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Abstract Tabling is an implementation technique that improves the declarativeness
and expressiveness of Prolog systems in dealing with recursion and redundant sub-
computations. A critical component in the design of a concurrent tabling system is
the implementation of the table space. One of the most successful proposals for rep-
resenting tables is based on a two-level trie data structure, where one trie level stores
the tabled subgoal calls and the other stores the computed answers. In previous work,
we have presented a sophisticated lock-free design where both levels of the tries where
shared among threads in a concurrent environment. To implement lock-freedom we
used the CAS atomic instruction that nowadays is widely found on many common
architectures. CAS reduces the granularity of the synchronization when threads access
concurrent areas, but still suffers from problems such as false sharing or cache mem-
ory effects. In this work, we present a simpler and efficient lock-free design based on
hash tries that minimizes these problems by dispersing the concurrent areas as much
as possible. Experimental results in the Yap Prolog system show that our new lock-
free design can effectively reduce the execution time and scales better than previous
designs.
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1 Introduction

Tabling [5] is a recognized and powerful implementation technique that overcomes
some limitations of traditional Prolog systems in dealing with recursion and redundant
sub-computations. Tabling is a refinement of Prolog’s SLD resolution that stems from
one simple idea: save intermediate answers for current computations, in a specific data
area called the table space, so that they can be reused when a similar computation
appears during the resolution process. Tabled evaluation can reduce the search space,
avoid looping and have better termination properties than SLD resolution. Work on
tabling proved its viability for application areas such as deductive databases [17],
model checking [15], parsing [10], program analysis [6], reasoning in the semantic
Web [21], among others. Currently, tabling is widely available in systems like ALS-
Prolog, B-Prolog, Ciao, Mercury, XSB and Yap Prolog.

Multithreading in Prolog is the ability to perform concurrent computations, in which
each thread runs independently but shares the program clauses [ 13]. When multithread-
ing is combined with tabling, we have the best of both worlds, since we can exploit the
combination of higher procedural control with higher declarative semantics. Despite
the availability of both multithreading and tabling in some Prolog systems, the effi-
cient implementation of these two features, such that they work together, implies a
complex redesign of several components of the underlying engine. XSB was the first
Prolog system to combine tabling with multithreading [11]. In more recent work [2],
we have proposed an alternative view to XSB’s approach, where each thread views its
tables as private but, at the engine level, we use a common table space, i.e., from the
thread point of view, tables are private but, from the implementation point of view,
tables are shared among all threads.

A critical component in the design of an efficient concurrent tabling system is the
implementation of the data structures and algorithms that manipulate tabled data. Our
initial approach, implemented on top of the Yap Prolog system [18], was to use lock-
based data structures [2]. Yap implements a two-level trie data structure, where one
trie level stores the tabled subgoal calls and the other stores the computed answers [16].
More recently [3], we presented a sophisticated lock-free design to deal with concur-
rency in both trie levels. Lock-freedom allows individual threads to starve but guaran-
tees system-wide throughput. To implement lock-freedom we took advantage of the
CAS atomic instruction that nowadays is widely found on many common architectures.
CAS reduces the granularity of the synchronization when threads access concurrent
areas, but still suffers from contention points where synchronized operations are done
on the same memory locations, leading to problems such as false sharing or cache
memory ping pong effects.

In this work, we go one step further and we present a simpler and efficient lock-free
design based on hash tries that minimizes these problems by dispersing the concurrent
areas as much as possible. Hash tries (or hash array mapped tries) are a trie-based data
structure with nearly ideal characteristics for the implementation of hash tables [4].
An essential property of the trie data structure is that common prefixes are stored only
once [7], which in the context of hash tables allows us to efficiently solve the problems
of setting the size of the initial hash table and of dynamically resizing it in order to deal
with hash collisions. Several approaches exist in the literature for the implementation
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of lock-free hash tables, such as Shalev and Shavit [19] split-ordered lists, Triplett et
al. [20] relativistic hash tables or Prokopec et al. [14] CTries. However, to the best
of our knowledge, none of them is specifically aimed for an environment with the
characteristics of our tabling framework that does not requires deletion support.! The
aim of our proposal is to be as effective as possible in the search and insert operations,
by exploiting the full potentiality of lock-freedom on those operations, and in such
a way that it minimizes the bottlenecks and performance problems mentioned above
without introducing significant overheads for sequential execution.

To put our proposal in perspective, we therefore first compared it against some of
the best-known currently available implementations, such as the ConcurrentHashMap
and ConcurrentSkipListMap from the Java standard library, as well as two different
version of the CTries, and for that we used a publicly available framework, also used
for benchmarking the previously mentioned CTries work. Our experiments show that
our new lock-free hash-trie design can effectively reduce the execution time and scales
better than all the other implementations on top of a 32 Core AMD machine. In the
context of Yap’s concurrent tabling support, we then evaluated our proposal against all
the previously implemented lock-based and lock-free strategies. Results in the same
machine show indeed that our new lock-free hash trie design can also reduce the
execution time and scales better than all the previous designs.

The remainder of the paper is organized as follows. First, we introduce some back-
ground and discuss the general idea behind our proposal. Next, we describe the algo-
rithms that support the implementation and present their proof of correctness. Then, we
show experimental results obtained independently for the framework mentioned above
and for concurrent tabling within Yap Prolog. We end by outlining some conclusions.

2 Background

A trie is a tree structure where each different path corresponds to a term described
by the tokens labeling the nodes traversed. For example, the tokenized form of the
term p(1, f(X)) is the sequence of four tokens p/2, 1, f/1 and VAR(y, where each
variable is represented as a distinct VAR; constant. Two terms with common prefixes
will branch off from each other at the first distinguishing token. Consider, for example,
asecond term p(1, a). Since the main functor and the first argument, tokens p/2 and 1,
are common to both terms, only one additional node will be required to fully represent
this second term in the trie. Figure 1 shows the trie structure representing both terms.

Whenever the chain of child nodes for a common parent node becomes larger than
a predefined threshold value, a hash mechanism is used to provide direct node access
and therefore optimize the search. To deal with hash collisions, all previous Yap’s
approaches implemented a dynamic resizing of the hash tables by doubling the size
of the bucket entries in the hash [2,3]. In this work, we present a simpler and efficient
lock-free design based on hash tries to implement the hash mechanism inside the

I'n general, a tabled program is deterministic, finite and only executes search and insert operations over
the table space data structures. In Yap Prolog, space is recovered when the last running thread abolishes a
table. Since no delete operations are performed, the size of the tables always grows monotonically during
an evaluation.
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Fig. 2 Trie hierarchical levels overview

subgoal and answer tries. To put our proposal in perspective, Fig. 2 shows a schematic
representation of the trie hierarchical levels we are proposing to implement Yap’s table
space.

For each tabled predicate, Yap implements tables using two levels of tries together
with the table entry and subgoal frame auxiliary data structures [16]. The first level, the
subgoal trie, stores the tabled subgoal calls and the second level, the answer trie, stores
the answers for a given call. Then, for each particular subgoal/answer trie, we have as
many trie levels as the number of parent/child relationships (for example, the trie in
Fig. 1 has 4 trie levels). Finally, to implement hashing inside the subgoal/answer tries,
we use another trie-based data structure, the hash trie, which is the focus of the current
work. In a nutshell, a hash trie is composed by internal hash arrays and leaf nodes.
The leaf nodes store key values and the internal hash arrays implement a hierarchy of
hash levels of fixed size 2". To map a key into this hierarchy, we first compute the
hash value % for key and then use chunks of w bits from % to index the entry in the
appropriate hash level. Hash collisions are solved by simply walking down the tree as
we consume successive chunks of w bits from the hash value /.

3 Our Proposal By Example

We will use two examples to illustrate the different configurations that the hash trie
assumes for one and two levels (for more levels, the same idea applies). We begin with
Fig. 3 showing a small example that illustrates how the concurrent insertion of nodes
is done in a hash level.
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Fig. 3 Insert procedure in a hash level

Figure 3a shows the initial configuration for a hash level. Each hash level H; is
formed by a bucket array of 2" entries and by a backward reference to the previous
level (represented as Prev in the figures that follow). For the root level, the backward
reference is Nil. In Fig. 3a, Ej represents a particular bucket entry of the hash level.
Ej and the remaining entries are all initialized with a reference to the current level
H;. During execution, each bucket entry stores either a reference to a hash level or
a reference to a separate chaining mechanism, using a chain of internal nodes, that
deals with the hash collisions for that entry. Each internal node holds a key value and a
reference to the next-on-chain internal node. Figure 3b shows the hash configuration
after the insertion of node K on the bucket entry E; and Fig. 3c shows the hash
configuration after the insertion of nodes K> and K3 also in E. Note that the insertion
of new nodes is done at the end of the chain and that any new node being inserted
closes the chain by referencing back the current level.

During execution, the different memory locations that form a hash trie are consid-
ered to be in one of the following states: black, white or gray. A black state represents
a memory location that can be updated by any thread (concurrently). A white state
represents a memory location that can be updated only by one (specific) thread (not
concurrently). A gray state represents a memory location used only for reading pur-
poses. As the hash trie evolves during time, a memory location can change between
black and white states until reaching the gray state, where it can no longer be updated.

The initial state for Ey is black, because it represents the next synchronization point
for the insertion of new nodes. After the insertion of node K, E; moves to the white
state and K| becomes the next synchronization point for the insertion of new nodes.
To guarantee the property of lock-freedom, all updates to black states are done using
CAS operations. Since we are using single word CAS operations, when inserting a
new node in the chain, first we set the node with the reference to the current level and
only then the CAS operation is executed to insert the new node in the chain.

When the number of nodes in a chain exceeds a MAX NODES threshold value,
then the corresponding bucket entry is expanded with a new hash level and the nodes in
the chain are remapped in the new level. Thus, instead of growing a single monolithic
hash table, the hash trie settles for a hierarchy of small hash tables of fixed size 2.
To map our key values into this hierarchy, we use chunks of w bits from the hash
values computed by our hash function. For example, consider a key value and the
corresponding hash value /. For each hash level H;, we use the bits [w * i, w * (i +
1) — 1] in & to index the entry in the appropriate bucket array, i.e., we consume 4 one
chunk at a time as we walk down the hash levels. Starting from the configuration in
Figs. 3c and 4 illustrates the expansion mechanism with a second level hash H; for
the bucket entry Ey.
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Fig. 4 Expanding a bucket entry with a second level hash

The expansion procedure is activated whenever a thread T meets the following
two conditions: (1) the key at hand was not found in the chain and (2) the number
of nodes in the chain is equal to the threshold value (in what follows, we consider
a threshold value of three nodes). In this case, T starts by pre-allocating a second
level hash H;, with all entries referring the respective level (Fig. 4a). At this stage,
the bucket entries in H;4 can be considered white memory locations, because the
hash level is still not visible to the other threads. The new hash level is then used to
implement a synchronization point with the last node on the chain (node K3 in the
figure) that will correspond to a successful CAS operation trying to update H; to H;4
(Fig. 4b). From this point on, the insertion of new nodes on Ej; will be done starting
from the new hash level H; .

If the CAS operation fails, that means that another thread has gained access to the
expansion procedure and, in such case, T aborts its expansion procedure. Otherwise,
T starts the remapping process of placing the internal nodes K, K> and K3 in the
correct bucket entries in the new level. Figure 4c—h show the remapping sequence in
detail. For simplicity of illustration, we will consider only the entries E,, and E, on
level H;;1 and assume that K1, K; and K3 will be remapped to entries E,,, E, and
E,, respectively. In order to ensure lock-free synchronization, we need to guarantee
that, at any time, all threads are able to read all the available nodes and insert new
nodes without any delay from the remapping process. To guarantee both properties,
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the remapping process is thus done in reverse order, starting from the last node on the
chain, initially K3.

Figure 4c then shows the hash trie configuration after the successful CAS operation
that adjusted node K3 to entry E),. After this step, E,, moves to the white state and K3
becomes the next synchronization point for the insertion of new nodes on E,. Note
that the initial chain for £ has not been affected yet, since K> still refers to K3. Next,
on Fig. 4d, the chain is broken and K> is updated to refer to the second level hash
H;. The process then repeats for K (the new last node on the chain for Ey). First,
K> is remapped to entry E, (Fig. 4e) and then it is removed from the original chain,
meaning that the previous node K is updated to refer to H;1 (Fig. 4f). Finally, the
same idea applies to the last node K. Here, K is also remapped to a bucket entry
on H; 1 (E,, in the figure) and then removed from the original chain, meaning in this
case that the bucket entry Ey itself becomes a reference to the second level hash H;
(Fig. 4h). From now on, E is also a gray memory location since it will be no longer
updated.

Concurrently with the remapping process, other threads can be inserting nodes in
the same bucket entries for the new level. This is shown in Fig. 4e, where a node K4
is inserted before K in E, and, in Fig. 4g, where a node K35 is inserted before K
in E,,. As mentioned before, lock-freedom is ensured by the use of CAS operations
when updating black state memory locations.

To ensure the correctness of the remapping process, we also need to guarantee that
the nodes being remapped are not missed by any other thread traversing the hash trie.
Recall that any chaining of nodes is closed by the last node referencing back the hash
level for the node. Thus, if when traversing a chain of nodes, a thread 7 ends up
in a hash level H;,, different than the initial hash level H;, this means that T has
started from a bucket entry Ej being remapped, which includes the possibility that
some nodes initially on Ej; were not seen by 7. To guarantee that no node is missed,
T simply needs to move backwards and restart its traversal from H; 4.

We argue that a key design decision in our approach is thus the combination of
hash tries with the use of a separate chaining (with a threshold value) to resolve
hash collisions (the original hash trie design expands a bucket entry when a sec-
ond key is mapped to it). Also, to ensure that nodes being remapped are not missed
by any other thread traversing the hash trie, any chaining of nodes is closed by the
last node referencing back the hash level for the node, which allows to detect the
situations where a node changes level. This is very important because it allows to
implement a clean design to resolve hash collisions by simply moving nodes between
the levels. In our design, updates and expansions of the hash levels are never done
by using data structure replacements (i.e., create a new one to replace the old one),
which also avoids the complex mechanisms necessary to support the recovering of
the unused data structures. Another important design decision that minimizes the
low-level synchronization problems leading to false sharing or cache memory effects,
is the insertion of nodes done at the end of the separate chain. Inserting nodes at
the end of the chain allows for dispersing the memory locations being updated con-
currently as much as possible (the last node is always different) and, more impor-
tantly, reduces the updates for the memory locations accessed more frequently, like
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the bucket entries for the hash levels (each bucket entry is at most only updated
twice).

4 Algorithms

This section presents the algorithms that implement our new lock-free hash trie design.
We begin with Algorithms 1 and 2 that show the pseudo-code for the search/insert
operation of a given key K in a hash level H. In a nutshell, the algorithms execute
recursively, moving through the hierarchy of hash levels until K is found or inserted
in a hash level H (for the entry call, H is the root level). Algorithm 1 deals with the
hash level data structures and Algorithm 2 deals with the internal nodes in a separate
chaining.

Algorithm 1 SearchinsertKeyOnHash(K , H)
1: B < GetHashBucket(K, H, Level(H))
2: if EntryRef (B) = H then {B is an empty bucket}
3:  newNode < AllocNode()
4. Key(newNode) < K
5:  NextRef (newNode) < H
6. if CAS(EntryRef (B), H, newNode) then
7 return newNode
8. else
9 FreeNode(newNode)
10: R < EntryRef (B)
11: if IsNode(R) then {start traversing the chain}
12: return SearchinsertKeyOnChain(K, H, R, 1)
13: else {R references a second level hash}
14:  return SearchinsertKeyOnHash(K, R)

In more detail, Algorithm 1 starts by applying the hash function that allows obtaining
the appropriate bucket entry B of H that fits K (line 1). Next, if B is empty (i.e., if
B is referencing back the hash level H), then a new node newNode representing K
is allocated and properly initialized (lines 3-5). Then, the algorithm tries to insert K
on the head of B by using a CAS operation that updates H to newNode (line 6). If
the operation is successful, then the node was successfully inserted and the algorithm
ends by returning it (line 7). Otherwise, in case of failure, the head of B has changed
in the meantime, so B is not empty (lines 10-14). Here, the algorithm then reads the
reference R on B (line 10) and checks whether it references an internal node or a
second hash level. If R is a node, then it calls Algorithm 2 to traverse the chain of
nodes (line 12). Otherwise, it calls itself, but now for the second level hash represented
by R (line 14).

Algorithm 2 shows the search/insert operation of a given key K in a hash level H
starting from a node R at position C in a separate chaining (for the entry call, C is 1
and R is the head node in the chain). Initially, the algorithm simply checks if R holds
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the key K, in which case, it ends by returning R (lines 1-2). Otherwise, it checks if R
is the last node in the chain (line 3). If so, then two situations might occur: (1) the chain
is full, in which case, the expansion procedure should be activated (lines 5-13); or (2)
the chain is not full, in which case, a new node representing K should be inserted in
the chain (lines 15-21).

Algorithm 2 SearchinsertKeyOnChain(K, H, R, C)

1: if Key(R) = K then {we have found K in the chain}
return R
3: if NextRef (R) = H then {R is last in the chain}
4: if C = MAX_NODES then {chain is full}
5 newHash < AllocInitHash(Level(H) + 1)
6: PrevHash(newHash) < H
7
8
9

»

if CAS(NextRef (R), H, newHash) then
B <« GetHashBucket(K, H, Level(H))
: AdjustChainNodes(EntryRef (B), newHash)
10: UPDATE (EntryRef (B), newHash)

11: return SearchinsertKeyOnHash(K, newHash)
12: else

13: FreeHash(newHash)

14:  else

15: newNode < AllocNode()

16: Key(newNode) <— K

17: NextRef (newNode) < H

18: if CAS(NextRef (R), H, newNode) then

19: return newNode
20: else
21: FreeNode(newNode)

22: R < NextRef (R)

23: if IsNode(R) then {keep traversing the chain}

24:  return SearchinsertKeyOnChain(K,H,R, C + 1)
25: else {R references a second level hash}

26:  while PrevHash(R) # H do {move backwards}
27: R < PrevHash(R)

28: return SearchinsertKeyOnHash(K, R)

For the former situation, a second level hash new Hash is first allocated and ini-
tialized (lines 5—6) and then used to implement a synchronization point that will
correspond to a CAS operation trying to update the next reference of R from H
to newHash (line 7). If the CAS operation fails, that means that another thread
has gained access to the expansion procedure. Otherwise, if successful, the algo-
rithm starts the remapping process of adjusting the internal nodes on the separate
chaining, corresponding to the bucket entry B at hand, to the new hash level (line
9) and, for that, it calls the AdjustChainNodes() procedure (see Algorithm 3 next).
After that, it updates the bucket entry B to refer to the new level (line 10) and then
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Algorithm 1 is called again, this time to search/insert for K in the new hash level
(line 11).

For the latter situation (lines 15-21), a new node representing K is allocated and
properly initialized (lines 15—17), and a CAS operation tries to insert it at the end of the
chain. If successful, the reference to the new node is returned. Otherwise, this means
that another thread has inserted another node in the chain in the meantime, which lead
us to the situation in the last block of code (lines 22-28), where R is not last in the
chain.

In the last block of code, the algorithm then updates R to the next reference in the
chain (line 22) and, as in Algorithm 1, it checks whether R references an internal node
or a second hash level. If R is still a node, then the algorithm calls itself to continue
traversing the chain of nodes (line 24). Otherwise, it returns to Algorithm 1, but now
for the hash level after the given hash H (lines 26-28). Note that, if other threads are
simultaneously expanding the hash tries, it might happen that we end in a hash level
several levels deeper and thus incorrectly miss the node we are searching for. This
is why we need to move backwards to the hash level after the given hash H (lines
26-27).

Algorithms 3, 4 and 5 show the pseudo-code for the remapping process of adjusting
a chain of nodes to a new hash level H. Algorithm 3 is the entry procedure that
ensures that the remapping process is done in reverse order, Algorithm 4 deals with
the adjustment on hash level data structures and Algorithm 5 deals with the adjustment
on a separate chaining.

In more detail, Algorithm 3 starts by traversing the nodes in the chain until reach-
ing the last one. Then, for each node R in the chain (from last to first), it calls
AdjustNodeOnHash() in order to remap R to the given new hash level H.

Algorithm 3 AdjustChainNodes(R, H)
1: if NextRef (R) # H then
2:  AdjustChainNodes(NextRef (R), H)
3: AdjustNodeOnHash(R, H)
4: return

Algorithm 4 shows the pseudo-code for the process of remapping a given node
N into a given hash H. It is quite similar to Algorithm 1, except for the fact that
there is no need to allocate and initialize a new node with the key at hand (here, we
already have the node). It starts by updating the next reference of N to H (line 1),
next it applies the hash function that allows obtaining the appropriate bucket entry
B of H that fits the key on N (line 2), and then, if B is empty, it tries to success-
fully insert N on the head of B by using a CAS operation (lines 3-5). Otherwise,
B is not empty, and the same procedure as in Algorithm 1 applies (lines 6-10). The
difference is that here it calls the AdjustNodeOnChain() and AdjustNodeOnHash()
algorithms, instead of the SearchinsertKeyOnChain() and SearchinsertKeyOnHash()
algorithms.
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Algorithm 4 AdjustNodeOnHash(N, H)
1: UPDATE (NextRef (N), H)
2: B < GetHashBucket(Key(N), H, Level(H))
3: if EntryRef (B) = H then {B is an empty bucket}
4. if CAS(EntryRef (B), H, N) then
5: return
6: R < EntryRef (B)
7: if IsNode(R) then {start traversing the chain}
8: return AdjustNodeOnChain(N,H, R, I)
9: else {R references a second level hash}
10:  return AdjustNodeOnHash(N, R)

Algorithm 5 then concludes the presentation. It shows the pseudo-code for the
process of remapping a given node N into a hash level H starting from a node R at
position C in a separate chaining. As before, Algorithm 5 also shares similarities, but
now with Algorithm 2, except for the fact that there is no need to check if N already
exists in the chain (lines 1-2 in Algorithm 2) and, as before, that there is no need to
allocate and initialize a new node with the key at hand (lines 15-17 in Algorithm 2).
The last block of code (lines 14-20) is also identical to Algorithm 2, except for the fact
that it calls the AdjustNodeOnChain() and AdjustNodeOnHash() algorithms, instead
of the SearchinsertKeyOnChain() and SearchinsertKeyOnHash() algorithms.

Algorithm 5 AdjustNodeOnChain(N, H, R, C)
1: if NextRef (R) = H then {R is last in the chain}
2: if C = MAX_NODES then {chain is full}
3 newHash < AllocInitHash(Level(H) + 1)
4 PrevHash(newHash) <— H
5 if CAS(NextRef (R), H, newHash) then
6: B < GetHashBucket (K, H, Level(H))
7.
8
9

AdjustChainNodes(EntryRef (B), newHash)
UPDATE (EntryRef (B), newHash)

: return AdjustNodeOnHash(N, newHash)
10 else

11: FreeHash(newHash)
12: else if CAS(NextRef (R), H, N) then
13: return

14: R <— NextRef (R)

15: if IsNode(R) then {keep traversing the chain}

16:  return AdjustNodeOnChain(N,H,R, C + 1)
17: else {R references a second level hash}

18:  while PrevHash(R) # H do {move backwards}
19: R < PrevHash(R)

20: return AdjustNodeOnHash(N, R)
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5 Proof of Correctness

In this section, we discuss the proof of correctness of our lock-free hash trie design.
First, we prove that it is linearizable and then we prove that it is lock-free.

5.1 Linearizability

Linearizability is an important correctness condition for the implementation of con-
current data structures [9]. A operation is linearizable if it appears to take effect
instantaneously at some moment of time 77p between its invocation and response. The
literature often refers to t7p as a Linearization Point (LP) and, for lock-free imple-
mentations, a linearization point is typically a single instant where its effects become
visible to all the remaining operations. Linearizability guarantees that if all operations
individually preserve an invariant, the system as a whole also will. We define now the
invariants that must be preserved on every state of our design:

Invy For every hash level H, PrevHash(H) always refers to the previous hash level.

Invy Given a bucket entry B belonging to a hash level H, B must comply with the
following semantics: (1) its initial reference is H; (2) after the first update, it
must refer to a node N; (3) after the second (and final) update, it must refer to a
hash level H,; such that PrevHash(H;) = H.

Invz Given a node N in a chain of nodes starting from a bucket entry B belonging
to a hash level H, N must comply with the following semantics: (1) its initial
reference is H; (2) after an update, it must refer to another node in the chain or
to a hash level Hy (at least one level) deeper than H.

Inv4 Given a chain of nodes in a bucket entry B belonging to a hash level H, the
number C of nodes in the chain is always lower or equal than a predefined
threshold value MAX_NODES (MAX_NODES > 1).

Lemma 1 [n the initial configuration, all invariants hold.

Proof Consider that H represents the root level for a hash trie (its initial configuration
is the same as the one represented in Fig. 3a). Since H is the root level, the reference
PrevHash(H) is Nil (Invy), each bucket entry B is referring H (Inv;) and the number
C of nodes in any chain is O (Inv; and Invy). O

Lemma 2 In Algorithm 1, if the CAS operation at line 6 succeeds (i.e., if both condi-
tions at lines 2 and 6 are true), then all invariants hold.

Proof After the successful execution of the CAS operation at line 6, the bucket entry
B refers to newNode(Invy), newNode refers to H (Inv3), as initialized at line 5, and
C =1 (Invy). Invy is not affected. O

Lemma 3 [In Algorithm 2, if the CAS operation at line 18 succeeds (i.e., if conditions
at lines 3, 4 and 18 are true, false and true, respectively), then all invariants hold.

Proof After the successful execution of the CAS operation at line 18, the node R refers
to newNode and newNode refers to H, as initialized at line 17 (Inv3). Inv4 also holds
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because since the condition at line 4 failed, meaning that initially C; < MAX_NODES,
the insertion of a new node in the chain after R leadsto Cy = C; +1 < MAX_NODES.
Inv and Inv; are not affected. O

Lemma 4 In Algorithm 2, if the CAS operation at line 7 succeeds (i.e., if conditions
at lines 3, 4 and 7 are all true), then all invariants hold.

Proof After the successful execution of the CAS operation at line 7, the node R refers
to a deeper hash level newHash (Inv3) and PrevHash(newHash) refers to the current
hash level H, as initialized at line 6 (Invy). Inv, and Inv4 are not affected. O

Lemma 5 In Algorithm 2, the execution of the remapping process of adjusting a chain
of nodes to a new hash level at lines 9-10, preserves the set of invariants.

Proof At line 9, the AdjustChainNodes() procedure is called for the chain of nodes
in the bucket entry B and for the deeper hash level newHash and, at line 10, B is
updated to refer to newHash (Inv,). The AdjustChainNodes() procedure then calls
Algorithms 4 and 5. In Algorithm 4, at line 1, the node N being adjusted is made to
refer to a deeper hash level (Inv3). For the remaining parts of Algorithms 4 and 5,
the proofs are similar to the proofs for Algorithms 1 and 2, as shown on the previous
lemmas. Thus, the invariants still hold for Algorithms 4 and 5. O

Corollary 1 The invariants hold on every configuration of our hash trie design due
to Lemmas 1-5.

Every operation that affects the configuration of the hash trie thus takes effect in
specific linearization points, which are:

— SearchinsertKeyOnHash() is linearizable at successful CAS in line 6 (LPy).

— SearchlnsertKeyOnChain() is linearizable at successful CAS in lines 7 (LP;) and
18 (LP3) and when the bucket entry at hand is updated to refer to a deeper hash
level in line 10 (LPy).

— AdjustNodeOnHash() is linearizable at successful CAS in line 4 (LPs) and when
the node at hand is updated to refer to a deeper hash level in line 1 (LPg).

— AdjustNodeOnChain() is linearizable at successful CAS in lines 5 (LP7) and 12
(LPg) and when the bucket entry at hand is updated to refer to a deeper hash level
in line 8 (LPy).

Next, we must prove that for a given key K, if K exists in the hash trie, then the
algorithms are able to find it. Otherwise, if K does not exist, then the algorithms are
able to insert it.

Lemma 6 Consider Algorithm 1 with a given key K and a hash level H. If K exists
in a chain of nodes in a hash level deeper than H, then Algorithm 1 computes the next
hash level Hy where K can be found, and calls itself for Hy. When K exists in a chain
of nodes in H, then Algorithm 1 maps K to the correct bucket B of H that holds K
and calls Algorithm 2 to search for K in the separate chaining of B.
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Proof Since we are assuming that K already exists in a chain of nodes, the code
between lines 2-9 can be ignored because the condition at line 2 is always false. If R
is then a reference to a hash trie, the algorithm calls itself for the next hash level (as
defined by Inv;) and the process continues recursively until the condition at line 11 be
true. At that stage, Algorithm 2 is called to search for K starting from the first node
R in the corresponding separate chaining B of H. O

Lemma 7 Consider Algorithm 2 with a given key K, a hash level H and a reference
to the first node R in a chain of nodes. If K exists in the chain, then Algorithm 2 finds
the node with K.

Proof Since we are assuming that K already exists in a chain of nodes, the code
between lines 3-21 can be ignored because the condition at line 3 is always false. If
the condition at line 1 succeeds then K was found in the chain. Otherwise, if the chain
is not being remapped to a second hash level, the algorithm uses the lines 22-24 to call
itself recursively until it finds K at line 1. If the chain is being remapped, Inv3 ensures
that we will reach a reference to a hash level H; which is deeper than H. Thus, at
some point in the execution, the algorithm reads Hy at line 22, calling Algorithm 1 in
the continuation with a hash level H, one level deeper than H (not that H; can be in
a deeper level than H,). The search process then continues using Lemma 6. Since K
exists and was not found yet, Algorithm 2 will be called again, this time for H, or for
a deeper level and the process will be repeated until K be found in a node. O

Lemma 8 If a given key K does not exist in the hash trie, then it will be inserted in
the linearization points LP| or LP3.

Proof Since we are assuming that K does not exist in the hash trie, then the search pro-
cedure will necessarily end when it finds an empty bucket entry (line 2 in Algorithm 1)
or when it reaches the last node in a chain of nodes not being remapped (line 3 in Algo-
rithm 2). If the CAS operation at line 6 for Algorithm 1 (LP;) or at line 18 for Algo-
rithm 2 (LP3) then succeeds, a new node with the key K was inserted in the hash trie.
Otherwise, in case of CAS failure, the separate chaining at hand was changed by another
thread 7 in the meantime. In particular, it could happen that 7" had inserted a node for
K . The search process is then resumed and if K was inserted by another thread then,
using Lemmas 6 and 7, Algorithm 2 will find it. Otherwise, the search process will end
again in the lines mentioned above until K be successfully inserted in the hash trie. O

Corollary 2 When a thread performs a search/insert operation for a given key K then,
due to Lemmas 6— 8, if K exists in the hash trie, then it is able to find it. Otherwise, if
K does not exist, it is able to insert it.

Theorem 1 Our trie hash design is linearizable.

5.2 Lock-Freedom

The lock-freedom property is very important because, although it allows individual
threads to starve, it guarantees system-wide throughput [8]. To prove that our design
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is lock-free, we will prove that the insert and hash expansion operations always lead
to progress in the state of the hash trie configuration. We will use the linearization
points defined previously to prove that, even when the operations on those points fail,
it exists at least another thread that has updated a memory location in the hash trie
configuration.

Lemma 9 The execution of the operations defined by the linearization points LP 4, LP¢
and LPy leads to progress in the state of the hash trie configuration because such
operations are composed by unconditional updates.

Lemma 10 When a thread executes the operations defined by the linearization points
LP;, LP;>, LP3, LPs, LP7 and LPg then the hash trie configuration has made progress.

Proof All linearization points correspond to CAS operations on a given memory loca-
tion M trying to update an initial reference to a hash level H with a reference R
corresponding to a new node or hash level. Assuming that #; is the instant of time
where a thread T first reads H from M and that ¢7 is the instant of time where T
executes the CAS operation trying to update H to R, then a successful CAS execution
leads to progress in the state of the hash trie configuration because M was updated to
R. Otherwise, if the CAS operation fails, that means that between instants #; and ¢ 1
the reference on M was changed, which means that at least another thread has changed
M between the instants of time #; and 7, thus leading to progress in the state of the
hash trie configuration. O

Corollary 3 When a thread executes one of the linearization points LP1—LPy then,
due to Lemmas 9-10, the hash trie configuration has made progress.

Theorem 2 Our trie hash design is lock-free.

6 Performance Evaluation

Although the driving motivation for our proposal comes from our work on concurrent
tabled logic programs, to put it in perspective, we first compared it against some of the
best-known currently available implementations of lock-free hash tables, and for that
we used a publicly available framework? developed to evaluate lock-free hash tables.
We tested the following implementations: two CTries versions (CT1 is the original
approach and CT2 is a second version with improved snapshots); the Concurren-
tHashMap (CHM) and ConcurrentSkipListMap (CSL) from Java’s standard library;
and our lock-free hash trie design (LFHT)? all implemented on top of JDK version
1.7.0_25.

For the experiments, we used two benchmarks already available in the framework,
insert(N) and lookup(N) for a numeric data-set with N = 107 different elements.

2 Available at https://github.com/axel22/Ctries

3 We have experimented with multiple configurations for the separate chaining and hash levels. Our best
results were obtained with four nodes for the separate chaining and 8 entries for the hash levels, which are
the current default values for the experiments that follow.
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The insert(N) benchmark starts with an empty set and inserts the N elements. The
lookup(N) benchmark does N searches on a previously created data structure contain-
ing the same N elements. For both benchmarks, the work of inserting/searching the N
elements is equally divided between the working threads.* In addition, we created a
new benchmark, named worst(N), for testing a worst case scenario where all threads
fully insert the same N elements (we used a numeric data-set with N = 2 x 10°
different elements). By doing this, it is expected that all threads will access the same
data structures, to search/insert for elements, at similar times, thus stressing the syn-
chronization on common memory locations, which can increase the aforementioned
problems of false sharing and cache memory effects.

The environment for our experiments was a machine with 2 x 16 (32) Core AMD
Opteron (TM) Processor 6274 @ 2.2 GHz with 32 GBytes of memory and running
the Linux kernel 3.8.3-1.fc17.x86_64. We experimented with intervals of 8 threads
up to 32 threads (the number of cores in the machine) and all results are the aver-
age of 25 runs for each benchmark. Figure 5 shows the execution time, in seconds,
and the speedup/overhead, compared against the respective execution time with one
thread, for the five designs when running the insert(N), lookup(N) and worst(N)
benchmarks.

For the insert(N) benchmark (Fig. 5a), LFHT has the best results for the execu-
tion time, showing a significant difference to all other designs. On average, LFHT
is around three times faster than the second best design, which is CT2. Regarding
the speedup, CT2 competes with LFHT for the best results, but for most cases,
LFHT still gets the best speedup. The top speedups for LFHT are 10.78 and
10.99 for 16 and 32 threads. For CT2, the top speedup is 9.96 for 32 working
threads.

For the lookup(N) benchmark (Fig. 5b), CHM achieves the best results for the
execution time followed by CSL and LFHT as third placed. When the work is split
among multiple threads, LFHT is up to 1.5 times faster than CT1 and CT2. For the
speedup, CSL and LFHT show the best results. The top speedup for both designs is
achieved for 32 threads with a 20.03 value for CSL and 18.44 for LFHT.

For the worst(N) benchmark (Fig. 5¢), we are interested in evaluating the robustness
of the implementations when exposed to worst case scenarios. As it is expected that
the execution time with multiple threads will result in worst results when compared
with the base execution time with one thread, we thus show the overhead (not the
speedup) for comparing the execution with increasing number of threads (values close
to 1.00 are thus better). For the execution time, LFHT shows again the best results with
CT2 being very close. For the overhead, CT2 and CT1 are better than LFHT mostly
because the base execution times with one thread are significantly higher than LFHT
(0.50, 0.99 and 1.44 s, respectively, for the LFHT, CT1 and CT2 designs). The CSL
and CHM designs show a poor performance for this benchmark. In particular, CHM
has the worst results with an overhead almost linear to the number of working threads.

4 Due to the lack of space, we are not including mixed insert/lookup benchmarks. Yet, we have experimented
with a lot of mixed scenarios and we have verified that the results obtained are within the bounds of the
results shown next for the insert(N) and lookup(N) benchmarks.
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Fig. 6 Execution time, in seconds, and overhead, against the execution time with one thread, for the set of
19 tabling benchmarks with all threads executing the same query goal for each benchmark

In summary, these experiments show that our new lock-free design clearly outper-
forms all the other designs for the execution times and that, in general, it also achieves
the best results for the speedup/overhead in most experiments.

In the context of Yap, we then evaluated our lock-free hash trie design (LFHT)?
against all the previously implemented lock-based and lock-free strategies for concur-
rent tabling. For the sake of simplicity, here we will only consider Yap’s best lock-based
strategy (LB) and the lock-free design (LF) presented in [3]. For benchmarking, we
used the set of tabling benchmarks from [1] which includes 19 different programs
in total. We choose these benchmarks because they have characteristics that cover
a wide number of scenarios in terms of trie usage. The benchmarks create different
trie configurations with lower and higher number of nodes and depths, and also have
different demands in terms of trie traversing.

Since the system’s performance is highly dependent on the available concurrency
that a particular program might have, our initial goal was to evaluate the robustness of
our implementation when exposed to worst case scenarios. As before, we thus followed
a common approach to create worst case scenarios and we ran all threads executing
the same query goal for each benchmark. By doing that, we avoid the peculiarities
of the program at hand and we try to focus on measuring the real value of our new
design. Since, all threads are executing the same query goal, it is expected that the
aforementioned problems of false sharing and cache memory effects to show up and
thus penalize the less robust designs.

For the experiments, we used Yap Prolog 6.3 running on top of the same 32 Core
AMD machine. To put the results in perspective, we experimented with intervals of 8
threads up to 32 threads and all results are the average of 5 runs for each benchmark.
Figure 6 shows the average execution time, in seconds, and the average overhead,
compared against the respective execution time with one thread, for the LFHT, LF
and LB designs when running the set of tabling benchmarks with all threads executing
the same query goal for each benchmark.

5 Note that we have separate implementations for Yap and for JDK.
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Fig. 7 Execution time, in seconds, and speedup, against the execution time with one thread, for running
the naive scheduler program with the LFHT design

The results clearly show that the new LFHT design achieves the best performance
for both the execution time and the overhead. As expected, LF is the second best and
LB is the worst. In general, our design clearly outperforms the other designs with an
overhead of at most 1.74 for 32 threads. Another important observation is that both
LF and LB show an initial high overhead in the execution time in most experiments,
mainly when going from 1 to 8 threads, in contrast to LFHT that shows more smooth
curves. The difference between LFHT and LF/LB for the overhead ratio in these
benchmarks clearly shows the distinct potential of the LFHT design.

Besides measuring the value of our new design through the use of worst case
scenarios, we conclude the paper by showing the potential of our work to speedup
the execution of tabled programs. Other works have already showed the capabilities
of the use of multithreaded tabling to speedup tabled execution [12]. Here, for each
program, we considered a set of different queries and then we ran this set with different
number of threads. To do that, we implemented a naive scheduler in Prolog code that
initially launches the number of threads required and then uses a mutex to synchronize
access to the pool of queries. We experimented with a Path program using a grid-
like configuration and with two well-known ILP data-sets, the Carcinogenesis and
Mutagenesis data-sets. We used the same 32 Core AMD machine, experimented with
intervals of 8 threads up to 32 threads and the results that follow are the average of 5
runs. Figure 7 shows the average execution time, in seconds, and the average speedup,
compared against the respective execution time with one thread, for running the naive
scheduler on top of these three programs with the LFHT design.

The results show that our design has potential to speedup the execution of tabled
programs. For the Path benchmark, the speedup increases up to 10.24 with 16 threads,
but then it starts to slow down. We believe that this behavior is related to the large num-
ber of tabled dependencies in the program. For the Carcino and Muta benchmarks,
the speedup increases up to a value of 16.68 and 18.84 for 32 threads, respectively.
Note that our goal with these experiments was not to achieve maximum speedup
because this would require to take into account the peculiarities of each program and
eventually develop specialized schedulers, which is orthogonal to the focus of this
work.
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7 Conclusions

We have presented a novel, simple and efficient lock-free design for concurrent tabling
environments based on hash tries. Our main motivation was to refine the previous
designs in order to be as effective as possible in the concurrent search and insert
operations over the table space data structures. We discussed the relevant details of
the proposal, described the main algorithms and proved the correctness of our imple-
mentation. We based our discussion on Yap’s concurrent tabling environment, but our
design can be applied to general purpose applications, such as word counting, compil-
ers, language run-times and some components of game development, that only require
search and insert operations on their hash mapping mechanisms.

A key design decision in our approach is the combination of hash tries with the use
of a separate chaining closed by the last node referencing back the hash level for the
node. This allows us to implement a clean design to solve hash collisions by simply
moving nodes between the levels. In our design, updates and expansions of the hash
levels are never done by using data structure replacements (i.e., create a new one to
replace the old one), which also avoids the need for memory recovery mechanisms.
Another key design decision that minimizes the bottlenecks leading to false sharing
or cache memory effects, is the insertion of nodes done at the end of the separate
chain. This allows for dispersing the memory locations being updated concurrently as
much as possible and, more importantly, reduces the updates for the memory locations
accessed more frequently, like the bucket entries for the hash levels.

Experimental results obtained independently (i.e., not within Yap) show that our
new lock-free design can effectively reduce the execution time and scales better than
some of the best-known currently available lock-free hashing implementations. In
the context of Yaps concurrent tabling support, our design clearly achieved the best
results for the execution time, speedup and overhead ratios. In particular, for worst
case scenarios, our design clearly outperformed the previous designs with a superb
overhead always below 1.74 for 32 threads or less. We thus argue that our design
is the best proposal to support concurrency in general purpose multithreaded tabling
applications.
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