
Int J Parallel Prog (2015) 43:939–960
DOI 10.1007/s10766-015-0349-6

TuCCompi: A Multi-layer Model for Distributed
Heterogeneous Computing with Tuning Capabilities

Hector Ortega-Arranz · Yuri Torres ·
Arturo Gonzalez-Escribano · Diego R. Llanos

Received: 4 July 2014 / Accepted: 3 February 2015 / Published online: 27 February 2015
© Springer Science+Business Media New York 2015

Abstract During the last decade, parallel processing architectures have become a
powerful tool to deal with massively-parallel problems that require high performance
computing (HPC). The last trend ofHPC is the use of heterogeneous environments, that
combine different computational processing devices, such as CPU-cores and graphics
processing units (GPUs).Maximizing the performance of anyGPUparallel implemen-
tation of an algorithm requires an in-depth knowledge about theGPUunderlying archi-
tecture, becoming a tedious manual effort only suited for experienced programmers.
In this paper, we present TuCCompi, a multi-layer abstract model that simplifies the
programming on heterogeneous systems including hardware accelerators, by hiding
the details of synchronization, deployment, and tuning. TuCCompi chooses optimal
values for their configuration parameters using a kernel characterization provided by
the programmer. This model is very useful to tackle problems characterized by inde-
pendent, high computational-load independent tasks, such as embarrassingly-parallel
problems. We have evaluated TuCCompi in different, real-world, heterogeneous envi-
ronments using the all-pair shortest-path problem as a case study.
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1 Introduction

Some computing-intensive problems are divided into many independent tasks that can
be executed in parallel without requiring any communication among them. They are
called embarrassingly-parallel problems [1]. Many real problems are included in this
category, such as index processing in web search [2], bag-of-tasks applications [3],
traffic simulations [4] or Bitcoin mining [5].

Although the parallelization of embarrassingly-parallel problems does not require
a very complex algorithm to take advantage of parallel computing environments, their
high amount of computational work requires high performance computing (HPC).
Deployment, load balancing, and tasks synchronization details should be tackled by
the programmer in a specific way for different applications, and different execution
environments. In order to give support to the massive demand of HPC, the last trends
focus on the use of heterogeneous environments including computational units of
different nature, such as common CPU-cores, graphics processing units (GPUs) and
other hardware accelerators. The exploitation of these environments offers a higher
peak performance and a better efficiency compared to the classical homogeneous
cluster systems [6]. Due to these advantages, and since the cost of building heteroge-
neous systems is low, they are being incorporated into many different computational
environments, from academic research clusters to supercomputing centers.

Despite the wide use of heterogeneous environments to execute massively-parallel
problems, there are two issues that limit the usability of these systems. The first one is
the lack of computing frameworks that can easily schedule the workload in such com-
plex environments. Some works have been presented to integrate the use of different
programming languages or tools [7,8]. However, the programmer still needs to tackle
different design and implementation problems related with each level of parallelism.
These problems are specially more complex when integrating GPU programming
techniques. The second limitation is the lack of a tuning methodology that efficiently
unleashes all the power of GPU devices. Although there are languages, such as CUDA,
that aim to reduce the programmer’s burden in writing parallel applications, it is a dif-
ficult exercise to correctly tune the code in order to efficiently exploit all underlying
GPU resources. Several studies [9,10] have shown that, in some cases, the values that
are recommended by CUDA do not lead to the optimum performance, leaving to the
programmers the responsibility of searching for the best values. This search usually
implies to carry out several time-consuming trial-and-error tests. There is not a parallel
model that automatically selects the optimal values for CUDA configuration parame-
ters, such as the threadBlock size–shape, or the state of L1 cache memory, for each
kernel. These optimization techniques significantly enhance the GPU performance.

In this paper, we present TuCCompi (Tuned, Concurrent Cuda, OpenMP andMPI),
amulti-layer, skeleton-based abstractmodel, that transparently exploits heterogeneous
systems and squeezes the GPU capabilities by automatically choosing the optimal val-
ues for important configuration parameters. Moreover, it easily supports the inclusion
of work distribution policies as plug-ins. Each layer represents a level of parallelism.
The first layer handles the distributed-memory environment, coordinating different
shared-memory systems (nodes). The second layer manages the computational units
that are inside the nodes. The third layer automatically deploys the execution in the
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hardware accelerators, such as the GPUs. The fourth layer automatically handles con-
current works inside these GPUs. Finally, an internal tuning mechanism automatically
selects the optimal values for GPU configuration parameters for each kernel, and each
GPU architecture.We have developed a prototype framework to test this model, allow-
ing a user to transparently take advantage of all computational capabilities of both,
CPU-cores and GPU devices, distributed across different shared-memory systems,
without having a deep knowledge of parallel programming methods. The case study
used to evaluate the model is the all-pair shortest-path (APSP) problem. The experi-
ments have been run in an academic heterogeneous environment.

The contributions of this work are: (a) a multi-layer abstract parallel model that
simplifies programming in heterogeneous systems including hardware accelerators, by
hiding the details of synchronization, load balancing, and deployment; (b) a prototype
implementation that exploits modern GPU capabilities, such as concurrent kernel
execution on a GPU, or parameter tuning for GPU execution; and (c) a technique to
allow the programmer to supply abstract kernel characterizations of the GPU codes to
help the framework to chose optimal values for important CUDA tuning parameters.
These optimal values are valid for any current GPU architecture, and are based on the
work of [10]. Experimental work with the prototype framework shows that the new
abstraction layers easily allow to obtain performance improvements of up to 12 % in
the test case, with minimum extra programming effort, compared with using only the
traditional three first ones.

The rest of this paper is organized as follows. Section 2 describes some related
work. Section 3 introduces our conceptual approach. Section 4 describes the use of
the model through some code snippets. Section 5 shows the internals of the TuC-
Compi framework. Section 6 explains the case study used. In Sect. 7 we present the
experimental environment and the results obtained. Finally, Sect. 8 summarizes our
conclusions and describes the future work.

2 Related Work

There are several works that integrate languages on tools to consider several levels
of parallelism. llCoMP [7] is a source-to-source compiler that translates C annotated
code to MPI+OpenMP or CUDA code. The user needs to specify the sequential
code he wants to parallelize. The authors are only focused in parallel-loop problems.
This compiler does not support the joint use of CUDA with any other parallel model,
therefore, it is not appropriate to be used in heterogeneous environments. Besides this,
the llCoMP compiler does not easily support a new GPU architecture or other kind of
accelerators.

The authors in [8] propose a framework called OMPICUDA to develop paral-
lel applications on hybrid CPU/GPU clusters by mixing OpenMP, MPI and CUDA
models. This framework presents some limitations: it cannot be easily modified to
support a new parallel model, and it is not consider any policy to select proper values
of CUDA configuration parameters. Another parallel programming approach using
hybrid CUDA, MPI and OpenMP programming is presented in [11]. The authors
focus on the model to solve iterative problems, and they do not take into account any
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Fig. 1 Usage of TuCCompi with code-transformation modules

generic CUDA optimization technique. It does not support any mechanism to include
new load distribution policies.

The authors in [12] have created an hybrid tool, that includes the same parallel
models used by the previous mentioned works, to solve raycasting volume rendering
algorithm. They test the system scalability when the input data size is increased.
This tool is only focused in a single parallel application and does not include any
CUDA optimization technique, nor any automatic mechanism to efficiently exploit
heterogeneous environments.

Other programming libraries for hybrid architectures supporting GPUs are
SkelCL [13], StarPU [14] and SkePU [15]. The first tries to enhance the OpenCL
interface in order to coordinate different GPUs of the same shared-memory machine.
However, it does not support load distribution between GPUs of different machines, or
even, other computational units of different nature, such as the CPU-cores. These lim-
itations are not present in StarPU and SkePU, but they do not support the exploitation
of the concurrent-kernels feature of modern GPUs. StarPU does not even consider
the use of tuning techniques for better exploiting GPU capabilities. SkePU tries to
find the optimal threadblock size by automatically checking all possibilities using
trial-and-error executions, but it does not provide a model for tuning this parameter.

There are other works that aim to transform sequential code to parallel code, and
vice-versa. For example, accULL [16] receives a sequential code and automatically
transforms it to parallel GPU code. Another example of code transformation is Ocelot
[17], that works in the opposite way. Given a GPU implementation, Ocelot transforms
it to sequential code. TuCCompimodel does not aim to deal with code transformations,
but theseworks can be easily attached as previous functionalmodules to ourmultilayer
model (see Fig. 1). Another attachable module could be the work of elastic kernels
presented in [18]. They do manual source-to-source code transformations in order to
obtain GPU kernels that exploit more the multikernel feature of the GPU devices.

3 TuCCompi Architecture

TuCCompi integrates several execution layers with different coordination mecha-
nisms, that are abstracted to provide an unified view of the computing heterogeneous
system to the programmer. He has to program his applications in two programming
levels: (1) a coordination level, that abstracts the work distribution across the com-
putational units inside the distributed shared-memory nodes; and (2) a deployment
level, that abstracts the management of computational unit of different nature. This
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Fig. 2 Layer deployment of TuCCompi model in a heterogeneous cluster

section gives a description of these different layers defined in our model. A graphical
representation is depicted in Fig. 2.

3.1 The 1st Layer (Distributed Environment)

Nowadays, one of the most economic ways to assemble a heterogeneous system is to
interconnect a set of different individual machines, also called nodes, such as personal
computers, laptops, complex virtual host machines, or even other supercomputing
systems composed in turn by other machines. It is necessary to apply communication
and synchronization mechanisms in order to coordinate these nodes. The first layer
of TuCCompi (see Fig. 2) is responsible of managing this node coordination without
taking into account the hardware details and features of each machine. This layer is
abstracted at the coordination level, allowing the programmer to skip thinking in terms
of more complex message-passing models.

3.2 The 2nd Layer (Shared-Memory Systems)

Nodes are nowadays composed by several processing units that share a global address
space. Additionally, there are other accelerator devices, such as GPUs, FPGAs and
Xeon Phi, that are usually controlled by a host system (CPU) and are capable of
executing kernels independently. In this layer of TuCCompi we use the concept of
“computational unit” for any CPU-core or device hosted in a node. This second layer
is responsible of the coordination of all computational units inside the node. For the
programmer’s point of view, this layer is also encapsulated in the abstraction of the
coordination level. It also hides the fact that each special device is controlled by a
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dedicated thread that executes a different code. The programmer sees all devices and
CPU-cores in an homogeneous form.

3.3 The 3rd Layer (GPU Devices)

This layer implements the abstraction used at the deployment level. It is the responsible
of the coordination and deployment actions needed for special devices, such as GPUs,
FPGAs, or Xeon Phis, in an homogeneous form. This is done by hiding the details
needed to manage different address spaces, offloading codes, etc.

3.4 The 4th Layer (Concurrent GPU Kernel Execution)

The most recent NVDIA GPUs support concurrent-kernel execution [19], where dif-
ferent kernels of the same application context can be executed on a GPU at the same
time. This feature is very helpful when kernels that use just few resources are launched,
allowing a concurrent execution of other kernels, and thus, exploiting at the same time
all resources of the device. Although at first glance this feature seems to be profitable
only when low resource-consuming kernels are launched, the concurrent execution of
higher resource-consuming kernels also gives performance gains. This occurs because
several kernels of the same application context work on the samememory areas taking
advantage of the L1 data-cache, originating less number of cache-misses and therefore
alleviating the global memory bottlenecks. The programmer provides a parameter to
define the number of tasks that will be concurrently deployed in a single GPU for each
application. This layer internally take cares of the synchronization of the concurrent
kernel launching. It contributes to the functionalities encapsulated in the deployment
level.

3.5 The Tuning Layer

While correctness of an NVIDIA CUDA program is easy to achieve, the optimal
exploitation of the GPU computational capabilities is much more complicated than in
traditional CPU cores. Usually, it requires an extensive CUDA programming experi-
ence. Some examples of code tuning strategies are the choice of an appropriate thread-
Blocks size and shape, the coalescing maximization of the memory accesses, or the
occupancy maximization of the Streaming Multiprocessors, among others. Moreover,
the resource differences between each GPU architecture and release, such as the num-
ber of computational units, cache-sizes, and other features, make it even more difficult
to find the optimal configuration for a given GPU. Besides this, the optimal values also
depend on the memory access pattern and the characteristics of the code of each exe-
cuted kernel. This layer allow the programmer to supply to the deployment levelwith an
abstract kernel characterization of the CUDA codes in terms of human-understandable
features. With these values, the model internally chooses proper values for the exe-
cution parameters. This solution opens the possibility to integrate techniques to auto-
matically analyze and characterize the CUDA kernel codes for specific GPU devices.

123



Int J Parallel Prog (2015) 43:939–960 945

Fig. 3 TuCCompi model usage. Elements in the dashed box are provided by the programmer. Note that
the user can develop different versions of each plug-in (Code A, Code B, …) but only one at a time will be
deployed into TuCCompi framework

4 TuCCompi Model Usage

To build a program using TuCCompi, a programmer should provide the following
elements (see Fig. 3): (1) coordination level, implemented as a main C language pro-
gram with the TuCCompi primitives and macros, and (2) deployment level, including
the sequential-CPU and the parallel-GPU specific codes for each application, named
as PLUG-IN_CPU and PLUG-IN_GPU respectively, and characterizations of the
accelerator kernel codes.

In this way, the application programmer does not have to provide: (a) the values of
GPU configuration parameters for an optimal execution on each different GPU, (b) the
code implementation for concurrent kernel deployment, (c) the code implementation
for the management of the distributed and shared computational-units, nor (d) the
communication between all involved nodes.

4.1 Coordination Level: TuCCompi Main Program Implementation

Figure 4 shows an example of the code that the user has to implement in order to start
and control the execution. The primitiveTuCCompi_COMM inLineM01 initializes the
system. Afterwards, the user can introduce his code, including variable declarations,
initializations and the sequential code needed for the application. Line M03 shows
the primitive needed to set the number of kernels that the GPU devices will execute
concurrently (information for the 4th execution layer). Line M04 shows the primitive
used to initialize and execute the functions implemented in the corresponding plug-ins.
This synchronization expression transparently executes the CPU-plugin code for the
CPU-cores, or the specialized GPU-plugin code for the GPU devices, using the same
semantics, across a whole heterogeneous cluster. The first parameter of this macro
represents the kind of scheduling policy desired by the user (described below). It is
used internally by the 1st and 2nd execution layers to balance the workload across
the different computational units. Line M05 shows the primitive needed to make the
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M00: main( ){
M01: TuCCompi COMM( );

M02: (main user code)

M03: TuCCompi SETMK( number );

M04: TuCCompi PARALLEL(MS, plugin Cpu(..), plugin Gpu(..));

M05: TuCCompi SYN( );

M06: (main user code)

M07: TuCCompi ENDCOMM( );

M08: }//main

Fig. 4 User implementation of the TuCCompi main-program. The programmer has to add to his code the
boxed primitives

process wait until all node computational units have finished. The user is free to insert
more code to execute other kernels, before the finalization of the heterogeneous cluster
communication, shown in line M07.

4.2 Coordination Level: Workload Scheduling

The TuCCompi model includes three different policies to distribute the workload
between all available cluster resources through the first parameter of theM04primitive.

The first one, EQ1, is an equitable policy that schedules the same number of tasks
to each node of the 1st layer (distributed memory environment), independently of the
number of CPU-cores, GPUs, or other accelerators that the nodes have inside. Later,
each node equally divides the assigned workload between all its own computational
units (CPU-core/Accel.), also in a balanced way.

The second one, EQ2, is also an equitable policy, but it divides the workspace
straight between the computational units of the whole cluster at the 2nd layer. The
workspace division does not consider the computational unit nature.

The third one, MS, follows a master–slave model. One computational unit is sacri-
ficed to act as the master, and the rest of the computational units work as slaves. The
slaves enter into a working loop, requesting tasks from the master when they become
idle, until the master sends a termination signal to them. Thus, the more powerful
units will ask for more work, and therefore they will process more tasks than the less
powerful units. As the master can be located at any cluster node, these asking-for-tasks
requests are issued through distributed-environment communications.

Additionally, TuCCompi also offers the possibility of including a scheduling policy
programmed by the user through the scheduling plug-in (see Sect. 5.5.1).

4.3 Deployment Level: User-Code Plug-Ins

Figure 5 (top) shows the interface of the sequential code that will be executed in a
CPU computational unit. The user is responsible of inserting the code to implement
the algorithm that solves a single task (line C01, Cpu user code).
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C00: plugin Cpu(user vars ...) {
C01: (Cpu user code)
C02: }//pluginCPU

G00: plugin Gpu(user vars ...) {
G01: (Gpu user code)

G02: TuCCompi GPULAUNCH(k1, input size, TuCCompi PARLLMK(vector1, type, lng), ...);

G03: TuCCompi GPUSYN( );

G04: TuCCompi GPULAUNCH(k2, input size2, TuCCompi PARLLMK(vector2, type, lng), ...);

G05: TuCCompi GPUSYN( );

G06: }//pluginGPU

Fig. 5 Plugin_Cpu (top) and Plugin_Gpu (down) interfaces. The programmer adds to his code the boxed
arguments to deploy the Cpu plugin in TuCCompi, and he has to replace the CUDA kernel launch primitives
for the boxed TuCCompi macros for the GPU plugin

Figure 5 (bottom) shows the code that will be executed in a CPU thread to manage
one or more associated GPUs. The control of the GPU often involves active waits.
In this case, a CPU-core should be sacrificed to execute this GPU-controller thread.
The user should define the code that handles the logic control of the algorithm that
comprises the use of one or several GPU kernels. This code will be responsible of
launching the corresponding kernels. Line G02 shows the TuCCompi macro that car-
ries out a kernel launch, with the name of the kernel as first parameter, and followed by
other user variables that have been previously allocated in the GPU. Transparently for
the user, the model executes as many kernel instances as indicated by the programmer
in the main control program (MK value) (see line M03 of Fig. 4). Every concurrent
kernel launched will need its own workspace to compute its results. The second primi-
tive of line G02 gives to the kernel one memory pointer for each data structure needed.
The needed parameters are: The variable name; the native type of the elements that
it contains; and the number of elements that compounds it. As we said before, the
algorithm implementation can require the execution of different kernels that should be
sequentially launched for a single task computation (line G04). The TuCCompi prim-
itive of line G03 forces the CPU to wait for the finalization of an executing kernel, or
kernels concurrently launched, providing a synchronization mechanism.

4.4 Deployment Level: Kernel Characterization

The user has to provide a general characterization of his kernels along with its defi-
nition. This information is easily expressed in our prototype implementation through
the TuCCompi_KERNELCHAR( kernel_name, num_dims, A, B, C, D)
primitive. The values for parameters A, B, C andD have to be chosen from the kernel-
characterization classification shown in Table 1. TuCCompi model will automatically
optimize the use of the underlying hardware of any kind of GPU found in the plat-
form, following the guidelines and optimizations proposed in [10] for each possible
combination of these parameters.
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Table 1 TuCCompi kernel-characterization classification

Parameter Description Choice

A Global memory-access pattern scatter/ medium-coalesced/
coalesced/ def

B Ratio of arithmetic instructions per
thread compared to the global-memory
accesses

high/ low/ none/ def

C Ratio of L1 cache memory lines evictions
compared to the size of this memory

high/ medium/ low/ def

D Ratio of memory data reutilization
compared to the number of arithmetic
instruction per thread

high/ medium/ low/ def

The def choice can be used when the user does not know the kernel characterization

K00: TuCCompi KERNELCHAR(k1, 2, scatter, none, high, low);

K01: global void k1 (...){
K02: (kernel implementation)
K03: }
K04: TuCCompi KERNELCHAR(k2, 1, coalesced, low, low, high);

K05: global void k2 (...){
K06: (kernel implementation)
K07: }

Fig. 6 Kernel characterizations and implementations. The programmer adds the boxed primitive before
the kernel implementation to characterize it

Figure 6 shows some examples of the code used to characterize the kernels.
Lines K00 and K04 describes the characterization of kernels k1 and k2 respec-
tively, indicating the kernel name, the number of dimensions of the threadBlock,
and the class chosen from the classification criteria described in Table 1. In the
case that the user does not know how to classify his kernels, he can use the
default (def) values provided by the model. The primitive used for this default
case is TuCCompi_KERNELCHAR(kernel_name, num_dim, def, def,
def, def).

5 TuCCompi Internals

In this sectionwewill discuss the internals of the TuCCompi framework. The functions
and primitives described here have a correspondence with the model layers described
in Sect. 3.

5.1 Cluster Inter-Node Communication (1st Layer): TuCCompi_COMM

Once a TuCCompi program is in execution, each process initializes its MPI-
identification variables, and enters into a global communication step carried out by
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Fig. 7 Implementation of the
comm() recognition function,
called from
TuCCompi_COMM()

00: comm(v cu, v id, total cu, id mpi, n proc){
01: if ( id mpi == PARENT){
02: v id [PARENT] = 0;
03: v cu [PARENT] = second layer resources()
04: total cu = v cu[PARENT];
05: for (int i=1; i<n proc; i++){
06: v id [i] = total cu;
07: RECV( v cu [i], i);
08: total cu += v cu [i];
09: }
10: for(int i=1; i<n proc; i++){
11: SEND(v id, i);
12: SEND(v hilos, i);
13: SEND(total cu, i);
14: }
15: }else{
16: cu local = second layer resources()
17: SEND(cu local, PARENT process);
18: RECV(v id, PARENT process);
19: RECV(v cu, PARENT process);
20: RECV(total cu, PARENT process);
21: }
22: }

exchanging a fewMPImessages. An arbitrary process is the coordination handler, that
we name as parent process. It receives from the remaining processes the number of
the computational resources they are able to manage. Then, the parent process sends
to each process a global identification number for each resource inside the whole
heterogeneous cluster. Additionally, the parent process sends more information about
the heterogeneous cluster, such as the total number of computational units and the
numeration per node.

Figure 7 shows the implementation of this first phase. We will now review the
data structures involved. The v_cu vector stores the number of computational units
from each process. The v_id vector stores the number from which the numeration of
computational units should start for the process i. The total_cu variable stores the
total number of computational units. The id_mpi variable stores the identifier of the
MPI process. The n_proc variable stores the total number of MPI processes. Finally,
the PARENT constant is the identifier of the MPI process that coordinates the commu-
nication. In this first phase, lines 02–04 initialize some values and ask to the second
layer how many computational units has the machine. Lines 05–09 receive informa-
tion from the rest of processes. Lines 10–14 perform the heterogeneous-environment
information shipping. Lines 15–21 correspond to the behavior of the rest of process,
that looks up for the available resources, sends this value to parent process and receives
the cluster information.

For problems where not all the input data is needed, and just the required one is
wanted be sent from the parent process, the user just has to slightly modify this macro
in order to obtain this desired behavior of the framework.

5.2 Cluster In-Node Synchronization (2nd Layer): TuCCompi_PARALLEL

Once the TuCCompi model has been initialized and the user variables have
been defined, the TuCCompi_PARALLEL primitive automatically creates as many
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00: #define TuCCompi PARALLEL(MS, pluginCPU, pluginGPU)\
01: cudaGetDeviceCount(&TuCCompi gpuCount);\
02: omp set num threads(omp get num procs());\
03: #pragma omp parallel\
04: {\
05: int task;\
06: int TuCCompi local id = omp get thread num();\
07: int TuCCompi global id = v id[id mpi] + TuCCompi local id ;\
08: if( TuCCompi global id == TuCCompi master) {\
09: pluginMASTER;\
10: } else if( TuCCompi local id < TuCCompi gpuCount ){\
11: cudaDeviceProp props;\
12: cudaGetDeviceProperties(&prop,TuCCompi local id);\
13: int gpu arch = props.major;\
14: while( (task = pluginSLAVE) < total tasks)\
15: pluginGPU;\
16: } else\
17: while( (task = pluginSLAVE) < total tasks)\
18: pluginCPU;\
19: }#pragma

20: #define TuCCompi SYN( )\
21: #pragma omp barrier\
22: MPI Barrier(MPI COMM WORLD)

23: #define TuCCompi END( )\
24: MPI Finalize();

Fig. 8 TuCCompi_PARALLEL() and other macro-definition codes

OpenMP threads as the number of CPU-cores that will perform the parallel exe-
cution. Figure 8 shows the code that is executed when the programmer uses the
TuCCompi_PARALLEL primitive for the master–slave scheduling policy, (EQ1 and
EQ2 policies are not shown due to space restrictions). The master–slave implementa-
tion just divides the workload between the cluster nodes and the computational units.
The slaves execute each task without needing any more communication with the mas-
ter. Lines 05–07 initialize the intra-node computational units identifiers. Lines 08–09
check whether any of the current OpenMP thread should act as the master, executing
the default master function. If there are GPUs, each one is governed by its corre-
sponding CPU-core. Therefore, lines 10–15 obtain the device properties, entering into
the ask-for-tasks working loop and executing the parallel GPU code provided by the
pluginGPU (see Sect. 4.3). The normal CPU-cores also enter into the ask-for-tasks
working loop but executing the code of the pluginCPU (see Sect. 4.3) (lines 16–18).

5.3 Kernel Launch and Concurrent Kernel Execution (3rd and 4th Layers):
TuCCompi_GPULAUNCH

Before the task-threads spawn (Line 03 of Fig. 8), the first layer (distributed-
memory process) consults how many GPUs are available in the shared-memory
node (Line 01 of Fig. 8). Once in the parallel region, an OpenMP thread is
assigned to one CPU-core in order to govern each hardware accelerator, also stor-
ing some relevant properties of the GPU, such as its architecture (Lines 11–13

123



Int J Parallel Prog (2015) 43:939–960 951

00: #define TuCCompi GPULAUNCH(k name,input size,uservars)\
01: for( int parll = 0; parll < MK; parll++)\
02: k name<<<t grid(k name, arch, input size),\
03: t threads(k name, arch)>>>(uservars)\

04: #define TuCCompi PARLLMK(var name,var type,var length)\
05: var name + parll * sizeof(var type) * var length

06: #define TuCCompi GPUSYN( )\
07: cudaThreadSynchronize()

Fig. 9 Declarations for the automatic kernel launch and multikernel support

of Fig. 8). Afterwards, this thread is the responsible of handling the logic con-
trol of the algorithm implemented in pluginGPU, actually launching the different
kernels invoked through the primitive TuCCompi_GPULAUNCH(kernel_name,
input_size, kernel_vars), whose definition is shown in Fig. 9.

The model automatically detects if the concurrent execution of several kernels
(the multikernel feature) is supported by the GPU using the properties previously
retrieved. Otherwise, the model always launches only one kernel at the same time.
The multikernel feature is also embedded in the GPU launching primitive (Line
01 of Fig. 9). Additionally, in order to make possible that each kernel works
in a different workspace, the PARLLMK(variable_name, variable_type,
variable_length) macro automatically computes the memory offset allocation
of the corresponding variables that are task-dependent (Lines 04–05 of Fig. 9).

5.4 Automatic Kernel Tuning (Tuning Layer): TuCCompi_KERNELCHAR

The optimization layer automatically configures the kernel parameters depending on:
(1) The GPU architecture where it is going to be launched, and (2) the kernel charac-
teristics provided by the user.

In order to obtain the optimal values in termsof kernel features,wehave followed the
guidelines proposed in [10]. The authors designed and implemented a suite of micro-
benchmarks, called uBench, in order to evaluate how different threadBlock sizes and
shapes affect the performance for each GPU architecture (Fermi and Kepler). They
characterized and classified a wide range of kernel types, also presenting the optimal
configurations for them. As previously discussed in Sect. 4.4, we have implemented
a classification based on the previously cited work.

As long as themodel recognizes the architecture of theGPUs that are present in each
cluster node, it only needs to know the characterization of each user-defined kernel.
This characterization is indicated by the programmer before the kernel definition (see
previous example of Fig. 6), and automatically mapped to a structure that contains
the optimal values for all classified architectures (see Fig. 10). As can be seen in lines
02–03 of Fig. 9, these values are already embedded in the primitive of kernel launching
as a call to the t_grid() function, that returns the optimal number of blocks, and
t_threads(), that returns the optimal number of threads per block. In this way,
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00: #define TuCCompi KERNELCHAR(name, numDim, A, B, C, D)\
01: int k ##name[4] = k ##A##B##C##D

02: #define t threads(name,arch) k ##name[arch]
03: #define t grid(name,arch,size) size/k ##name[arch]

04: #define k defdefdefdef {256, 256, 256, 256}
05: #define k scatterlowhighlow {256, 256, 96, 64}
06: #define k coalescedlowlowmedium {256, 128, 192, 128}
07: #define ...

Fig. 10 Some declaration examples for the automatic GPU kernel optimizations

TuCCompi automatically selects the optimal configuration of the threadsBlock size–
shape.

If the user does not know how to characterize his kernel, the default values can be
used. These values are recommended by CUDA [20], to maximize the SMOccupancy.
Although these recommended values sometimesworkwell,wewill see that there could
be performance differences of more than ten percent compared to the optimal values.

5.5 Advanced TuCCompi Model Features

TuCCompi model has additional functionalities and features, such as the possibility
of executing a more complex workload scheduling policy created by the user, or the
possibility of changing the optimal values for each kernel and GPU. We will now
describe two plugin systems that help with these functions.

5.5.1 Scheduling Plug-In System

The current master–slave policy involved in the prototype gives a simple implementa-
tion where only one task is scheduled to each slave independently of its computational
power. The master and the slaves execute, respectively, the master-function and slave-
function codes provided in the scheduling plug-in. Additionally, if the problem or
the user need a different granularity or a particular load distribution that follows a
special pattern or policy, the model allows the programmer to use his own scheduling
implementation. This is done by injecting new distribution policies through a schedul-
ing plug-in system, using an extended primitive TuCCompi_PARALLEL(MS,
pluginCPU, pluginGPU, pluginMASTER, pluginSLAVE).

This is very useful if the user has in the heterogeneous environment some devices
thatworks very fast comparedwith the rest. In this case, itmay be a good choice that the
master gives them a pack of tasks instead of a single one. When an OpenMP thread
responsible of a GPU device asks for tasks, it is able to retrieve the corresponding
device information that could be sent to the master in the requesting message. With
this information, themaster could give a pack of tasks to themost powerful devices and
a single one to the less powerful computational units. Thus, the master can produce a
more complex distribution depending on the capabilities of the computational units that
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00:void master scheduler(task ini,total tasks){
01: int next task = task ini;
02: while( next task < total tasks ){
03: RECV(id slave, any slave, slave info);
04: if( slave info == (FERMI or KEPLER) ){
05: if( (next task + MK) <= total tasks){
06: SEND(next task, id slave);
07: next task = next task + MK;
08: }else{
09: SEND(END SIGNAL, id slave);
10: token++;
11: }
12: }else{
13: SEND(next task, id slave);
14: next task++;
15: }
16: }
17: while( token < total cu-1 ){
18: RECV(id slave, any slave);
19: SEND(END SIGNAL, id slave);
20: token++;
21: }
22:}

00:SSSP pluginGPU(...){
01: user code

02: while( ){
03: TuCCompi GPULAUNCH(relax,n v,v d,a d,w d,
07: PARLLMK(p d, bool, n v),
08: PARLLMK(f d, bool, n v),
09: PARLLMK(c d, int, n v) )
11: TuCCompi GPUSYN( )
12: TuCCompi GPULAUNCH(min,n v,v d,a d,w d,
16: PARLLMK(p d, bool, n v),
17: PARLLMK(f d, bool, n v),
18: PARLLMK(c d, int, n v) )
20: TuCCompi GPUSYN( )
21: TuCCompi GPULAUNCH(update,n v,v d,a d,w d,
25: PARLLMK(p d, bool, n v),
26: PARLLMK(f d, bool, n v),
27: PARLLMK(c d, int, n v) )
29: TuCCompi GPUSYN( )
30: }
31: user code

32:}//SSSP pluginGPU

23: int slave(id slave, mpi master, tag){
24: SEND(id slave, mpi master, tag);
25: RECV(task, mpi master, id slave);
26: return task;
27: }

Fig. 11 Our case-study implementation for the functions, master and slave (left), of the distribution plug-in.
Case-study user implementation for pluginGPU (right)

are asking for work. Figure 11 shows a customized implementation of the scheduling
plug-in created for the case study.

5.5.2 Characterization Plug-In System

The optimal values for GPU configurations used by the Characterization plug-in are
stored in a file. These values can be easily updated if new devices with different
architectures or resources are added to the heterogeneous environment. Moreover, it is
also easy tomodify these values if the user wants to experimentwith new combinations
of parameters.

6 Case Study

In order to illustrate the capabilities of the TuCCompi framework prototype, we have
chosen the APSP problem for sparse graphs, as our case study because it is a repre-
sentative example with good characteristics to evaluate the model features. Being an
embarrassingly parallel problem, it suits perfectly with TuCCompi approach for the
first three layers. Besides, the GPU solution for this problem involves three kernels of
very different nature, and characterization. This variety allows us to check the behavior
of the fourth and tuning layers.
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Algorithm 1 GPU code of Crauser’s algorithm. Kernels are delimited by <<< ... >>>.

1: while (Δ �= ∞) do
2: <<<relax>>> (U, F, δ); //Edge relaxation
3: Δ =<<<minimum>>> (U, δ); //Settlement step_1
4: <<<update>>> (U, F, δ,Δ); //Settlement step_2
5: end while

In this section we explain this problem in more detail and we describe the corre-
sponding plug-ins developed for the TuCCompi model.

6.1 The All-Pair Shortest-Path (APSP) Problem

The APSP problem is a well-known problem in graph theory whose objective is to
find the shortest paths between any pair of nodes. Given a graph G = (V, E) and a
function w(e) : e ∈ E that associates a weight to the edges of the graph, it consists
in computing the shortest paths for all pair of nodes (u, v) : u, v ∈ V . The APSP
problem is a generalization of a classical problem of optimization, the single-source
shortest-path (SSSP), that consists in computing the shortest paths from just one source
node s to every node v ∈ V .

An efficient solution for the APSP problem in sparse graphs is to execute a SSSP
algorithm |V | times selecting a different node as source in each iteration. The classical
algorithm that solves the SSSP problem is due to Dijkstra [21]. Crauser et al. in [22]
introduces an enhancement that tries in each iteration i to augment the threshold Δi

as much as possible to process more nodes in the next iteration.

6.2 Plug-Ins Used for Our Case Study

Scheduling Plug-In: Each SSSP computation is a single independent task. We have
slightly modified the naive master–slave behavior in order to show how easily is to
customize the scheduling plug-in, see Fig. 11 (left). Themaster differentiates the nature
of the slave that is requesting a task. Depending on the slaves computational power,
the master will send more or less tasks. The TuCCompi model is better exploited if the
master gives more tasks to the modern GPUs (Fermi, Kepler and so on) due to their
multi-kernel execution feature. This implementation sends MK tasks to each modern
GPU, and only one for the Pre-Fermi architectures and the CPU cores.

Figure 11 (left) shows themaster (lines 00–22) and slave (lines 23–27) implementa-
tions. The master will manage the task distribution while there are task to be executed
(lines 01–16). To do so, the master waits for a task request from any slave (line 3). If
the slave is a modern GPU (Fermi or Kepler) (line 04), the master checks if there are
MK available tasks to be sent. In this case, it sends the identifier of the first task of the
pack to the corresponding slave using its identifier, and updates the task counter (lines
05–07). However, if there are not enough tasks for this type of slave, the master sends
to it the termination signal and updates the counter of slaves that have already finished
(lines 08–11). If the requesting slave is an old GPU (pre-Fermi) or a CPU-core, the
master only sends a single task to the slave (lines 12–15), thus, the task counter is
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Table 2 Summary of kernels
characterization

Kernel A B C D

Relax Scatter Low High Low

Minimum Coalesced Low Low Medium

Update Coalesced Low Low Low

simply incremented. When all tasks have been scheduled and carried out, the master
sends the termination signal to the rest of active slaves when they request more tasks
(lines 17–21).

Regarding the slave implementation, it first notifies the master that it is idle (line
24). Then the slave receives the identifier of the task pack to be executed, 1 task for
CPU-cores and Pre-Fermi GPUs, andMK tasks for the modern GPUs in this prototype
(line 25).
SSSP Plug-Ins: Both the CPU-core sequential and the parallel GPU codes are imple-
mentations of the Crauser algorithm. Their implementation for this problem has been
taken from [23]. Algorithm 1 shows the GPU parallel pseudo-code of Crauser’s algo-
rithm. Figure 11 (right) shows the TuCCompi implementation for the pluginGPU.
This implementation repeatedly launches three kernels (relax, minimum and update)
with different features. Following the classification criteria described in Sect. 4.4, the
kernels are characterized in Table 2.

7 Experimental Evaluation

This section describes the methodology used to test the TuCCompi prototype, the
platforms used, and the input set characteristics for the case study (theAPSP problem).
Finally, the experimental results and a discussion are presented.

7.1 Methodology

In order to evaluate TuCCompi for heterogeneous environments, we have tested the
APSP problem as a case study (see Sect. 6) in different scenarios. Each scenario was
designedwith the aim to check the use of the layers involved in an incremental fashion.
Architecture details are shown in Table 3: (1) a single GPU, that uses the 3rd, 4th, and
the tuning layer; (2) two GPUs, that involve the 2nd layer in addition to the previous
ones; (3) Pegaso: a shared-memory system with two GPUs and eight CPU-cores (two
for handling the GPUs and six for computing), in order to test the 2nd layer by mixing
two different kinds of computational units; (4) small HC: small heterogeneous cluster,
that uses all layers of TuCCompi; and (5) bigHC: big heterogeneous cluster to evaluate
the scalability of the model.

We set the parameter of the concurrent kernel execution to four (MK=4). The
workload scheduling used for the scenarios described below is the customizedmaster–
slave policy presented in Sect. 6.2. Note that the behavior of the equitable policies,
for our heterogeneous scenarios would result in a bottleneck of the slowest node
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Table 3 Description of the components that compound the heterogeneous clusters (HCs)

Node CPUInfo #CPU-cores GPU details

Small heterogeneous cluster (small HC)

Pegaso IC2 i7 960 3.20GHz 8 GeForce GTX 480 + GeForce
GTX 680

Nodoyuna IC2 Q8200 2.33GHz 4 –

Trasgo/Apolo IC2 Q6600 2.40GHz 4/4 –

Geopar IX E7310 1.6GHz 16 –

Patan IC2 E6550 2.33GHz 2 –

Atc01/02 IC2 6300 1.86GHz 2/2 GeForce 9600GT/–

Atc03 AMD AtX23600+ 2 GeForce 8500GT

Atc09 IC Q8299 2.33GHz 4 –

Big heterogeneous cluster (big HC): small HC plus the following machines

Titan01/02/05 IX E5-2620 2.00GHz 4/4/12+12 –

Titan03/04 IX E5645 2.40GHz 8+8/8+8 –

Atc05/06 IX E5630 2.53GHz 8+8/4 –

Atc07 IX X-5675 3.07GHz 12+12 –

Atc08 IX E5-2620 2.00GHz 12+12 –

whereas the rest are idle. Table 3 describes the heterogeneous platforms used for our
experiments. For each node, we indicate the number of CPU-cores and GPUs. The
nodes run Ubuntu Desktop 10.04 OS, with CUDA 4.2 and driver 295.41. The Big HC
contains a total of 180 CPU-cores and 4GPUs. However, eachGPU device is governed
by a single CPU core, thus, the total number of real computational units is 180 (176
CPU-cores plus 4 GPUs). The multi-GPU system includes the 2 GPUs of the Pegaso
machine. The single GPU scenario uses the fastest of them, the GTX 480.

Finally, with the aim of testing the performance gain offered by the proposed 4th
and Tuning layers, we have compared the execution of a single GPU connecting or
disconnecting the optimizations introduced by these layers. For the non-automatically
optimized versions (without 4th and Tuning layers), we have chosen some of the
optimal values recommended by CUDA that maximize the GPU occupancy executing
a single kernel at a time.

7.2 Input Set Characteristics

The input set is composed of a collection of graphs randomly generated by a graph-
creation tool used by [24] in their experiments. The graph generation method leads to
irregular loads when applying individual SSSP searches. The graphs are stored in stan-
dard CSR format, and the edge weighs are integers that randomly range from 1 . . . 10.
We have used four different graph-sizes, whose number of vertices are 1,049,088,
1,509,888, 2,001,408 and 2,539,008. These sizes have been chosen because they are
multiple of the threadBlock sizes considered. In this way the GPU algorithm is easier
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to implement becausewe do not have to use padding techniques to avoid buffer overrun
errors. The experiments have been carried out just computing enough task sets (1024,
2048, 4096, 8102, 16,204, and 32,408) to produce sufficient computational load to
keep scalability in all scenarios.

7.3 Experimental Results

7.3.1 GPUs Versus the Heterogeneous Environments

Figure 12 (left) shows the execution times for the single GPU, the multi-GPU system
and the two heterogeneous cluster scenarios. Although the GPUs are the most pow-
erful devices, and their combined use significantly decreases the execution times, the
addition of many less-powerful computational units enhances even more the total per-
formance gain. Moreover, the use of this model has a communication overhead across
nodes lower than 1%. In the Small-HC scenario, this overhead has never surpassed
0.589% of the total execution time. Figure 13 shows the experimental distribution of
tasks per cluster node using the MS scheduling policy, compared with the theoretical
values that EQ1 and EQ2 static policies would obtain.
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7.3.2 The 4th and Tuning Layers Performance Gain

Figure 12 (right) shows the comparison of the concurrent kernel execution, with
MK=4, combined with the values proposed in [10], with respect to one of the
CUDA recommended values for each kind of APSP kernel on the GPU GeForce
GTX 480, with only one kernel per time. The use of the concurrent kernel layer
and the optimization tuning reduces the execution time for our test case up to
12%.

8 Conclusions and Future Work

In this paper we propose TuCCompi, a multilayer abstract model that helps the pro-
grammer to easily obtain flexible and portable programs that automatically detect
at run-time the available computational resources and exploits hybrid clusters with
heterogeneous devices. This model offers to the programmer a transparent and easy
mechanism to select the optimal values of GPU configuration parameters just char-
acterizing the nature of the kernels. Any parallel application that can be devised as a
collection of non-dependent tasks working on shared data-structures can be exploited
with the TuCCompi model.

Compared with previous works, TuCCompi adds a novel parallel layer to the tra-
ditional parallel dimensions, with the automatic execution of concurrent kernels in a
single GPU. Additionally, it squeezes evenmore the computational power of the GPUs
by applying optimal values for runtime configuration parameters, such as the thread-
block size. For our test case, the use of these both new layers leads to performance
improvements of up to the 12%. Thus, these new layers turn out very significant for
heterogeneous clusters with GPUs.

Themodel is designed to provide amechanismof plug-ins, in order to easily change:
(1) The algorithms to be deployed; (2) the scheduling policies of the tasks; and (3) the
parameter values for optimal configurations of different GPU architectures, without
making any change in the model. The use of this model exploits even the less powerful
devices of a heterogeneous cluster, and it correctly scales if more computational units
are added to the environment, with a communication overhead less than one percent
of the total execution time.

Our future work includes the implementation and testing of new scheduling plug-
ins for new kinds of applications, also including problems with data-dependencies,
and for specific data partition and data distribution schemes, needed in problems with
larger input data sets. Regarding the concurrent kernel layer, we plan to incorporate
an optional autotuning behavior that allows the framework to find the optimal number
of kernels to be deployed during the execution.
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