
Int J Parallel Prog (2015) 43:894–917
DOI 10.1007/s10766-015-0350-0

Steal Locally, Share Globally
A Strategy for Multiprogramming in the Manycore Era

Ashkan Tousimojarad · Wim Vanderbauwhede

Received: 7 July 2014 / Accepted: 3 February 2015 / Published online: 28 March 2015
© Springer Science+Business Media New York 2015

Abstract In a general-purpose computing system, several parallel applications run
simultaneously on the same platform. Even if each application is highly tuned for that
specific platform, additional performance issues are arising in such a dynamic environ-
ment in which multiple applications compete for the resources. Different scheduling
and resource management techniques have been proposed either at operating system
or user level to improve the performance of concurrent workloads. In this paper, we
propose a task-based strategy called “Steal Locally, Share Globally” implemented in
the runtime of our parallel programming model GPRM (Glasgow Parallel Reduction
Machine). We have chosen a state-of-the-art manycore parallel machine, the Intel
Xeon Phi, to compare GPRM with some well-known parallel programming models,
OpenMP, Intel Cilk Plus and Intel TBB, in both single-programming and multipro-
gramming scenarios.We show thatGPRMnot only performswell for singleworkloads,
but also outperforms the other models for multiprogramming workloads. There are
three considerations regarding our task-based scheme: (i) It is implemented inside the
parallel framework, not as a separate layer; (ii) It improves the performance without
the need to change the number of threads for each application (iii) It can be further
tuned and improved, not only for the GPRM applications, but for other equivalent
parallel programming models.

Keywords Parallel programming · Multiprogramming · Task stealing · Manycore
processors · GPRM · Intel Xeon Phi

A. Tousimojarad (B) · W. Vanderbauwhede
School of Computing Science, University of Glasgow, Glasgow, UK
e-mail: a.tousimojarad.1@research.gla.ac.uk

W. Vanderbauwhede
e-mail: wim@dcs.gla.ac.uk

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-015-0350-0&domain=pdf


Int J Parallel Prog (2015) 43:894–917 895

1 Introduction

Improving the performance of multiple parallel applications running together on the
same machine is equally important as improving the performance of a stand-alone
application. Thread and task scheduling in such a dynamic environment is a significant
challenge, and scheduling algorithms designed for single-programming environments
are no longer efficient. The problem lies in the assumption that a dedicated set of
execution resources are fully available to the program, which is not always the case
[1]. Therefore, in the presence of an external workload, such algorithms may lead to
a significant drop in performance.

There are various programming models and runtime libraries that help developers
to move from sequential to parallel programming. In this paper, we have chosen three
well-known parallel programming approaches to compare their performance (in both
single- and multi-programming cases) on a modern manycore machine. We have used
three benchmarkswith different featureswhich exercise different aspects of the system
performance. Moreover, two multiprogramming scenarios are used to compare the
behaviours of these models when multiple applications reside in the system. Before
going into the details of these models, we briefly introduce the manycore platform
used in this work.

1.1 Intel Xeon Phi

The Intel Xeon Phi coprocessor 5110P used in this study is a Symmetric Multiproces-
sor (SMP) on-a-chip which is connected to a host Xeon processor via a PCI Express
bus interface. The Intel Many Integrated Core (MIC) architecture used by the Intel
Xeon Phi coprocessors gives developers the advantage of using standard, existing
programming tools and methods. Our Xeon Phi comprises 60 cores (240 logical
cores) connected by a bidirectional ring interconnect. More details can be found in
Sect. 5.

1.2 Parallel Programming Models

All of the chosen programmingmodels are supported by icc (Intel’s C/C++Compiler).
The GPRM virtual machine, which is based on Pthreads, can be cross-compiled by
icc for the Xeon Phi without any additional library.

1.2.1 OpenMP

OpenMP is the de-facto standard for shared-memory programming, and is based on
a set of compiler directives or pragmas, combined with a thread management API.
OpenMP has been historically used for loop-level and regular parallelism through its
compiler directives. Since the release of OpenMP 3.0, OpenMP also supports task
parallelism [2]. It is now widely used in both task and data parallel scenarios.

The Intel OpenMP runtime library (as opposed to the GNU implementation) allo-
cates a task list per thread for every OpenMP team. Whenever a thread creates a task

123



896 Int J Parallel Prog (2015) 43:894–917

that cannot not be executed immediately, that task is placed into the thread’s deque
(double-ended queue). A random stealing strategy balances the load [5].

1.2.2 Cilk Plus

Cilk Plus has evolved from Cilk [3], and is an extension to C/C++ with additional key-
words and an array section notation. It comes provides very simple but powerful ways
of specifying parallelism, as it is integrated into the compiler. It features a fork-join
model to support irregular patterns and nesting. Cilk Plus provides the_cilk_spawn
and _cilk_sync keywords to spawn and synchronise tasks; _cilk_for loop is
a parallel replacement for sequential loops in C/C++. The tasks are executed within
a work-stealing framework. The scheduling policy provides load balance close to the
optimal [18]. The Intel implementation of Cilk Plus ensures that by running a program
on one processor the same order of operations as the equivalent sequential program is
produced [15].

1.2.3 TBB

Intel ThreadingBuildingBlocks (TBB) is anotherwell-known approach for expressing
parallelism [16]. TBB is an object-oriented C++ template library that contains data
structures and algorithms to be used in parallel programs. It supports both regular and
irregular parallelism, and has direct support for a various parallel patterns, such as task
graphs, map, pipelines, etc. TBB abstracts the low-level thread interface. However,
conversion of legacy code to TBB requires restructuring certain parts of the program
to fit the TBB templates. Similar to Cilk Plus, a common thread pool is shared by all
tasks and load balancing is achieved by work-stealing. Each worker thread in TBB
has a deque of tasks. Newly spawned tasks are put at the back of the deque, and each
worker thread takes the tasks from the back of its deque to exploit temporal locality. If
there is no task in the local deque, the worker steals tasks from the front of the victims’
deques [13].

1.2.4 The Glasgow Parallel Reduction Machine (GPRM)

The Glasgow Parallel Reduction Machine (GPRM) [21] provides a task-based
approach to manycore programming by structuring programs into task code, writ-
ten as C++ classes, and communication code, written in GPC, a restricted subset
of C++. The communication code describes how the tasks interact. GPC is a sim-
ple functional language with parallel evaluation, and using a C++ syntactic veneer.
What this means is that it is possible to compile task code and GPC communica-
tion code with a C++ compiler and get correct functionality, but without the paral-
lelism.

The GPC compiler compiles the communication code into the Glasgow Paral-
lel Intermediate Representation (GPIR) (the task description code), which is an S-
expression based, bare-bones functional languages inspired by Scheme [19], e.g.
(S1 (S2 10) 20) represents a task S1 taking two arguments, the first argument is the
task S2 which takes as argument the numeric constant 10, and the second argument is

123



Int J Parallel Prog (2015) 43:894–917 897

the numeric constant 20. GPIR is further compiled into lists of bytecodes, which the
GPRMvirtualmachine executeswith concurrent evaluation of function arguments—in
other words the VM is a coarse-grained parallel reduction machine where the methods
provided by the task code constitute the instructions.

2 GPRM Architecture

The number of threads in GPRM is set to the number of logical cores of the under-
lying hardware. Each thread runs a tile, which consists of a task manager and a task
kernel (Fig. 1). The task kernel is typically a self-contained entity offering a specific
functionality to the system, and on its own is not aware of the rest of the system.
The task kernel has run-to-completion semantics. The corresponding task manager
provides an interface between the kernel and other tiles in the system. Since threads in
GPRM correspond to execution resources, for each processing core there is a thread
with its own task manager. The GPRM system is conceptually built as a network of
communicating sequential tiles that exchange packets to request computations and
deliver results.

At first glance, theGPRMmodelmay seem static and intolerant to runtime changes.
However, in this paper, we discuss how it can efficiently balance the load and thrive in
dynamic environments. For load balancing, compile-time information about the task
dependencies is combined with an efficient task-stealing mechanism. Moreover, by
keeping track of the applications that reside simultaneously in the system, it improves
the performance of those applications markedly.

2.1 GPRM Model of Parallel Execution

The fundamental difference between GPRM and the other models is that GPRM does
not use the fork-join model for task management. As a consequence, most of the
techniques used in the GPRM runtime system, e.g. the stealing mechanism, are rather
different from what readers might have in mind, and therefore need more explana-
tion. In the fork-join model, at a fork point, new serial control flows are branched
from an existing serial control flow. At a join point, these control flows can (possibly
selectively) synchronise and merge.

GPRM, on the other hand, analyses all theC++ classes andmethods used in theGPC
program at compile-time, and maps them to numeric constants. These constants are
used in a wrapper function to match the operation from the GPIR code with the actual
method call to be executed. This task-specific generated code is combined with the
generic GPRM runtime library and the source code for the task classes This process
is summarised in Fig. 1a. Unlike the fork-join model, GPRM has no keywords for
task creation or synchronisation, as all the functions in the GPC code are evaluated in
parallel, unless otherwise stated (i.e. if a seq pragma is used).

When launching GPRM, a pool of POSIX threads (typically equal to the number of
available cores) is created before the execution of the actual program starts. The tasks
are initially assigned to the threads, based on the indices provided by theGPC compiler
into the GPIR code (the indices of the tasks in Fig. 1c). Because of the restrictions

123



898 Int J Parallel Prog (2015) 43:894–917

.cc
GPC

Config

.cc

Code
Task

GPIR

GPRM Build System

GPRM

U
se

r
S
y
st

e
m

RTL

Info

GPC Compiler

Code

class Body {
 public:
   int t1(int,int);
   int t2(int);
   int t3(int,int);
}; 

int x,y;
GPRM::Kernel::Body B;
#pragma gprm seq
{
   B.t1(x,y); //Init
   B.t3(B.t2(x), B.t2(y));
} 

t1[0]

t2[1]t2[0]

t3[0]

Task
Kernel

Task
Manager

Tile 0

Task
Kernel

Task
Manager

Tile 1

t1 t2 t3 t2seq
Reference 

Packets

Task Manager

R
X

F
IF

O

8192

1000

42

Absent
args no

0

2

0

...

Ready Queue

Task
Kernel

Re
tu
rn

1500
T
X

F
IF

O

Call

0

Random
Access
TCB

Tile

Task
addr

(a) User’s view v.s. system’s view (b) GPC - Task code(.h)

(c) Task dependencies - Mapping to the tiles (d) Abstract view of tiles

Fig. 1 a Users write GPC and Task codes. The rest is handled by the GPRM framework. b Sample
GPC code and the C++ header file for the Task code. c Task dependencies for the example code in
(b), and the allocation of the tasks on tiles. Four reference packets requesting computations are shown.
d Internal structure of tiles. If all the arguments of a task in the TCB table become ready, it will be pushed
into the Ready Queue. Otherwise, references will be sent to the others

imposed on the GPC language, its abstract syntax is that of a functional language,
and hence the indices can be automatically generated based on the dependencies in
the call tree; tasks that depend on one another cannot run in parallel and therefore can
have similar indices (can be mapped onto the same cores). The parallel execution is
achieved by parallel evaluation of the bytecode, as follows:

• Computations are triggered by the arrival of a reference packet, a packet which
contains a reference to a task, i.e. a piece of bytecode representing an S-expression,
e.g. the first reference packet for the example in Fig. 1b will be a reference to the
built-in task seq, which sequences the operations.
– Each argument in this S-expression is either a reference or a constant, e.g. both
arguments of the task t1 in Fig. 1b are constants and both arguments of the
task t3 are references.

123



Int J Parallel Prog (2015) 43:894–917 899

– References are sent out to other tiles for computation; values are stored. 4
reference packets are shown in Fig. 1c (curved arrows). As another example,
in Fig. 1d, the task with address 1500 sends a reference through the tile’s TX
FIFO to another tile.

– The leaf subtasks of the computational tree have either no arguments or constant
values as arguments, so no references need to be sent.

• Once all arguments have been evaluated, the reduction engine passes the evalu-
ated arguments of the S-expression to the task kernel which performs the actual
computation. This is shown as a part of the tile structure in Fig. 1d with the Call
and Return arrows.

• The result of the computation is returned to the caller, i.e. the sender of the reference
packet. The result of the computation from the task kernel in Fig. 1d (the tile
structure) is sent to the caller through the tile’s TX FIFO.

There are other components in the tile structure in Fig. 1d that need to be explained.
Each tile receives packets from others in its task manager’s RX FIFO. On the receipt
of a reference packet, its corresponding task record is created. The newly created task
record is stored in a random-access table called Task Control Block (TCB),1 which
stores information about the tasks, particularly the number of their absent arguments.
If the number of absent arguments is non-zero, references will be sent to other tiles in
order to request computations, otherwise, as soon as all arguments of a task become
ready, it will be pushed into the ready queue for computation. Therefore two cases
would result in sending a packet to the other tiles: (i) a reference packet from a
task with absent arguments requesting computations, (ii) a data packet containing the
pointer to the result of the computation to the caller tile. Therefore, scheduling in our
system, similar to other reduction machines (although it has coarser granularity at task
level, rather than instruction level) is based on the need for data; this is known as the
demand-driven model [26].

3 Task Stealing

The two features of the GPRM runtime system of specific interest to this work are
Task Stealing andGlobal Sharing. 2 Task Stealing is the process of stealing tasks from
the ready tasks queues of other threads. If enabled, it allows threads to steal tasks from
each other when they become idle after finishing their jobs. This can balance the load
if there are enough tasks in the ready queues. We denote GPRMwith stealing enabled
as GPRM-Steal (or GPRM-S).

3.1 Comparison of the Stealing Techniques

At first sight, the stealing mechanism may seem quite similar to the classical work-
stealing approaches [1,3,4], but there are fundamental differences, due to the nature

1 TCB is called “subtask list” in the previous GPRM papers.
2 These features can be enabled via command-line switches when compiling the GPRM runtime system.
It that sense they can be considered as runtime support features.

123



900 Int J Parallel Prog (2015) 43:894–917

of our parallel programming model. In a fork-join model, when control flow forks,
the master thread executes one branch and the other branch can be stolen by other
threads (thieves). Multiple branches can be generated as the program is executed. This
classical approach needs double-ended queues (deques), such that the workers work
at the back of their own deques, while thieves can steal from the front of the others’
deques. Steal child (used by TBB)—the newly created child becomes available to the
thieves—and steal continuation (used by Cilk Plus)—the continuation of the function
that spawned new task becomes available to the thieves—are two variations of the
conventional work-stealing approach [15].

In GPRM, we do not use a fork-join model for task creation, hence there is no
concept such as task spawning.: the C++ methods used in the GPC code are compiled
into tasks. At compile-time, the compiler specifies the initial mapping between tasks
and threads (even if the creation of a task is conditional, its initial host thread is
specified). The parent tasks in the GPRM model are not the same as the parents in
the Directed Acyclic Graph (DAG) as shown in Fig. 1c: rather, the parent tasks are
the ones that request computations from their children, hence will depend on their
children, e.g. in the DAG in Fig. 1c, t3 is the parent of the t2 tasks, following the order
of the function calls: B.t3(B.t2(x), B.t2(y));.

With this background information, it is more clear what we mean by task stealing.
Our stealing mechanism is about stealing the individual tasks, rather than the whole
branch. In the conventional work-stealing approaches, the stolen branch would create
more tasks during the execution of the program, and they would be executed by the
thief (unless other workers become free and steal from that thief). The GPRM-specific
task stealing mechanism is useful because all the tasks are initially allocated to threads
(tiles). The stealing mechanism only tunes the initial allocation set by the compiler.
Therefore, assuming that all the tasks are exactly the same and the number of them
is a multiple of the number of the processing cores in the system, most probably no
stealing occurs. In order to illustrate the differences between the stealing techniques
in details, consider the following program written in Cilk Plus and GPRM. Rewriting
it with other approaches is straightforward.

1 void f ( int i ) {
2 i f ( i==0) sleep(2) ;
3 else sleep(1) ;
4 }
5 . . .
6 /∗ Cilk Plus ∗/
7 for ( int i=0; i < N; ++i )
8 cilk_spawn f ( i ) ;
9 cilk_sync ;

10

11 /∗ GPRM ∗/
12 #pragma gprm unroll
13 for ( int i=0; i < N; ++i )
14 f ( i ) ;

Listing 1 Micro-benchmark to illustrate the differences between the stealing techniques

123



Int J Parallel Prog (2015) 43:894–917 901

(a) Steal Continuation (b) Steal Child (c) GPRM-Steal

(d) Steal Cont, Imbalanced (e) Steal Child, Imbalanced (f) GPRM-S, Imbalanced

Fig. 2 a Steal continuation (used by Cilk Plus), balanced load: 3 steals. b Steal child (used by TBB),
balanced load: 3 steals. c GPRM with stealing enabled, balanced load: 0 steals. d Steal continuation,
imbalanced load: 4 steals. e Steal child, imbalanced load: 3 steals. f GPRM-steal, imbalanced load: 1 steal

1. Suppose we have only three threads in the system and N = 4. For the first case,
assume that calling the functionf(i)with different is results in the same runtime:
• In the steal continuation technique shown in Fig. 2a, th0 (thread0) sets i=0,
spawnsf(0), and immediately start executingf(0), leaving the continuation
of the loop available for stealing. th1—as an example—steals the continua-
tion, updates i, and executes f(1). th2 could be the next thief that steals the
further continuation and executes f(2). Theoretically, th0 finishes its work
before the other threads, hence executes the next iteration and f(3). the last

123



902 Int J Parallel Prog (2015) 43:894–917

iteration can be stolen by th1. Therefore, 3 steals3 can be considered for this
simple case.

• For the steal child technique shown in Fig. 2b, th0 executes all iterations of
the loop, spawns all f(i)s, and leaves them available to steal. However, since
newly spawned tasks are put at the back of the deque and each worker thread
takes the tasks from the back of its own deque (like TBB), therefore after all
iterations, th0 executes f(3). f(2) can be stolen by th1. There are also 3
steals in this case.

• Since the GPC compiler unrolls the task creation loop and assigns the tasks
to the worker threads, f(0) to f(2) will be assigned to th0 to th2, and
f(2)will be assigned to th0. Theoretically, no stealing occurs, because if all
threads finish their work at the same time, th0would execute its next assigned
task before others enter their stealing phase and steal it.

2. For the second case, consider the definition of f() in Listing 1, where executing
f(0) takes more time:
• The number of steals for the steal continuation becomes 4, as th1 and th2
can steal more continuations before th0 finishes its first job.

• The number of steals can remain 3 for the steal child technique. th1 steals
the first child and th2 the second. Assuming that th2 has started executing
f(1) an epsilon before th0 reaches f(3), f(2) becomes available for th2
(note that th1 is still busy executing f(0)).

• In the GPRM-Steal technique in Fig. 2f, assuming that th1 has started its
work an epsilon before th2, it can steal f(3) from the ready queue of the
busy thread (tile), th0.

Figure 2 shows that what wemean by task stealing is actually the minimum number
of steals required to balance the load. Even for tiny micro-benchmarks, the techniques
as well as the number of steals are quite different.

3.2 Implementation of Task Stealing in GPRM

As described above, inside GPRM every thread runs a tile with its own task man-
ager. Each task manager consists of multiple queues for different purposes, such as
exchanging packets (RX_fifo and TX_fifo) or storing results. As stated, one of
these queues is the ready_fifo. All tiles are initially in the non-stealing state,
which means their task managers take tasks from their own ready_fifo. If STEAL
is enabled, then after running the last task in its ready_fifo, the task manager
searches for jobs in the ready_fifos of other tiles (excluding the control tile). The
tile remains in the stealing state and repeats this task-stealing process, unless there is
no more job to steal after probing all ready_fifos of all tiles once. Then it goes
to the sleeping state, and waits for a reference packet to wake it up and start a new
computation. This mechanism is shown in List 2.

3 We use the noun “steal” (OED “the act of stealing”) rather than “theft”.

123



Int J Parallel Prog (2015) 43:894–917 903

1 Task TaskManager : : taskSteal () {
2 for ( int j=tileAddr ; j < tileAddr+NTILES; ++j ) {
3 int i=( j
4 Tile& victim = ∗(system. t i l es [ i ]) ;
5 i f (victim .TaskManager. ready_fifo . size () != 0) {
6 Task stolen = victim .TaskManager.lockReadyQ(1) ;
7 / / 1 means a thief is locking
8 i f ( stolen != EMPTY) { / / EMPTY is an int for null tasks
9 . . . / / registers i t to the TCB of the thief

10 return stolen ;
11 }
12 }
13 } / / else , loop continues
14 return EMPTY;
15 }

Listing 2 Task Stealing inside the task manager

The stolen task shown in List. 2 can be null (EMPTY), because we do not lock
the queues only to check whether their sizes are greater than 0. This way, we do not
interrupt the routine operations of other tiles. However, inside the member function
called lockReadyQ(), we check whether the size is still greater than 0, or the owner
has processed all of its tasks already. If the latter is the case, the loop continues in
order to find another victim.

The member function lockReadyQ() used in both Lists. 2 and 3 is responsible
for locking the ready_fifo and returning the top element, if any. As shown in the
code, it gets an argumentwhich specifieswhether a thief has locked the FIFOor not. As
a result, we can define different actions for the owners and thieves inside this member
function. For instance, for research purposes, it is possible to define conditions for
task stealing. We can set rules for thieves to steal only from the queues with larger
sizes than X . However, for the experiments in this study we did not set any rules.

Another member function of the class TaskManager is called coreControl,
which is the centre for main operations inside the task manager. As shown in List. 3, a
macro called STEAL is defined to ensure that if task stealing is disabled, no one locks
the ready_fifo. This way, we can measure the real overhead of stealing, compared
to when tiles only take tasks from their own queues. Three cases are shown in this
function:

1. If STEAL is defined, the tile is either in its stealing state or not. If it is,
taskSteal()will be called, and if successful the statuswill be set toready
for processing.

2. The second case is when STEAL is defined, and the tile is in the non-stealing state.
If the task manager is idle, it will lock its own ready_fifo and take a task to
process.

3. The third case is when the STEAL macro is not defined, and no stealing occurs in
the system. Therefore, if the status is idle and the ready_fifo is not empty,
its top element will be processed. There is no need to lock the ready_fifos, as
every tile only uses its own queue in this case.

123



904 Int J Parallel Prog (2015) 43:894–917

1 void TaskManager : : coreControl(bool is_steal_state ) {
2 / / is_steal_state comes from the Tile class
3 #ifdef STEAL
4 i f ( is_steal_state ) {
5 Task stolen_task = taskSteal () ; / / defined earlier
6 i f ( stolen_task != EMPTY) {
7 current_task = stolen_task ;
8 status = ready; / / the status of the task manager
9 }

10 }
11 else i f ( status == idle ) {
12 / / i f STEAL, the queue size will be examined later
13 Task next = lockReadyQ(0) ;
14 / / 0 means the owner is locking
15 i f (next != EMPTY) {
16 current_task = next ;
17 status = ready;
18 }
19 }
20 #else / / STEAL is disabled
21 i f ( status == idle and ready_fifo . size () > 0) {
22 current_task = ready_fifo . front () ;
23 ready_fifo .popFront() ;
24 status = ready;
25 }
26 #endif
27 . . .
28 }

Listing 3 Core Control inside the task manager

4 Global Sharing

TheGlobal Sharing feature is intended for use in dynamic environments, where multi-
ple parallel workloads compete for the resources. The proposedmethod uses a globally
shared data structure that keeps track of thread mapping information. This data struc-
ture can be implemented in a runtime system as in our work, or could be embedded
in the OS kernel.

Every instance of GPRM (every application) maps this shared data structure to its
own memory space, and uses it to share information with others. The information we
share, although quite minimal, is crucial to achieve good performance. In GPRM, all
sequential tasks run on a specific tile. Generally, sequential tasks are those responsible
for initialisation, or the ones that have to run alone after a synchronisation point. In
either case, they cannot be stolen, because they are the only ready-to-run tasks existing
in the system, and except the tile they are attached to, all other tiles are in the sleeping
state.

In order to avoid running the sequential parts of different workloads on the same
core, the corresponding tileAddr is shared between all GPRM applications present
in the system. Therefore, every newly arrived GPRM application maps its threads to

123



Int J Parallel Prog (2015) 43:894–917 905

cores such that its “sequential tile”4 is pinned to the first available position that is not
devoted to sequential tiles of other applications. All other threads of that application
will be arranged in order. On the Xeon Phi, where four logical cores form one physical
core, the target candidate will be the next physical core.

Although more information could be shared between concurrently present appli-
cations, it is important to keep the overhead low. Moreover, even if other informa-
tion such as the number of active/asleep threads is shared, there is no clue as to
whether they would remain the same or not. Thus, such information would have
to be shared frequently. We will show that with the small amount of information
that we share currently, a noticeable performance improvement can be obtained.
Whether or not sharing more information results in better performance remains to be
investigated.

5 Experimental Setup

The Xeon Phi provides four hardware threads sharing the same physical core and its
cache subsystem in order to hide the latency inherent in in-order execution. As a result,
the use of at least two threads per core is almost always beneficial [12]. The Xeon
Phi has eight memory controllers supporting 2 GDDR5 memory channels each. The
clock speed of the cores is 1.053GHz. Each core has an associated 512KB L2 cache.
Data and instruction L1 caches of 32KB are also integrated on each core. Another
important feature of the Xeon Phi is that each core includes a SIMD 512-bit wide
VPU (Vector Processing Unit). The VPU can be used to process 16 single-precision
or 8 double-precision elements per clock cycle. The third benchmark (Sect. 6.3) utilises
the VPUs.

All the benchmarks are implemented as C++ programs, and all speedup ratios are
computed against the running time of the sequential code implemented in C++ (which
means they are directly proportional to the absolute running times). The benchmarks
executed natively on the Intel Xeon Phi. For that purpose, the executables are copied
to the Xeon Phi, and we connect to it from the host machine using ssh. The Intel
compiler icpc (ICC) 14.0.2 is used with the -mmic and -O2 flags for com-
piling the benchmarks for native execution on the Xeon Phi. The OpenMP programs
should be compiled with the -openmp flag. The TBB programs need the -ltbb
flag. For all approaches excluding GPRM, some shared libraries must be copied to
the MIC. For the OpenMP applications, the libiomp5.so library is required. The
libcilkrts.so.5 is needed for Cilk Plus applications and the libtbb.so.2
library is required for the TBB programs.

In this study, we aim to show that by using our programming model, it is possible
to achieve superior performance without changing the number of threads, and only by
specifying the number of tasks, and hence, we do not change the number of threads
for the GPRM approaches.

4 The “sequential tile” is responsible for the sequential tasks, but also contributes to the parallel execution,
whenever required.

123



906 Int J Parallel Prog (2015) 43:894–917

6 Benchmarks

We have used three benchmarks for the purposes of this study. They are intention-
ally simple to make it possible to reason about the observed differences in perfor-
mance between the selected models. We first compare the results for each single
program

Two different comparisons are shown for every benchmark. The first comparison
shows the speedup for varying numbers of threads. Since GPRM creates a pool of
threads at the beginning of its execution, we only show the results with the default
number of threads (as many as the number of cores), which is 240 on the Xeon Phi.
Most of the time, users do not change the default settings. We show that for GPRM,
this default choice always results in very good performance.

The second comparison illustrates the speedup with the default number of threads
and varying cutoffs. Basically, the cutoff determines the number of tasks (or chunks).
Choosing a small cutoff can restrict parallelism, but choosing a very large cutoff
can saturate the system with a massive number of fine-grained tasks. The decision
often depends on the input data set [7]. Usually, the cutoff value can be controlled by
the user code. Leaving the decision to the runtime system has been proposed as an
alternative.

Adaptive Task Cutoff (ATC) [6] implemented in the Nanos [20] runtime system—
a research OpenMP runtime system—is a scheme to modify the cutoff dynamically
based on profiling data collected early in the program’s execution.

In GPRM, setting the cutoff value less than the number of cores is fairly similar
to having a smaller number of threads, because in this situation, tasks are assigned to
a fraction of threads and the remaining threads are asleep and will remain so to the
end of program. Larger cutoff values lead to the creation of more fine-grained tasks.
Up to some point, the stealing mechanism can benefit from more numbers of tasks to
balance the load. But above this threshold having lots of fine-grained tasks can impose
too high overhead on the system. We have discussed such scenarios in [21] and [24],
and proposed efficient solutions in GPRM (compared to GNU OpenMP) in order to
control the number of tasks.

6.1 Parallel Fibonacci Benchmark: Fibonacci

We consider a parallel Fibonacci benchmark as the first testcase. The Fibonacci bench-
mark (calculating the Fibonacci numbers f ib(i) = f ib(i−2)+ f ib(i−1) by concur-
rent recursion) has traditionally been used as a basic example of parallel computing.
Although it is not an efficient way of computing Fibonacci numbers, the simple recur-
sive pattern can easily be parallelised and is a good example of creating unbalanced
tasks, resulting in load imbalance. In order to achieve desirable performance, a suitable
cutoff value for the recursion is crucial. Otherwise, too many fine-grained tasks would
impose an unacceptable overhead to the system. The cutoff limits the tree_depth in
the recursive algorithm, which results in generating 2tree_depth tasks.

Figure 3 shows all the results taken from running this benchmark with different
programming models. Figure 3a shows the speedup chart for f ib(47) with 2048

123



Int J Parallel Prog (2015) 43:894–917 907

Speedup threads

 0

 20

 40

 60

 80

 100

16 32 64 128 256 512 1024 2048

Sp
ee

du
p

Cutoff Value

OpenMP
Cilk Plus

TBB
GPRM

GPRM-Steal

 0

 200

 400

 600

 800

 1000

OpenMP

Cilk Plus

TBB
GPRM

GPRM-S

To
ta

l C
PU

 T
im

e 
(s

)

Cutoff: 2048 
NTH: 240

 0

 20

 40

 60

 80

 100

 16  32  48  64  80  96  112  128  144  160  176  192  208  224  240  256

Sp
ee

du
p

Number of Threads

Fib 47

GPRM-Steal

GPRM

OpenMP
OpenMP Balanced

Cilk Plus
TBB

GPRM
GPRM-Steal

(a) , cutoff 2048, varying numbers of

(b) Speedup, NTH 240, varying cutoffs (c) Total CPU Time

P, CPU balance (e) k Plus, CPU balance

(f) , U balance (g) , CPU balance

(h)

(d) OpenM Cil

TBB CP GPRM

GPRM-Steal, CPU balance

Fig. 3 a The speedup of the parallel Fibonacci benchmark for the integer number 47. b Choosing a proper
cutoff value is key to good performance. c Total CPU time consumed by this benchmark on the Xeon Phi.
d–h A detailed breakdown of overall CPU time for the case with 240 threads and cutoff value 2048 is
illustrated for each approach. The x-axis on these charts represents the logical cores and the y-axis is the
time per (logical) core, from 0 to the maximum number specified in seconds

123



908 Int J Parallel Prog (2015) 43:894–917

unbalanced tasks at the last level of the Fibonacci heap. Increasing the number of
threads causes visible performance degradation forOpenMP. Setting the thread affinity
KMP_AFFINITY=balanced results in a negligible improvement of the OpenMP
performance. Cilk Plus and TBB show similar results. Cilk Plus with 128 threads
comes close the GPRM-Steal performance, but it is not possible for the programmer
to determine this number before running the experiment.

Figure 3b shows that larger cutoffs lead to better performance. It is due to the fact
that the workload is unbalanced, and hence creating more tasks can result in a more
even distribution of them. GPRM-Steal can balance the load evenmore. This is evident
by comparing Fig. 3g, h.

Total CPU Time is a lower-better metric that shows the total CPU time (over all
CPUs) consumed by the program. Intel TBB and both of the GPRM approaches have
a better Total CPU Time compared to the other approaches in Fig. 3c. One reason
is that in a model like GPRM, threads go to sleep immediately after finishing their
jobs, while e.g. in the Intel OpenMP, they spin-wait for 200ms before going to sleep
[11]. Although sometimes in solo execution of the programs, these extra CPU cycles
(and generally the overhead of the runtime libraries) have negligible influence on the
running time (wall time), they affect other programsundermultiprogrammedexecution
considerably [25,27].

Figure 3d–h show a detailed breakdown of CPU times taken from the Intel VTune
Amplifier XE 2013 performance analyser [14] when running Fib 47 with cutoff 2048
natively on the Xeon Phi. The x-axis shows the logical cores of the Xeon Phi (240
cores), and the y-axis is the CPU time, from 0 to the maximum number specified in
seconds.5

It might be argued from Fig. 3a that the performance achieved by Cilk Plus with
a smaller number of threads is close to GPRM-Steal with 240 threads, meaning that
similar performance can be achieved with half the number of threads, which might be
beneficial in terms of energy consumption.

This would be a valid criticism if GPRM threads were making the cores busy by
spin-waiting, which is not the case. Instead, the GPRM threads go to sleep if they
have no work to do, and hence do not consume CPU time. In order to corroborate
this claim, we measured the average power consumption of the best result achieved
by each model; all measurements fall in the range of 130–135 Watt. Moreover, there
is no clue for the programmer on how to determine the optimal number of threads
before running the experiment, while GPRM-Steal can provide the best performance
with the default number of threads. We have shown that our stealing approach which
results in load balancing is effective, while keeping the overhead low.

6.2 Parallel Merge Sort Benchmark: MergeSort

This benchmark sorts an array of 80 million integers using a parallel merge sort
algorithm. The i th element of the array is initialised with the number i ∗ ((i%2)+ 2).

5 For all experiments, results from the benchmarks kernel are considered in the figures (a) and (b), while in
the other results taken from the VTune Amplifier, all information from the start of the application, including
its initial phase and the CPU time consumed by the shared libraries is taken into account.

123



Int J Parallel Prog (2015) 43:894–917 909

The cutoff value determines the place after which the operation should be performed
sequentially. For example, cutoff 2048 means that chunks of 1/2048 of the 80M array
should be sorted sequentially, in parallel, and afterwards the results will be merged
two by two, in parallel to produce the final sorted array.

In the Fibonacci benchmark, the parent tasks were lightweight integer additions.
But for the MergeSort benchmark, the parent tasks are heavyweight merge opera-
tions. Moreover, the children tasks at the leaves—the chunks that need to be sorted
sequentially—are almost equal in size.

As shown in the Fig. 4a, this memory-intensive benchmark does not scale well
[2]. The GPRM approaches have significantly better performance with the default
number of threads. Both OpenMP and Cilk Plus perform well with smaller numbers
of threads, but their performance drops as the number of threads increases. Using the
balanced thread affinity for OpenMP has no noticeable effect. Since the child tasks
are almost equal in size, a small cutoff would suffice, as shown in Fig. 4b. Larger
cutoffs, though, do not cause a notable slowdown (as long as one does not create
a very large number of tasks). Since the amount of work carried out for each task
is fairly equal, there is no noticeable difference between both GPRM approaches.
The speedup charts demonstrate how regular task-based applications similar to this
reduction example are well suited to the GPRM model.

Figure 4c–h are again based on the results obtained by the intel VTune Amplifier.
For this benchmark there is a significant difference between the Total CPU Time of
TBB and GPRM on one side and OpenMP and Cilk Plus on the other side. Since all
merges in a branch of the task tree can run on the same tile, one should not expect to
see a balanced distribution for the GPRM approaches, and the balanced look in the
cases of Cilk Plus and OpenMP is mostly because of the CPU time wasted by their
runtime libraries [22].

6.3 Parallel Matrix Multiplication Benchmark: MatMul

This benchmark performs a naive matrix multiplication by a triple nested loop with
ik j loop ordering—for caching benefits—on square matrices of N × N double-
precision floating point numbers. This is a data parallel problem which fits very well
to OpenMP and its forworksharing construct. There is a concept similar to the cutoff
in the loop parallelism context to control chunking. It specifies the size of chunk for
each thread in a data parallel worksharing scenario. If the cutoff value is assumed
as the number of chunks, the chunk (grain) size can be specified for the OpenMP
for as follows: #pragma omp for schedule(static, N/cutoff). The
static keyword can be replaced by dynamic as well. Grain size in the Cilk Plus is
similarly specified via a pragma: #pragma cilk grainsize = N/cutoff.
GPRM uses its par_cont_for (parallel contiguous for) worksharing construct,
which is a task-based approach to this problem, and distributes the chunks based on
their indices amongst the working threads. If the cutoff value is assumed as the number
of tasks in GPRM, the chunk size will be N/cutoff. Parallel loops in GPRM are
described in [24]. Intel TBB has a similar template function called parallel_for,
which can be called with simple_partitioner() to control the grain size. In

123



910 Int J Parallel Prog (2015) 43:894–917

 0

 3

 6

 9

 12

 15

 16  32  48  64  80  96  112  128  144  160  176  192  208  224  240  256

Sp
ee

du
p

Number of Threads

MergeSort 80M integers

GPRM-Steal

GPRM

OpenMP
OpenMP Balanced

Cilk Plus
TBB

GPRM
GPRM-Steal

 0

 4

 8

 12

 16

16 32 64 128 256 512 1024 2048

Sp
ee

du
p

Cutoff Value

OpenMP
Cilk Plus

TBB
GPRM

GPRM-Steal

 0

 400

 800

 1200

 1600

 2000

OpenMP

Cilk Plus

TBB
GPRM

GPRM-S

To
ta

l C
PU

 T
im

e 
(s

)

Cutoff: 2048 
NTH: 240

(a) Speedup, varying numbers of threads

(b) Speedup, varying cutoffs (c) Total CPU Time

(d) OpenMP, CPU times (e) Cilk Plus, CPU times

(f) TBB, CPU times (g) GPRM, CPU times

(h) GPRM-Steal, CPU times

Fig. 4 a Speedup of the parallel MergeSort benchmark for an array of 80 million integers. This benchmark
does not scale well. b Cutoff values greater than 64 are enough to lead to desirable performance with 240
threads. c–h For the OpenMP and Cilk Plus approaches, more than 75% of the CPU cycles are consumed
by their runtime libraries [22]

123



Int J Parallel Prog (2015) 43:894–917 911

 0

 10

 20

 30

 40

 50

 60

 70

 16  32  48  64  80  96  112  128  144  160  176  192  208  224  240  256

Sp
ee

du
p

Number of Threads

MatMul 4096x4096 doubles

GPRM-Steal
GPRM

OpenMP(d)
OpenMP(s)

OpenMP(d) Balanced
OpenMP(s) Balanced

Cilk Plus
TBB

GPRM
GPRM-Steal

 0

 10

 20

 30

 40

 50

 60

 70

16 32 64 128 256 512 1024 2048

Sp
ee

du
p

Cutoff Value

OpenMP(d)
OpenMP(s)

Cilk Plus
TBB

GPRM
GPRM-Steal

 0

 200

 400

 600

 800

 1000

OMP(d)

OMP(s)

Cilk Plus

TBB
GPRM

GPRM-S

To
ta

l C
PU

 T
im

e 
(s

)

Cutoff: 2048 
NTH: 240

(a) Speedup, varying numbers of threads

(b) Speedup, varying cutoffs (c) Total CPU Time

(d) OpenMP(static), CPU times (e) OpenMP(dynamic), CPU times

(f) Cilk Plus, CPU times (g) TBB, CPU times

(h) GPRM, CPU times (i) GPRM-Steal, CPU times

Fig. 5 a Speedup of the parallel MatMul benchmark on a 4096×4096matrix of double numbers. OpenMP
with dynamic scheduling has the best scaling amongst all, and both GPRMapproaches scale better than Cilk
Plus and TBB. b For cutoff values larger than 256, OpenMP (dynamic scheduling) has the best performance.
cAgain the Total CPU Time of TBB and GPRM is the least amongst all. d–i There is an evident distinction
between the distribution of CPU times in the charts (d) and (e) that shows how dynamic scheduling in
OpenMP leads to better performance

123



912 Int J Parallel Prog (2015) 43:894–917

order to achieve automatic vectorization on the Xeon Phi, the Intel TBB and OpenMP
codes have to be compiled with -ansi-alias flag.

For the GPRM approaches, all the tasks are the same, having fairly the same size.
However, 4096 is not a factor of 240 (number of threads). Moreover, cutoff=256
(making 256 tasks) makes 16 cores busier than the others. Although we could choose
the cutoff=240 to improve the performance, for consistency with other experi-
ments, we have limited ourselves to powers of two. By increasing the cutoff, there
will be more tasks and a better distribution, hence better speedup (Fig. 5).

7 Multiprogramming

In this section, we consider two multiprogramming scenarios to see how these models
behave inmultiprogramming environments. Themetric that is used for the comparison
is the user-oriented metric Turnaround Time [9], which is the time between submitting
a job and its completion in a multiprogrammed system.

7.1 Case 1: Multiple Instances of a Single Program

In order to show the effect of Global Sharing between different GPRM applications,
consider 5 MergeSort applications entering the system with an interval of 1 s. Again,
an array of 80 million integers with the cutoff value 2048 and the default number of
threads (240) is considered.

The results are illustrated in Fig. 6. The stacked representation is used firstly to
illustrate the difference between the kernel times (only the parallel parts) of the
applications, e.g. in the OpenMP case, the difference between the best and worst
kernel time is around 11.2 s, while for the “GPRM-Steal with Global Sharing”, the
difference is less than 2s. The second use of the stacked representation is to show
all other consumed time in the system at the top of the stacked column chart. This
includes the time before job submission (interval) as well as the time spent on ini-
tialisations (sequential time). It is evident that for OpenMP, or GPRM approaches
without Global Sharing, this time is also larger, which serves as an indication of
the amount of overlap of the sequential parts of the applications. It can be seen in
Fig. 6h how the bottleneck is removed with the help of Task Stealing and Global
Sharing.

Beside the Total CPU Time, the hardware event Instructions Executed, estimated
by multiplying sample count by 10M events per sample (obtained by the VTune
Amplifier in Fig. 6b) can be used as another metric for comparison. Based on (|(V 1−
V 2)|/((V 1+ V 2)/2)) ∗ 100 formula, for sum of the turnaround times, the difference
between “GPRM-Steal with Global Sharing” and TBB as the second best result is
around 20%.

7.2 Case 2: Single Instances of Multiple Programs

For this case, we consider anothermultiprogramming scenario, which consists all three
benchmarks described before. The three benchmarks have the same input sizes as the

123



Int J Parallel Prog (2015) 43:894–917 913

 0

 9

 18

 27

 36

 45

OpenMP
Cilk Plus

TBB GPRM
GPRM-S

GPRM-S, Share

Ti
m

e 
(s

)

Stacked time for 5 MergeSort applications, 1 sec interval

Approach Total CPU Time(s) Inst. Executed
K2.12K7.8PMnepO × 10M
K0.61K8.8sulPkliC × 10M

K6.4K1.1BBT × 10M
K8.3K9.0MRPG × 10M
K9.3K9.0S-MRPG × 10M
K8.3K8.0erahS,S-MRPG × 10M

(a) Stacked Time

(b) Performance Summary

(c) OpenMP (d) Cilk Plus

(e) TBB (f) GPRM

(g) GPRM-Steal (h) GPRM-Steal with Global Sharing

Fig. 6 AMultiprogramming casewith 5MergeSort applicationswith 1 s interval. The stacked column chart
shows the mean time for each application’s kernel, followed by the remaining time spent from the start of
the first application to the end of the last one. GPRM-Steal with Global Sharing has the best performance;
Cilk Plus has the worst

single-program cases with the cutoff value 2048 and the default number of threads
240. We do not start all of them at the same time. Rather, we want the parallel phases
to start almost simultaneously, such that the threads of all applications compete for
the resources. For that purpose, the MergeSort benchmark enters the system first. Two
seconds later the MatMul benchmark enters the system, and half a second after that,
the Fib benchmark starts.6 The results are shown and discussed in Fig. 7. In sum of

6 The sequential phase of the MergeSort benchmark with the input size 80M is around 2s, and the initial
phase of the MatMul benchmark with the input size 4096×4096 is about half a second.

123



914 Int J Parallel Prog (2015) 43:894–917

 0

 3

 6

 9

 12

 15

OpenMP
Cilk Plus

TBB GPRM
GPRM-S

GPRM-S, Share

Tu
rn

ar
ou

nd
 T

im
e 

(s
)

Turnaround times in a multiprogramming scenario

MatMul
Fib

MergeSort

Approach Total CPU Time(s) Inst. Executed
K5.8K2.3PMnepO × 10M
K5.7K9.2sulPkliC × 10M
K3.4K2.1BBT × 10M
K1.4K1.1MRPG × 10M
K1.4K1.1S-MRPG × 10M
K2.4K2.1erahS,S-MRPG × 10M

(a) Turnaround times

(b) Performance Summary

(c) OpenMP (d) Cilk Plus

(e) TBB (f) GPRM

(g) GPRM-Steal (h) GPRM-Steal with Global Sharing

Fig. 7 Amultiprogramming scenariowith all the three benchmarks. The best turnaround times are obtained
with “GPRM-Steal with Global Sharing”. OpenMP has the worst performance amongst all. Performance
of GPRM is improved by stealing tasks locally inside each application and sharing information globally
across multiple applications

the turnaround times, the difference between “GPRM-Steal with Global Sharing” and
TBB as the second best result is about 17%.

Although the Total CPU Time is a key performance metric, it cannot be used solely
to interpret the results. A sequential program can have the same value for theTotal CPU
Time as a parallel program. Therefore, it is also important to find out how evenly the
tasks are distributed across the system. As we have observed in the multiprogramming
cases, compared to other GPRM approaches, the efficiency of the “GPRM-Steal with
Global Sharing” comes from its better load balancing. However, the wasted CPU
cycles by the runtime libraries, as for OpenMP and Cilk Plus, which can have a

123



Int J Parallel Prog (2015) 43:894–917 915

significant impact on the results can be detected by Total CPU Time and Instructions
Executed.

8 Related Work

Saule and Catalyurek [18] have compared OpenMP, Cilk Plus, and TBB on the Intel
Xeon Phi. They have focused on the scalability of the approaches for single-program
graph algorithms. We have added GPRM to the comparison and have also targeted
multiprogramming situations.

Callisto [10] is a user-mode shared library for co-scheduling multiple parallel run-
time systems. Although there is no need to modify the high-level applications or the
OS, it has to be linked with the Callisto-enabled versions of the runtime systems. The
current version does not support OpenMP tasks. Furthermore, the authors have used
pairs of benchmarks on a 2-socket machine. It needs more investigation to find out
whether Callisto can be still effective if more benchmarks are run together, or if one
moves from a socket-based machine to a modern architecture such as MIC.

Emani et al. [8] used predictive modelling techniques for OpenMP programs to
determine an optimal mapping of a program in the presence of external workload.
Dynamic runtime information is combined with the compile-time knowledge of the
program to decide about the best adaptivemapping of programs to execution resources.
Their purpose is to maximise the performance of a target program with minimum
impact of the performance of the workloads.

Sasaki et al. [17] developed a sophisticated scheduling scheme to co-schedule mul-
tiprogram workloads, which predicts the applications’ scalability dynamically, and
allocates the optimal number of cores to applications in order to maximise the system
utilisation. They have proposed a technique called Core Donation that maximises the
CPU utilisation while keeping the scalability of the programs into account.

In our previous work [23], a thread mapping method based on the system’s load
information is developed for OpenMP programs. Performance of multiprogram work-
loads in Linux can be improved by sharing the load information and using it for thread
placement. However, for this method to be effective, the optimal number of threads
for each single program has to be known to the programmer. Most of time, though,
the programs are run with the maximum number of threads, with the expectation of
achieving the desired performance, and that is the case we have targeted in this paper.

9 Conclusion

In this paper, we have introduced a strategy for parallel programming called Steal
Locally, ShareGlobally, implemented inGPRM, our task-based parallel programming
framework. The idea is to steal tasks locally (fromwithin the same application) only if
the initial task assignment is not optimal, and to share the least amount of information
about the system’s load globally (between different applications). We have shown that
our strategy is highly competitive against well-known approaches, namely OpenMP,
Cilk Plus and TBB for all testbenches, and achieves the top performance on the Intel
Xeon Phi in almost all cases.

123



916 Int J Parallel Prog (2015) 43:894–917

Our main objective is to provide a low-overhead solution which can be efficient in
different possible scenarios occurring inside a general-purpose system. The overhead
of the runtime libraries has a serious impact on the performance of multiprogram
workloads. On the other hand, the performance of single programs should be con-
sidered as well. For example, we have shown that TBB has a good performance for
multiprogram workloads, but not the best performance for single programs. GPRM
combines compile-time information about tasks with an efficient task stealing strategy
and a very low-overhead sharing mechanism between different programs in order to
achieve high performance.

Without a precise costmodel, the programmer cannot determine the optimal number
of threads for each application, hence the programming framework should attempt to
deliver optimal performance with the default number of threads. The ideal situation
for the programmer is to only have to express the parallelism, relying on the runtime
system to get the expected speedup. As we have shown, GPRM delivers this ideal in
almost all cases, and where it does not, it comes very close. Thus, GPRM combines
an intuitive task-based programming model with excellent performance, without the
need to tune the number of threads.

References

1. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multiprogrammed multiprocessors.
Theory Comput. Syst. 34(2), 115–144 (2001)

2. Ayguadé, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Teruel, X., Unnikrishnan, P.,
Zhang, G.: The design of openmp tasks. IEEE Trans. Parallel Distrib. Syst. 20(3), 404–418 (2009)

3. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou, Y.: Cilk: an efficient
multithreaded runtime system. J. Parallel Distrib. Comput. 37(1), 55–69 (1996)

4. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing. J. ACM
46(5), 720–748 (1999)

5. Clet-Ortega, J., Carribault, P., Pérache, M.: Evaluation of openmp task scheduling algorithms for large
numa architectures. In: Euro-Par 2014 Parallel Processing, pp. 596–607. Springer, New York (2014)

6. Duran, A., Corbalán, J., Ayguadé, E.: An adaptive cut-off for task parallelism. In: International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, 2008. SC 2008. pp. 1–11.
IEEE (2008)

7. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona openmp tasks suite: a set of
benchmarks targeting the exploitation of task parallelism in openmp. In: International Conference on
Parallel Processing, 2009. ICPP’09. pp. 124–131. IEEE (2009)

8. Emani, M.K., Wang, Z., O’Boyle, M.F.: Smart, adaptive mapping of parallelism in the presence of
external workload. In: 2013 IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO), pp. 1–10. IEEE (2013)

9. Eyerman, S., Eeckhout, L.: System-level performance metrics for multiprogram workloads. IEEE
Micro 28(3), 42–53 (2008)

10. Harris, T., Maas, M., Marathe, V.J.: Callisto: co-scheduling parallel runtime systems. In: Proceedings
of the 9th European Conference on Computer Systems, p. 24. ACM (2014)

11. Hofmeyr, S., Iancu, C., Blagojević, F.: Load balancing on speed. In: ACM Sigplan Notices, vol. 45,
pp. 147–158. ACM (2010)

12. Jeffers, J., Reinders, J.: Intel Xeon Phi Coprocessor High Performance Programming. Newnes (2013)
13. Kim, W., Voss, M.: Multicore desktop programming with intel threading building blocks. IEEE Softw.

28(1), 23–31 (2011)
14. Lubin, M., McMillan, S., Kruse, C.G., Del Vento, D., Montuoro, R.: Efficient software development:

4 Whats new in intel parallel studio xe 2013 service pack (2013)
15. McCool, M., Reinders, J., Robison, A.: Structured Parallel Programming: Patterns for Efficient Com-

putation. Elsevier (2012)

123



Int J Parallel Prog (2015) 43:894–917 917

16. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-Core Processor Parallelism.
O’Reilly Media, Inc. (2007)

17. Sasaki, H., Tanimoto, T., Inoue, K., Nakamura, H.: Scalability-based manycore partitioning. In: Pro-
ceedings of the 21st International Conference on Parallel Architectures and Compilation Techniques,
pp. 107–116. ACM (2012)

18. Saule, E., Catalyurek, U.V.: An early evaluation of the scalability of graph algorithms on the intel
mic architecture. In: 2012 IEEE 26th International Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW) pp. 1629–1639. IEEE (2012)

19. Sussman, G.J., Jr., G.L.S.: Scheme: an interpreter for extended lambda calculus. In: MEMO 349, MIT
AI LAB (1975)

20. Teruel, X., Martorell, X., Duran, A., Ferrer, R., Ayguadé, E.: Support for openmp tasks in nanos v4. In:
Proceedings of the 2007 Conference of the Center for Advanced Studies on Collaborative Research,
pp. 256–259. IBM Corp. (2007)

21. Tousimojarad, A., Vanderbauwhede, W.: The Glasgow Parallel Reduction Machine: Programming
Shared-Memory Many-Core Systems Using Parallel Task Composition. EPTCS 137, 79–94 (2013).
doi:10.4204/EPTCS.137.7

22. Tousimojarad, A., Vanderbauwhede, W.: Comparison of three popular parallel programming models
on the Intel Xeon Phi. In: Euro-Par 2014: Parallel Processing Workshops, pp. 314–325. Springer, New
York (2014)

23. Tousimojarad, A., Vanderbauwhede, W.: An efficient thread mapping strategy for multiprogramming
on manycore processors. In: Parallel Computing: Accelerating Computational Science and Engineer-
ing (CSE), Advances in Parallel Computing, vol. 25, pp. 63–71. IOS Press (2014). doi:10.3233/
978-1-61499-381-0-63

24. Tousimojarad, A., Vanderbauwhede, W.: A parallel task-based approach to linear algebra. In: 2014
IEEE 13th International Symposium on Parallel and Distributed Computing (ISPDC), pp. 59–66.
IEEE (2014)

25. Tucker, A.: Efficient Scheduling on Multiprogrammed Shared-memory Multiprocessors. Ph.D. thesis,
Stanford University (1994)

26. Veen, A.H.: Dataflow machine architecture. ACM Comput. Surv. (CSUR) 18(4), 365–396 (1986)
27. Yan, J., He, J., Han, W., Chen, W., Zheng, W.: How openmp applications get more benefit from many-

core era. In: Beyond Loop Level Parallelism in OpenMP: Accelerators, Tasking and More, pp. 83–95.
Springer, New York (2010)

123

http://dx.doi.org/10.4204/EPTCS.137.7
http://dx.doi.org/10.3233/978-1-61499-381-0-63
http://dx.doi.org/10.3233/978-1-61499-381-0-63

	Steal Locally, Share Globally
	A Strategy for Multiprogramming in the Manycore Era
	Abstract
	1 Introduction
	1.1 Intel Xeon Phi
	1.2 Parallel Programming Models
	1.2.1 OpenMP
	1.2.2 Cilk Plus
	1.2.3 TBB
	1.2.4 The Glasgow Parallel Reduction Machine (GPRM)


	2 GPRM Architecture
	2.1 GPRM Model of Parallel Execution

	3 Task Stealing
	3.1 Comparison of the Stealing Techniques
	3.2 Implementation of Task Stealing in GPRM 

	4 Global Sharing
	5 Experimental Setup
	6 Benchmarks 
	6.1 Parallel Fibonacci Benchmark: Fibonacci
	6.2 Parallel Merge Sort Benchmark: MergeSort
	6.3 Parallel Matrix Multiplication Benchmark: MatMul

	7 Multiprogramming
	7.1 Case 1: Multiple Instances of a Single Program
	7.2 Case 2: Single Instances of Multiple Programs

	8 Related Work
	9 Conclusion
	References





