what item key it should get and then put in the merged item collection.
This is easy when the producer steps populate the item collections in a consistent
pattern, such as round robin, but become difficult if this is not the case, requiring
the user to write custom code for it. The step collection will need to put items
in the merged item collection with the same key that they were indexed in their
source item collections. The single-assignment rule of CnC ensures that there will
not be multiple items with the same key in the split item collection, as all of them
were in a single item collection in the initial CnC program.
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Item Collection 1
Item Collection 2

Item Collection 3

Before:

Control
Collection 2

Item Collection 1 @
Item Collection 2

Item Collection 3

Fig. 2 Conversion of the environment from multiple-producer to single-producer

4. To remove multiple-consumer item collections, we convert them into single-
consumer item collection. To do this, we split the item collection into N separate
item collections, one for each consumer, as shown in Fig. 5. All puts that were
initially performed to the multiple-consumer item collection should now happen
N times, once for each split item collection. These put calls should use the same
item keys they used in the initial CnC program.

After these transformations have been performed, the resulting graph, even if well-
formed, may have data access patterns that are incompatible with streaming. The
following section proposes a static analysis approach of detecting if an application
complies with streaming access pattern restrictions.

5 Streaming Access Pattern Identification
Because the streaming runtime is more restricted in its use of items than CnC, addi-

tional checks have to be performed before using it. In this section we present an
algorithm to perform the required checks for automatic identification of the streaming
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Before: Step
Collection 0

Control
Collection

Step
Collection 2
Step
Collection 0

Step
Collection 1

After:

- Step
Collection N

Split Split
Control Control Control
Collection 1 Collection 2 Collection N

Step Step Step
Collection 1 Collection 2 Collection N

Fig. 3 Conversion of a control collection from multiple prescribed steps to a single prescribed step

Before:
Producer Step 1

Producer Step 2

Item Collection

Producer Step N

Producer Step 1 Cscﬁlhetclttiir: 1
Producer Step 2 ngﬁhetclttiiw 2
Split Item
Producer Step N Co’I)Iection N Merged
Item Collection

Fig. 4 Conversion of an item collection from multiple-producer to single-producer
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Before:
Consumer Step 1

Producer Step Item Collection Consumer Step 2

]

Consumer Step N

After: Split Item
Collection 1 [ »\Consumer Step 1
Split Item
Collection2 [ Consumer Step 2
Producer Step

Split Item
Collection N —( Consumer Step N

Fig. 5 Conversion of an item collection from multiple-consumers to single-consumer

access patterns on a well-formed CnC graph. The output of the algorithm is a boolean
value that answers the question: would the streaming runtime run the application cor-
rectly? The algorithm relies on the the computation of mathematical functions, but
sometimes such functions cannot be identified (which happens, for example, if the
function output does not dependent only on the parameters specified as input). In that
case, the algorithm outputs FALSE, meaning that the application cannot be executed
using the SCnC runtime. These functions that annotate edges in this algorithm can be
user written in CnC. The algorithms presented in this section have not been imple-
mented, but automatic analysis could be performed by expressing the algorithm equa-
tions as mathematical constraints in any modelling tool which can compute the inverse
of functions, conditions for function equality, etc. Such mathematical modelling has
now made its way into commercial tools like Matlab [6]. For CnC applications, these
functions are typically not complicated( usually they are linear functions), which con-
siderably simplifies analysis. If mathematical modelling engine is not powerful enough
to express all equations for all functions, it is always safe to fall-back to the task-based
runtime.

The algorithm consists of two parts: graph analysis and condition testing. The
intuition behind the algorithm is the following: every time a control tag is put
from the environment, it starts a “wave” of step instances that prescribe other step
instances throughout the graph. Some of these steps will get items, others with
put them. The starting of these waves are independent from one another, as they
come from the environment. By modelling the sets of items read and written by
each such wave through mathematical functions, the algorithm identifies conditions
under which streaming execution always succeeds; one condition (sufficient, but
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very restrictive) is that waves only consume items produced in their previous wave
and the streaming buffers are large enough to hold all items produced consecutive
waves.

The analysis phase computes meta-information in the form of mathematical func-
tions labelling the edges of the application graph. It consists of the following steps:

1. Ensure that all item keys and control tags have an integer ordering component,
whose values are consecutive increasing integers. In the following steps of the
algorithm, for simplicity, we refer only to this ordering component as the control
tag or item key, even though there may be other information used in the real tag.
We call the ordering component of the control collection that is produced by the
environment iteration number.

2. Annotate graph edges with functions, as follows:

— Annotate each item-put edge (from a step collection to an item collection)

with one or more item-put functions with domain equal to the possible control
tags of the step and co-domain equal to the item keys that are put . If a
step instance can put k items, there have to be k distinct item-put functions,
each modelling the relation between the tag of the step and the key of an
item.
Failure to correctly identify all item-put functions leads to the application
being declared incompatible with the streaming runtime; this can happen if the
maximum number of puts performed by each step instance is not bounded
or if the functions cannot be identified statically (for example, when the item
keys depend on the value of other data items).

— Annotate each control-put edge with similar control-put functions, relating the
control tag of the step to the values of the control tags it produces.

— Annotate each item get-edge with similar item-get functions (fjemGet), relat-
ing the control tag of the step to the values of the keys of items it produces.

— Label each prescription edge with the identity function.

3. Compute functions that map iteration numbers to the item keys and control tags
used throughout the graph.

— Do a traversal of the CnC control graph (see definition 3.2), labelling each

control-put and item-put edge with the composition of the functions through
which the path from the root of the graph to that control/item collection. We
call this function a producer function because it maps iteration numbers to the
keys and tags produced during the CnC execution. If any edge has multiple
item-put, item-get or control-put function annotations, there will be multiple
producer functions. Given an input iteration, each of these functions describes
one item key or control tag that was created because of that iteration.
As an example of computing the producer functions, if the path from the entry
control collection to a step collection S prescribed by control collection C goes
through the edges labelled with the control-put functions f to f;, the producer
function for that control collection is: fpcmducer = fupo fu—10 fun—p0-+-0 f1.
If the step collection S produces items in the item collection I, and the item-
put edge between them is labelled with item-put function fisem pur, then the
producer function for item collection I is: f;roducer = fitemPut © ffmtmlpm
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— In addition to creating producer function functions relating iterations to items
produced, we create consumer functions for each key consumed. That is, we
compose the producer function of steps with their item-get functions.

4. For each item-get edge in the graph, compute the minimum-consumer function,
defined as the minimum of the values of all the consumer functions labelling that
edge. Minimum-consumer function identify the smallest key that a step can get
from a particular item collection, as a function of the iteration numbers.

5. Label item-put edges with minimum-producer functions computed similarly to
minimum-consumer functions.

The test phase uses the above producer and consumer functions to decide if the item
access patterns of the application respect the streaming access patterns. We express
these streaming patterns as five constraints that, if followed, enable CnC application
to run as SCnC applications. They are:

1. The “producer precedence” constraint: Any item is produced in an earlier iter-
ation than that in which it is consumed. If feonsumer and fproqucer annotate
edges that share a common item collection vertex and y is an item key, then
Jor lodum () < £k umer (), ¥y > 0.1f there is no inverse for either functions of
any item collection, return FALSE.

2. The “bounded buffer” constraint: There is a constant N such that for any iteration,
the the ordering component of any two items consumed from each item collection
in any iteration is not more than N. The corresponding equation is: |( feonsumer1 —
Seonsumer2)(x)| < N, Vx and ¥ feconsumer1s feonsumer2 consumer functions of
a single step collection.

3. The “sliding window” constraint: For any consecutive step instances of a step
collection, the minimum ordering component that can be consumed by the step
second step is no lower than that that consumed by first step: fiin_consumer (¥) <
fmin_consumer (y + 1)

4. The “bounded lifetime” constraint: For any item tagged t, produced in iteration #;
and consumed in iteration f», there is N, constant such that r, —#; < N». Note that
individual consumer functions do not need to have this monotonicity property.
Bounded buffer, sliding window and bounded lifetime assure that we will not need
a buffer size larger than Ny or N, to satisfy get calls on an item collection.

5. The “unique timestep” constraint: Each step instance performs no more than a
single put in each of its output control collections. This constraint assures us that,
for a given step collection there will never be more than one step instance with the
same iteration number (started by a single ancestor).

5.1 Deadlock Freedom
To ensure that the SCnC execution is equivalent to the CnC execution of the same pro-
gram, SCnC must not introduce deadlocks in correct CnC programs (correct programs

are those in which no step is prescribed, but its inputs are never produced). There are
three possible causes of deadlock in SCnC, as follows:
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“Producer-consumer iteration ordering” deadlock. If a step blocks attempting to
get an item that cannot be produced because it requires the current step to complete.
This cannot happen with SCnC as it contradicts the “producer precedence” rule.
“Evicted item” deadlock. If a step performs a get on an item that is no longer in
the streaming buffer (streaming access pattern constraint). This can happen only
if the streaming buffer size is too small, which is prevented by the buffer sizing
method described in the next Sect. (5.2).

“Full-empty buffer” deadlock [7,8]. This problem can appear, in its simplest form,
if two steps are connected by two item collections A and B. If the buffer of A
becomes full, this blocks the producer and prevents him from producing items
in another queue B. If the consumer also blocks, because B is empty, it cannot
unblock the producer by consuming items from A, then this deadlock is a full-
empty buffer deadlock (A is full and B is empty). In the following Sect. (5.2), we
describe a technique that statically finds a bound for the streaming buffers such
that they never fill up.

5.2 Sizing the Stream Buffers

This subsection describes how to statically identify a safe size of the streaming buffers
such that “full-empty buffer” and “evicted item” deadlocks can never manifest. First,
it is important to notice that a program having only control and step collections cannot
deadlock, as the control graph is always a tree.

For an item with key t produced within a well-formed CnC application we have
the following equation: t = fl’;m ducer G11) = fionsumer (itp) illustrating that the item

was produced in time iteration i7; and consumed in time iteration iz,.> The required
buffer size for item t is (it — ify) * max,—s.ir, P OR(t), where POR(it) is the
producer output rate of iteration it. The item rate is upper-bound the cardinality C of
the set of item-put functions labelling the item-put edge of the item collection. Also,
according to the “bounded lifetime” constraint, there is an integer constant k such that
ity — it; < k which means that the items consumed by a step are produced a fixed
number of time-steps before.

The item collection buffer size is thus upper-bound by k * C. If the actual buffer
size of the item collection buffer is larger than this, the buffer will never fill, so the
producer and consumer edges cannot participate in a deadlock cycle.

This condition is not sufficient though, as there might not be space in the control
collection buffers somewhere on the path between the producer and the consumer.
To find an upper-bound for the size of the buffers on this path, we use the fact that
each step can put at most one control tag per iteration in each control collection
(“unique timestamp” rule). The maximum number of tags that need storage is thus
M = ity — ity; this limit applies for all control collections on the path between the
producer and consumer steps.

2 If there are multiple consumer functions, all combinations must be considered and only the maximum
buffer size obtained is safe.

3 As shown in Sect. 3.2, the control graph is a tree, so there is only one such path.
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Fig. 6 The CnC step-local item
collection pattern

Item Collection

Control Step Collection

Collection

As shown, only the combination of using sufficiently large buffers for item col-
lections and control buffers ensures that SCnC execution does not introduce new
deadlocks.

6 Optimizing SCnC Performance

Because CnC is optimized for task-based execution, ample opportunities for perfor-
mance optimization are available if they are to be executed on a streaming runtime. In
the following subsections, we describe two such optimizations.

6.1 Stateful Streaming Steps

In CnC, steps are stateless (interaction between step iteration cannot happen though
step-local data), which enables task execution through an abort-restart mechanism; in
SCnC, this restriction loses its motivation, as SCnC has a different model, in which
long lived tasks execute all instances of each step collections. These long running
tasks could store state that could be shared between iterations, but the stateless CnC
program used as input makes such an approach challenging. We discuss two possible
approaches to turn stateless steps into stateful steps below.

The first approach is based on taking advantage of patterns in the application graph.
For example, one such pattern is the item collection/step collection cycle (shown in Fig.
6) in which a single step collection is both producer and consumer of an item collection.
For well-formed graph the step collection, being the single producer and consumer, is
the single entity to interact with the item collection. We call such item collections step-
local item collections. The cause of this pattern is the CnC restriction that steps are
stateless (thatis, there is not state information preserved between different step instance
executions). If using SCnC, these collections can optimized out by transforming back
into data fields of the step collection. By doing so, we remove the synchronization
overhead implied by the item collection.

This approach has the advantage of never impeding scalability because it only
decreases overhead for existing synchronization.

The second approach is to allow alternate stateful implementations for CnC steps,
used only by the SCnC. Compared to the pattern-based approach described above, this
approach loses any potential of automatic conversion, but can lead to a larger perfor-
mance improvement because it exploits more opportunities for local state conversion.
This approach may lead to worse scalability because stateless steps are more difficult
to run in parallel, but also has a higher potential for performance because programmers
can exploit more opportunities for using state instead of items.
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6.2 Dynamic Parallelism

Some streaming applications, such as compression/decompression and event mon-
itoring [9], have time-varying data-rates and compute loads, depending on the
phase of the computation or the availability of external inputs. Efficiently support-
ing these situation requires dynamically adjusting the parallelism used by the run-
time.

The SCnC dynamic parallelism support is based on dynamically-parallel step col-
lections. In the statically-parallel SCnC model, every step collection corresponds to
a sequence of serial execution of step instances. Parallelism is gained by concur-
rently processing step instances of different item collections. With dynamically par-
allel step collections, a dynamic number of step instances of each item collection
can execute in parallel as each step collection has a varying number of process-
ing queues. Each step instance is assigned to exactly one of these. The SCnC
put (controlTag) operation has optional integer parameter which identifies which
queue of the prescribed step collection should process the control tag. When an
identifier value is used for the first time, a new queue is instantiated and added
inside the step collection, turning the step collection into a dynamic split-join node.
Each processing queue maintains its own local state that can be used across step
instances.

For stateless step collections, a compiler transformation can automatically distribute
the step instances to the number of clones that yields the best performance in a round-
robin fashion. However, applying the same approach for stateful steps is conditional
on the possibility of separating the state in several independent queues and managing
the state independently. This is very challenging task to automate and is not attempted
by any of the current streaming systems. We take an intermediate approach, by looking
for a dimension of the control tag which the programmer used to control the dynamic
parallelism and distribution. We find potential such dimensions by inspecting the
control tags of each step collections. If the control tags are two dimensional, after
removing the ordering component, we check if the remaining dimension can be used
as the processing queue id. A static analysis can test if the value of this dimension
is included as a dimension in the item keys used by the step. If steps only read or
write items whose keys have the same id, then the steps can safely be assigned to
independent processing queues based on the value of this dimension. When parallelism
needs to be reduced or queue state is no longer required, queues can be cleaned up
by sending special control tags with the corresponding processing queue id. Note that
the mechanism of using a dimension of the control tag to differentiate items is natural
and used even in regular CnC, the only obstacle against automating this approach
is if static analysis is sufficient to identify if steps only access items with he same
queue id. In the applications we looked at, a simple analysis like copy propagation
was enough.

This approach is high-level and does not require user intervention if the original
CnC program uses the common CnC pattern of separate tag dimension for encod-
ing the state. Section 9.2 shows example applications in which this feature proved
useful.
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7 SCnC and CnC Semantics for Keys and Tags

SCnC, because of its streaming nature, differs from general CnC, specifically through
the way it accesses data items. In CnC, each item has a unique identifier—its key—
which is used to access it, but if items collections are replaced with efficient streaming
queues (which are not key-value data structures) the use keys is not possible anymore.

The challenge of translating CnC get and put keys into stream push, pop and
peek lies in converting item keys into streaming offsets. In general CnC, keys can
have arbitrary data types, so such a conversion is not possible, but we can leverage the
restrictions imposed in step 2 of the analysis phase described in Sect. 5, which ensures
that any CnC program that is used with the streaming runtime will only use item keys
and control tags with an monotonously increasing integer ordering component.

The conversion between the two types of indexes can be performed by maintaining a
current position in the stream, which corresponds to the maximum ordering component
encountered so far. If a step performs a get on an item with a ordering component
larger than the current maximum, the current position in the stream must advance with
a number of elements equal to the difference between the two; then, the item with
offset zero in the stream is returned. If the step performs a get of an item whose
ordering component is less than the maximum ordering component, then the item
returned is the one at an offset equal to the the difference between the maximum and
the current ordering components. Note that access is permitted only to items with
ordering components lower than the current position in the stream, which corresponds
to a reverse peek operation. Traditional peek must accomplished by advancing the
current position in the stream to the desired position.

This conversion algorithm enables key-based CnC calls to become offset-based
SCnC calls in the intermediate representation of SCnC. Thus, the SCnC intermediate
representation semantics for an item get operation are: if the item access has previ-
ously been gotten, get is invoked with an offset larger than zero, corresponding to
the difference mentioned above. If the next item in the stream needs to be accessed,
then get with parameter 0, which means that a new item has to be obtained from the
stream. Get (0) can be performed multiple times to advance the stream one item at
a time.

Another difference between the semantics of the intermediate SCnC representa-
tion and the CnC semantics is the addition of an optional parameter that controls
the dynamic parallelism (see Sect. 6.2). If control tags of the CnC program are bi-
dimensional (including both an ordering component and a processing queue id), the
processing queue identifier is extracted and used as an extra parameter in control put
operations.

8 Implementation
In this section we describe our prototype implementation of SCnC, which consists
of the SCnC code generator and SCnC runtime. The other phases of he workflow

must be performed by hand (these are: well-formed analysis, access pattern analysis,
conversion of SCnC put and get semantics from Sect. 7).
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SCnC programs and the SCnC runtime itself are written in Habanero Java (HJ)
[10], which offers language primitives for productive and easy to use parallel program-
ming. HJ has asynchronously forked tasks called asyncs. Waiting for completion of
asyncs id done by including them in a blocking £inish statement. HJ phasers
[11] are synchronization constructs that enable scalable synchronization between a
dynamically variable number of asyncs. Phasers support both producer-consumer
and barrier style synchronization, but we only need producer-consumer synchronisa-
tion for SCnC, which we specify be using only the signal and wait registration
modes. Accumulators [12] are a reduction construct built over the synchronization
capabilities of phasers. An accumulator is associated with a phaser and needs to know
the type of the values it is reducing (e.g. int) and what is the reduction operation.
Each producer task (registered in signal mode) performs a send to produce a value
to be reduced, then signal the phaser; when all producers have signaled to the
phaser, the consumer tasks (registered in wait mode) can access the reduced value
by calling the accumulator result call.

To implement SCnC, we built an extension of the phaser accumulators called
streaming phasers that adds support for bounded-buffer synchronization in
phasers and accumulators. Accumulators now contain an internal circular buffer
of size k that is used to store additional items before they are consumed; this enables
producer tasks to produce up to k items. Access to previously consumed elements is
permitted, within the limits of the internal buffer, by providing an additional offset para-
meter to the accumulator.result call. To enable synchronization on the buffer,
phaser producers can now be up to k signal operations ahead of the consumers.
Accessing previously consumed elements is the key to efficient implementation of the
SCnC get semantics.

The SCnC runtime consists of implementations for item collections, control col-
lections and step collections. Each item collection has a phaser and accumulator
pair that allow synchronization and communication between the producer and con-
sumer of an item collection. Populating the entry control collection from the envi-
ronment is done through the init function of the item collection in which the
user performs put operations. The SCnC code generator creates a class with these
two members and corresponding put and get operations for each item collec-
tion.

As described in Sect. 7, the semantics for an item get operation are: if the desire is
to access an already used item (an item that has already been gotten at least once), use
get with an offset larger than 0. If the intent is to access the next item in the stream,
then do a get with parameter 0, which means for the runtime that a new item has to
be obtained and it inserts the proper wait operation on the item collection phaser. The
essential operations of the functions are shown in Listing 1.
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class ObjectItemCollection {
public phaser ph;
public accumulator a;
public Object get (int no) {
Object value = null;
if (no=0) {
ph.doWait();
value = a.result();
} else {...}
return value;

public void put (Object p) {
a.send(p);
ph.signal(); }}

void start(WrappedInt tag ) {
final Tag ftag = tag;
async phased(
controlC . ph<WAIE>,
producedltemC1 . ph<SIGNAL> {
run(ftag);
1
void run(WrappedInt ptag) {
WrappedInt tag = controlC. get(0);
while (tag.value != endStream) {
// run the step code
step(tag);
// pop the next control tag
tag = controlC.get(0); }}

Listing 1 Code fragment showing the put and Listing 2 Code fragment from the step collec-
get implementation. tion base class.

SCnC step collections are modelled through one async containing a loop, whose
iterations are step instances; the user code for steps is in the step function which is
called every iteration with a new control tag (see Fig. 2).

9 Experimental Results

The SCnC translator and runtime have been tested on a total of six applications: three
Streamlt benchmarks (Beamformer, Filterbank and FMRadio), a clustering applica-
tion (Facility Location), the well known mathematical algorithm Sieve of Eratosthenes
and a video processing application (EdgeDetection). Throughput results are shown in
Fig. 7 for four of the applications; because of space constraints, the other bench-
marks show only the additional speedup brought by exploiting dynamic parallelism,
compared to an execution that fixes at compile-time the amount of data-parallelism
exploited by a split-join construct (fixed graph). We report results for CnC (task-based
runtime), hand optimized streaming phasers, and SCnC versions of the application.

All applications were initially implemented in CnC. Porting to SCnC by hand helped
to validate our algorithm for transforming a CnC spec to SCnC. In this evaluation, we
performed the analysis by hand and we manually refactored step code as well: first,
changing putss and getss to use the SCnC keys (offsets rather than absolute time
iterations), and, second, promoting step-local item collections to local mutable state.
The test results have been encouraging, with increases in throughput of up to 40x.
In addition, SCnC showed it can support larger problem sizes than CnC due to its
improved memory footprint. The input sizes listed for CnC are the largest supported
(given a 2GB heap). The SCnC results show the throughput for the same input size as
CnC, but also for higher input size that is enabled by using SCnC.

The tests have been performed on a system with four quad-core Xeon processors
and 16GB RAM using the methodology by Georges et al. [13]. Our performance
analysis focuses on the variation of throughput between implementations and not on
absolute timing of applications, as the task-based CnC runtime cannot handle inputs as
large as the streaming one. The size of the problem used for CnC is the maximum size
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Fig. 7 SCnC performance results. a Throughput of SCnC versus CnC at the alrgest input size where CnC
does not run out of memory. b Throughput of SCnC versus hand tuned streaming phasers at steady rate
(large input size)

for which the Java garbage collection does not go over 10 % of application runtime.
One thread per core is used for the CnC runtime, which is based on a global work
queue SCnC employs one thread per node in the application graph. Therefore graph
topology, and in particular the splitting factor at data-parallel split-join nodes, can
have an impact on SCnC performance, but not on CnC.

9.1 Benchmarks Without Dynamic Parallelism

This section discusses the performance of the following benchmarks with a statically
determined degree of parallelism: BeamFormer, FilterBank, FMRadio and Facility-
Location. The first three benchmarks have been ported from the StreamIt benchmarks
suite while the last is an implementation of a widely-used problem [14]. On the same
input size, SCnC shows an increase in throughput of up to 30x and on larger input
size usable only with SCnC (CnC runs out of memory) the throughput increase goes
up to 40x (see Table 4).

9.2 Benchmarks with Dynamic Parallelism

The facility location application is a data mining application that solves the prob-
lem of optimum placement of production and supply facilities. Formally [14], we are
given a metric space and a facility cost for each node as well as a stream of demand
points. The problem is finding the minimum number and positioning of nodes such
that it minimizes a cost function. This problem occurs in placing production facilities,
networking and classification. Our implementation takes advantage of dynamic par-
allelism by assigning each cluster started by the application to a dedicated processing
queue, each with its local state.

In our implementation, it is not possible to get speedup by running multiple con-
sumers in parallel because they are very lightweight and block waiting for input to be
produced. This happens because consumers do not compute any of the statistics real
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Table 2 SCnC performance
with and without dynamic

parallelism on the Facility Static Dynamic
Location benchmark

Work (us) Run-time (s) Speedup

0 90 94 0.95

20 212 101 2.1

40 414 131 3.16

80 857 250 34
Table 3 SCnC performance Variant Run-time(s) Speedup

with and without dynamic
parallelism on the Sieve Static Dynamic
benchmark, (N =1,000,000)

M =N 238 40 5.95
M=2x%N 863 80 10.78

implementations of Facility Location would. We modelled this missing computation
by additional work times for consumers. The results in Table 2 show an additional
speedup of 3.4 compared to the implementation with only static parallelism.

The Sieve of Eratosthenes is a classic algorithm for finding the prime numbers. Our
streaming implementation (Fig. 8) has one producer that outputs consecutive numbers
starting at 2; the numbers are then sent to several parallel filters that check if the
number is divisible with any of the prime numbers that each filter stores. If a filter
finds a divisor, it sends to the join node a 1, if not, it sends 0. The join step performs
a sum-reduction and if the result is 0, the number is prime. It then sends back to the
filters the id of the queue that should add the newly discovered prime number to its
prime number store and the cycle repeats itself.

The number of processing queues is not application-dependent and can be adjusted
to match the number of cores in the machine. Each place stores a chunk of the primes
previously found. Performance results are found in Table 3 for 15 filters and a cyclic
distribution of prime numbers to filters.

We also implemented an extension of the Sieve that not only finds the prime num-
bers up to N, but also counts the numbers between N and M that are not divisible by
any prime number less than N. With it we analyze the speedup obtained by dynamic
parallelism without the overhead of variable granularity and added feedback synchro-
nization as shown in Table 3.

Our implementation of image edge detection application [15—17]relies on detector
filters that rotate the image a certain angle and then apply a one dimensional convolu-
tion kernel. Because the convolution detects edges on a single dimension, each detector
uses a different angle of rotation. Then, a join overlaps the result of the detectors and
sums all the pixels considered as edges. This sum is used to increase or decrease the
number of detectors (angles) used for the next frame, in order to balance accuracy and
speed (see Fig. 8).

For benchmarking, the number of edge detection filters was fixed to 2, 4 and 8,
although in practice it varies frame to frame, so that we can analyze the relationship
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Fig. 8 a The CnC graph of Edge detection. b The dynamic behavior of SCnC, using 4 processing queues
for Detector. ¢ The dynamic behavior of Sieve, with 3 processing queues for the PrimeFilter

Table 4 Edge detection results

No. detectors Throughput (items/second)
Streaming phasers SCnC CnC
14.3 14.3 15.8
2.63 2.38 1.88
8 1.25 1.15 0.61

between execution time and the number of cores used. The relatively small speedup
of SCnC compared to CnC for this application (see Table 4) is explained by the
higher granularity of the steps (each detector processes an full input frame). The
time consumed by the communication and synchronization, be it for a task-based or
streaming runtime, is very small in comparison with the work performed by the steps.

10 Related Work

Compared to other streaming systems, SCnC is of medium generality in the graph
shapes it supports. Streamlt [1] only allows split/join/loopback patterns. The Lime
project[ 18] allows loopback streams but only to destinations upstream from the source,
disallowing streams to filters that are not on the path from the source to the root (input
node) of the streaming graph. However, there are many other system which impose
fewer restrictions than SCnC on the graph shape.

One reason for the more restrictive nature of StreamlIt compared to SCnC is their
bias towards DSP stream applications, which are run on systems with high throughput,
but low flexibility and having a more flexible programming model would not only be
useless, but also would make optimizations more difficult, lowering performance. On
the other hand, we target multicore architectures where taking advantage of streaming
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for a larger class of programs would bring considerable performance improvement, to
more applications.

Brook [19,20] takes a different approach to managing granularity: if StreamlIt uses
fission and fusion to get to a steady schedule starting from fine grained operations,
Brook exposes only coarse grained multi-dimensional data structures (called streams)
to the programmer who is expected to process them through predefined operators.
Using stream shape analysis they end up performing kernel fusion and optimiza-
tions similar to loop interchange. They target both multiprocessors and GPU systems.
Because SCnC relies instead of CnC as a base language, SCnC steams can be as coarse
or fine grained as the programmer desires and dynamic splitting can be used to achieve
finer granularity.

The problem of finding a better task mapping for stream programs has been tackled
for years [21]. Static mapping, together with dynamic adjustments for load balanc-
ing have been implemented and shown good performance [22]. Recently, dynamic
approaches have become possible because of work performed in the execution time
prediction for streaming tasks. The dynamic parallelism approach we propose comes
to complement several projects that aim to offer tailored load balancing for streaming
applications Farhana Aleen et al. [23] use taint analysis and simulation to identify
pipeline delays as a function of input data. They could profit from adding dynamic
split-joins to complement their analysis to get dynamic load balancing optimization.

A comparison between the task-based dataflow model and streaming is started by
Miranda et al. [24], but their work relies on special language and the comparison
with data-flow is not tweaked for performance, relying on the general Cilk model for
short-lived tasks. The paper uses a single and synthetic benchmark and shows mixed
results. On the other hand, SCnC consistently outperforms CnC for a larger number
of applications, even without using a custom-built streaming language, compiler and
intermediate representation and while maintaining determinism. It only has minor
changes relative to the CnC variant.

Vandierendonck at al. [25] propose a combined runtime that offers both the guaran-
tees of work stealing and the ease of use of dataflow. SCnC is the natural step forward
towards task parallelism + X through its application on the streaming domain, its
identification of streaming patters and use of a single input language.

The work most similar to our approach of turning streaming into an automatic opti-
mization for task based programs is OpenStream [26]. The project proposes dataflow
extensions for OpenMP to automate the compilation of general dataflow programs
(as illustrated by StarSS) to the OpenStream model. Instead of a traditional streaming
runtime such as SCnC, OpenStream relies only on a point to point dependence reso-
lution and as such is complementary to our work. OpenStream is the only published
system, other than SCnC, that can handle stateful dynamically parallel filters.

11 Conclusion and Future Work
This paper proposes algorithms that turn streaming into an automatic optimization

that can be applied to applications written for task-based execution. We showed how
to formally define and identify the graph shapes and access patterns that characterize

@ Springer



Int J Parallel Prog (2016) 44:233-256 255

streaming applications. We ensure that the streaming execution and task-parallel exe-
cution are deadlock-equivalent by automatically sizing the streaming buffers such that
there are no streaming-induces deadlocks. We identified optimizations that improve
performance from applications written for task parallelism, but are instead ran using
the streaming parallelism, though stateful dynamic parallelism.

The experimental results show that the model offers significant performance
improvement when compared to the task-parallel approach of running applications,
with and without dynamic parallelism.

Future directions of research consist of integrating SCnC with the task-parallel
CnC runtime, so that the system can stream application subgraphs when streaming
the complete application would be incorrect. Also, our dynamic parallelism approach
has a natural extension in dynamic pipelines for a more flexible dynamic parallelism
support.
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