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Abstract Identifying network traffic at their early stages accurately is very important
for the application of traffic identification. In recent years, more and more studies have
tried to build effective machine learning models to identify traffic with the few packets
at the early stage. Packet sizes and statistical features have been proved to be effec-
tive features which are widely used in early stage traffic identification. However, an
important issue is still unconcerned, that is whether there exists essential effectiveness
differences between the two kinds of features. In this paper, we set out to evaluate the
effectiveness of statistical features in comparing with packet sizes. We firstly extract
the packet sizes and their statistical features of the first six packets on three traffic data
sets. Then the mutual information between each feature and the corresponding traffic
type label is computed to show the effectiveness of the feature. And then we execute
crossover identification experiments with different feature sets using ten well-known
machine learning classifiers. Our experimental results show that most classifiers get
almost the same performances using packet sizes and statistical features for early stage
traffic identification. And most classifiers can achieve high identification accuracies
using only two statistical features.

Keywords Feature selection · Early stage traffic classification · Machine learning

1 Introduction

In the past decade, accurate traffic classification has become more and more important
for network managements including deploying QoS-aware mechanisms, bandwidth
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budgetmanaging, intrusion detection, etc. There are two classical techniqueswhich are
effective under traditional network conditions: port-based and payload-based meth-
ods. Unfortunately, nowadays many Internet applications use dynamic port numbers
instead of well-known ones for communications, which leads to difficulty of identify-
ing traffics by port numbers. Also many applications encrypt the data to be transmitted
to avoid being detected. Therefore, payload-based techniques become ineffectual for
these traffics since it is no use to inspect encrypted packet data. In recent years,machine
learning techniques have been introduced into traffic classification researches and have
been proven to be promising techniques [20,25,38]. However, most machine learn-
ing based traffic identification techniques extract features on a whole traffic instance
[10,20,24]. The most widely used feature extracting method is presented by Moore
et al. in 2005 [23]. They extract 248 statistical features based on a whole flow, such
as maximum, minimum and average values of packet size, RTT. And classifiers using
such statistical features can get very high performances in traffic identification. How-
ever, in real circumstances, it makes no sense to recognize Internet traffic when they
have ended. Thus, we must identify Internet traffic accurately in their early stage so
that we can apply subsequent management and security policies. Therefore, some
researchers have turned to find effective models which are able to identify Internet
traffic at their early stage. And this makes early stage identification to become a hot
topic in traffic identification researches [5]. Qu et al. [30] have studied the problem of
accuracy of early stage traffic identification, and found that it is possible to identify
traffic accurately at its early stage.

It is relatively hard to recognize a traffic by only using several early stage packets.
According toDainotti [5], limiting the number of packets used to extract features offers
several benefits including lower feature extraction complexity.However, are the simple
features extracted based on so few packets effective enough for identification? Thus,
the key problem of early stage traffic identification is to find out effective features
in early stage of traffic. Bernaille et al. [1] presented a famous early stage traffic
identification technique in 2006. They use the size of the first few data packets of
each TCP flow as the features, and by applying the K-means clustering technique,
they got high identification rates for ten types of application traffic. Este et al. [9] have
proved in 2009 that early stage packets of an Internet flow carry enough information
for traffic classification. They analyzed round trip time (RTT), packet size, inter-arrival
time (IAT) and packet direction of early stage packets and found that packet size is the
most effective feature for early stage classifications. Huang et al. [15] have studied the
early stage application characteristics and used them for classification effectively in
2008. Recently, they extracted early stage traffic features by analyzing the negotiation
behaviors of different applications. They use packet size (PS) and inter packet time
(IPT) of the first ten packets for some classifiers, while for other classifiers, they use
average and standard deviation values of PS and IPT of the early packets. They applied
these features for machine learning based classifiers with high performances [16].
Hullár et al. [17] proposed an automatic machine learning based method consuming
limited computational and memory resources for P2P traffic identification at early
stage. Dainotti et al. [6] construct high effective hybrid classifiers and apply a hybrid
feature extraction method for early stage traffic classification. Nguyen et al. [26] use
statistical features derived from sub-flows for timely identification of VoIP traffics,
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they extend the concept of early stage to “timely”, since a sub-flows refers to a small
number of most recent packets taken at any point in a flows lifetime. Rizzi et al. [32]
proposed a highly efficient neuro-fuzzy system for early stage traffic identification.

For the studies mentioned above, packet level features or statistical features were
applied to identify Internet traffics, and Este et al. [9] have evaluated the effectiveness
of packet level features. However, the effectiveness of statistical features for the early
stage is yet unknown. The packet level features are able to show the detailed charac-
teristics of an Internet traffic, while they can not catch its global characteristics. On
the contrary, the statistical features such as the average payload size and the standard
deviation of payload sizes are able to show the global distribution characteristics of
a traffic. However, the number of packets in the early stage of traffic is considerably
small, usually, it ranges from 4 to 10. Thus, is an early stage statistical feature able
to include enough information for identification, and are early stage statistical feature
sets more effective than packet level feature sets? These questions should be answered.

Contributions In this paper, we set out to study the effectiveness of the early stage
statistical features of Internet traffics. We try to answer the above mentioned question
using themutual information analysis and experimentalmethods. 3 traffic data sets and
tenmachine learning classifiers are applied for our experiments.We use the application
layer payload sizes as the original packet level features, and 5 statistics as the statistical
features. Firstly, the mutual information of each feature and the traffic type label
is computed to evaluate its effectiveness preliminary. Then we build 6 feature sets
covering the pure original feature set, the pure statistical feature set and the hybrid
feature set, and then all selected classifiers are applied on these feature sets to validate
the effectiveness of selected features.

The rest of the paper is organized as follows: Sect. 2 illustrates the methods applied
in our study, include the mutual information theory and the details of the experimental
methods. We introduce the characteristics of the selected data sets and classifiers in
Sects. 3 and 4 respectively. And the details of experimental results and analysis are
given in Sect. 5, and we also do some discussions in this section. Finally, we make
some conclusions in Sect. 6.

2 Methodology

2.1 Features

– Payload size The payload size has been proved to be the most effective early
stage packet level feature [9]. We use the payload sizes of the first six packets
as the original early stage traffic features in this study. All statistical features are
computed based on the payload sizes. And we use the abbreviation of ps for the
payload size in this paper.

– Average The average is also known as the arithmetical mean, which is an exten-
sively used statistical indicator. This feature is calculated as follows:

avg =
n∑

i=1

psi (1)

123



184 Int J Parallel Prog (2016) 44:181–197

– Standard deviationThe standard deviation shows howmuchvariation or dispersion
from the average exists. And the feature is defined as:

stdev =
√

1

n − 1

∑n

i=1
(psi − avg)2 (2)

where n is the number of packets, i. e. six in this study.
– MaximumandminimumThemaximumandminimumpayload size are also applied
in the study, and we use the abbreviations of max and min respectively.

– Geometric mean The geometric mean is another mean which is defined as:

gm = n
√
ps1 ps2...psn (3)

– Variance The variance measures how far the payload sizes is spread out, which is
defined as:

var = 1

n − 1

n∑

i=1

(psi − avg)2 (4)

2.2 Mutual Information

Mutual information is a useful measure in information theory which is widely used
for feature selection [28], image processing [21], speech recognition [2] and so on.
The mutual information of two random variables X,Y is a measure of the variables’
mutual dependence. In information theory, mutual information is defined as

I (X; Y ) = H(X) − H(X |Y )
= H(Y ) − H(Y |X)
= H(X) + H(Y ) − H(X,Y )

= H(X,Y ) − H(X |Y ) − H(Y |X) (5)

where H(X) and H(Y ) are the marginal entropies of X and Y respectively, H(X |Y )
and H(Y |X) are the conditional entropies, and H(X,Y ) is the joint entropy of X and
Y . From the point view of set theory, the relationships among H(X), H(Y ), H(X |Y ),
H(Y |X), H(X,Y ) and I (X; Y ) can be shown Fig. 1 depicts. According to Shannon’s
definition of entropy, we have

H(X) = −
∑

x∈X
p(x)log(p(x)) (6)

H(Y ) = −
∑

y∈Y
p(y)log(p(y)) (7)

H(X,Y ) = −
∑

x∈X

∑

y∈Y
p(x, y)log(p(x, y)) (8)

where p(.) is the probability distribution function of a random variable.We use the tree
equations in Eq. (5) and can obtain the computational formula of mutual information
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Fig. 1 The relationships among
the entropies and the mutual
information

H(X) H(Y)

H(X,Y)

H(X|Y) H(Y|X)I(X;Y)

I (X; Y ) =
∑

x∈X

∑

y∈Y
p(x, y)log(

p(x, y)

p(x)p(y)
) (9)

In the case of continuous random variables, the summation is replaced by a definite
double integral:

I (X; Y ) =
∫

Y

∫

X
p(x, y)log(

p(x, y)

p(x)p(y)
)dxdy (10)

There are many open source software for mutual information computation. And in our
study, we apply Peng’s mutual information Matlab toolbox [27].

2.3 Experimental Framework

We carry out our study as Fig. 2 depicts.

– Filter mouse traffic A mouse traffic is that with few packets or bytes. It is hard
to identify mouse traffic in Internet because they are too “little” to obtain effec-
tive features. Furthermore, it makes little sense to identify such traffic from the
viewpoint of traffic identification, since they have little effects on network man-
agement [8]. In this study, we define mouse traffic as those that have no more than
10 non-zero payload packets. We firstly filter such mouse traffic from the original
traffic traces. And after this step, each traffic instance in the data sets has at least
10 non-zero payload packets.

– Extract features For each traffic instance in an original data set, we extract the
payload sizes of the earliest 6 non-zero payload packets. Then the 6 integer values
are put into the feature data set along with the application type label of the traffic
instance. It should be noticed that the order of the features must be in accord with
the order of the packets, i.e. the first feature is the payload size of the first packet,
and the second feature is that of the second packet, and so forth. And then all
derived statistical features are computed based on the 6 payload size features.

– Mutual information analysis We compute the mutual information between each
feature and its corresponding traffic type label according to formula (9) and (10).
And the average value of each feature on each data set is also computed. Then we
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Fig. 2 Methodology framework
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evaluate the effectiveness of each feature by its mutual information value. Based
on the evaluating results, m feature sets used in the identification experiments are
selected.

– Generate feature data sets For each selected feature set, we generate a correspond-
ing data set which only contains the data of the selected features in the feature set.
After this step, we get m feature data sets using for the following identification
experiments.

– IdentificationWe select n classifiers for this step which will be depicted in Sect. 4.
For each original traffic data set,m×n crossover identification experiments will be
executed using the selected classifiers on the m new-generated data sets. 5-folder
crossover validation is applied for each single experiment. And we use the total
identification accuracy as the performance measure. It should be noticed that we
do not care the identification performances of a single classifier, because the main
goal of the study is to evaluate the effectiveness of statistical features, but not to
find a more effective classifier. Therefore, we will give the results according the
new generated data sets of different feature sets.

3 Data Sets

We select two sets of open network traffic traces, and a set of traces collected in our
campus network for our study. The characteristics of the selected traces are depicted
in Table 1.
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Table 1 Characteristics of the selected network traffic traces

Auckland II traces UNIBS traces UJN traces

Type #inst Bytes Type #inst Bytes Type #inst Bytes

ftp 251 136,241 bittorrent 3,571 6,393,487 Web browser 11,890 58,025,350

ftp-data 463 5,260,804 edonkey 379 241,587 Chat 11,478 60,212,804

http 23,721 139,421,961 http 25,729 107,342,346 Cloud disk 1,563 109,552,924

imap 193 86,455 imap 327 860,226 Live update 2,169 28,759,962

pop3 498 98,699 pop3 2,473 4,292,419 Stream media 810 7,85,556

smtp 2,602 1,230,528 skype 801 805,453 Mail 803 2,092,862

nntp 274 22,108 msn 60 3,753 ftp 37 161,587

ssh 237 149,502 smtp 120 43,566 P2P 326 2,521,089

DNS 5,488 511,137 urd 650 132,209 Other 1,408 3,635,558

telnet 37 21,171 ssh 23 39,456 – – –

3.1 Auckland II Traffic Traces

Auckland II is a collection of long GPS-synchronized traces taken using a pair of DAG
2 cards at the University of Auckland which is available at [36]. There are 85 trace files
which were captured from November 1999 to July 2000. Most traces were targeted at
24h runs, but hardware failures have resulted inmost traces being significantly shorter.
We selected two trace files captured at Feb 14 2000 (20000214-185536-0.pcap and
20000214-185536-1.pcap) for our study. The traces include only the header bytes, with
a maximum amount of 64 bytes for each frame, while the application payload is fully
removed. And all IP addresses anonymised using Crypto-Pan AES encryption. The
header traces were captured with a GPS synchronized mechanism using a DAG3.2E
card connected to a 100Mbps Ethernet hub interconnecting the University’s firewall
to their border router.

Since the application payloads were not recorded in Auckland II, DPI tools are
invalid to obtain ground truths. The only way to pick out the original application type
is using port numbers. In this study, we only accounted the TCP case since TCP is the
predominant transport layer protocol. Each flow is thus assigned to the class identified
by the server port. We selected 8 main types from Auckland II traces and filtered
mouse flows with no more than 10 non-zero packets as illustrated in Sect. 2.

3.2 UNIBS Traffic Traces

UNIBS is another opening traffic traces developed by Prof. F. Gringoli and his research
team, available at [35]. They developed a useful system namely GT [18] to application
ground truths of captured Internet traffic. The traces were collected on the edge router
of the campus network of the University of Brescia on three consecutive working
days (Sept 30, Oct 1 and 2 2009). They are composed of traffic generated by a set of
twenty workstations running the GT client daemon. Traffic were collected by running
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Tcpdump [34] on the Faculty’s router, which is a dual Xeon Linux box that connects
the network to the Internet through a dedicated 100Mb/s uplink. 99% flows in UNIBS
are TCP flows. Therefore, we again use TCP flows in this data set for our study. By
using GT, UNIBS traces recorded the application information of each captured flow.
We can get the application ground truths by both TCP port numbers and GT records.
We also chose 8 main types in UNIBS for our study which are shown in Table 2.
Different from Auckland II traces, there are two popular P2P applications in this data
set, bittorrent and edonkey, recorded byGT. Skype is also selected as an import Internet
application. Flows with no more than ten non-zero payload packets are also filtered.

3.3 UJN Traffic Traces

The third data set is collected in a laboratory network of the University of Jinan using
Traffic Labeler (TL) [29]. The TL system captures all user socket calls and their
corresponding application process information in the user mode on a Windows host,
and sends the information to an intermediate NDIS driver in the kernel mode. The
intermediate driver writes the application type information on the TOS field of the IP
packets whose network 5-tuples (src_ip, src_port, dst_ip, dst_port, protocol) match
with the network 5-tuple of the socket call. By this mean, each IP packet sent from
the Windows host carries their application information. Therefore, traffic samples
collected on the network have been labeled with the accurate application information
and can be used for training effective traffic classification models. We deployed 10
TL instances on Windows user hosts in the laboratory network of Provincial Key
Laboratory for Network Based Intelligent Computing. A mirror port of the uplink
port of the switch was set, and a data collector was deployed at the mirror port. The
deployed TL instances ran at work hours every day. The data collecting process lasted
2 days in May 2013. Again, flows with no more than 10 non-zero payload packets are
also filtered.

4 Classifiers

We execute our identification experiments using 10 well-known machine learning
classifiers. We use Weka data mining software [37] as our experiment tool. All classi-
fiers are run in Weka and all generated data sets are formatted into the Weka data file
with the extension name of “arff”. The classifiers we selected fall into five categories
according to Weka:

– Bayes Bayes classifiers are based on Bayes theorem, which is widely applied in
many engineering areas. In this study, we choose Naive Bayes classifier [7,22]
and Bayesian network (BayesNet) [12] as Bayes classifiers.

– Meta Strictly speaking, meta classifier is a kind of classification framework based
on a specific classifier. This technique firstly trains a group of “weak learn”, and
then generate a “strong learn” based on the weak learns.We choose adaptive Boost
M1 (AdaBoost) [13] and Bagging [3] for our study.
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Table 2 Classifiers selected in
the study

Classifiers Type

NaiveBayes [7,22] Bayes

BayesNet [12] Bayes

AdaBoost [13] Meta

Bagging [3] Meta

OneR [14] Rule

PART [11] Rule

KNN [4] Lazy learning

J48 [31] Trees

NBTree [19] Trees

RandomForest [33] Trees

– Rule As the name suggests, a rule based classifier extracts rules using a specific
policy, e. g. probability and decision trees, and uses the rules to classify testing
data. OneR [14] and PART [11] are selected for this category in this study.

– Trees This refers to decision trees. A decision tree divides the target feature space
hierarchically. Each division produces a node on the decision trees. A classification
procedure is a procedure that goes from the root node to a specific leaf node on the
tree. In this study, C4.5 decision trees (J48) [31], Naive Bayesian trees (NBTree)
[19] and random forest (RandomForest) [33] are selected for this category.

– Lazy learning Strictly speaking, there is no general training procedure for a lazy
learning classifier. It just loads the training data in the training phase, and executes
real classification decisions in the testing phase. We choose the k-nearest neighbor
(KNN) [4] classifier for this category.

Table 2 lists all classifiers applied in this study. We cite the original literature of
each classifier in the table. Readers can find technical details of each classifier in its
corresponding literature.

5 Experimental Results and Analysis

5.1 Mutual Information Analysis

We show the mutual information between each feature and the corresponding traffic
type label for each data set in Fig. 3. In the figure, we use the abbreviation of each
feature: psi is the payload size of the i th packet, and the abbreviations of the statistical
features are in accord with that described in Sect. 2. And the exact data are listed in
Table 3 in the Appendix. The variance is the best performed feature which achieves the
highest mutual information value for each of the three data sets. The payload sizes of
the first two packets and the minimum payload size get low level mutual information.
The results mean that the variance is the most effective feature in all of the compared
features from the point of view of mutual information. On the contrary, the minimum
payload size and the payload sizes of the first two packets contain few identification
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Fig. 3 Mutual information of
packet sizes and statistical
features

information. When observing the mutual information of the subsequent four packets,
it can be seen that all values are far higher than that of the first two packets, except
the value of ps3 for UNIBS data set. Thus, we say that the 3rd-6th packets contain
the vast majority of identification information. Most statistical features show their
effectiveness in Fig. 2. All statistical features except the min feature gain high mutual
information values for all of the three data sets. It is somehow surprising that the min
feature gains low values while themax feature hits considerable high values. In many
studies using statistics, the minimum is always applied together with the maximum
because they are a couple of contrary measures. Our results show that the maximum
payload size is far more effective than the minimum one. Thus, we discard the min
feature in the following identification experiments and reserve the max feature. The
avg feature gets the third highest average mutual information values, and the value
is a little lower than that of the stdev feature. It means that the average payload size
contains plenty of identification information, which makes the avg feature to be an
effective statistical feature. As another mean value feature, the gm feature does not
show such effectiveness as avg does. Its average mutual information value is the last
but one, while far higher than that of the min feature. The stdev feature is another
effective statistical feature which gets the second highest average value.

Based on above analysis, we select six feature sets for the following identification
experiments. The first one is the original payload size feature sets with 6 features, we
call it 6ps. Three pure statistical feature sets are selected as the second type, each of
these feature sets only includes two statistical features, and these are avg + stdev,
gm+var andmax+var . Finally, two hybrid feature sets which contain both original
payload size and statistical features are selected, 4ps+avg+var includes the payload
sizes of the 3rd-6th packets and avg + var , 6ps + avg + var includes all payload
sizes and avg + var . We select the features with high mutual information values,
and assemble them into the feature sets empirically. Therefore, there may exist more
effective feature set, but it does not affect our experimental evaluations.
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Fig. 4 Results of Auckland II data set

Fig. 5 Results of UNIBS data set

5.2 Identification Results

We show the identification results of each data set in a column chart (Figs. 3, 4, 5),
and the detailed results can be found in Tables 4, 5 and 6 in Appendix.

Figure 4 shows the identification accuracies for the Auckland II data set. Most clas-
sifiers perform verywell using all selected feature sets. TheAdaBoost andNaiveBayes
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Fig. 6 Results of UJN data set

classifiers seem to be relatively weak. The hybrid feature set of 6ps + avg + var is
the best performed feature set for this data set. It achieves the highest accuracy for 6
classifiers, and its average accuracy value is also the highest one among the results of
all selected feature sets. It is easy to comprehend that the hybrid feature set contains
the most of identification information. And the results on Auckland II data set testified
this. However, for most classifiers, the differences between the accuracies of any two
feature sets are not significant. All the three pure statistical feature sets (avg+ stdev,
gm + var ,max + var ) perform almost as well as the best performed feature set does.
AdaBoost and NaiveBayes show unstable performances for different feature sets. Yet,
it does not affect the evaluation of the effectiveness of the selected feature sets.

The results for UNIBS data set are shown in Fig. 5. Again, most classifiers get
high identification accuracies greater than 97%, AdaBoost and NaiveBayes do not
perform so well as other classifiers do. All feature sets get identification accuracies
with small differences for each classifiers except NaiveBayes, which is in accord with
the circumstance of the Auckland II data set. The hybrid feature set of 4ps+avg+var
achieves the highest average accuracy, which is very close to the value of the 6ps
feature set. And the numbers of highest accuracies that the two feature sets get are
also very close, which are 4 and 5 respectively.

The most significant characteristic of the results for UJN data set shown in Fig. 6 is
that NaiveBayes gets far higher accuracies using the pure statistical feature sets than
using the feature sets including the original payload size features. This makes that the
average results of the three statistical feature sets (which range from 92.05 to 92.87%)
are obviously higher than that of the other three feature sets (which range from 90.20
to 90.43%). While for other classifiers, the differences among the results are quite
small.
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5.3 Analysis and Discussions

Although the results of the three applied traffic data sets are different in detail, some
lessons can be learned from the mutual information analysis and the identification
results:

– Statistical features show high performances for early stage traffic identification
as we expected. Most of the selected statistical features get high level of mutual
information, and the statistical feature sets also get high accuracies in the identifi-
cation experiments. From the point of view of mathematics, a statistical indicator
usually shows a global view of a data sequence. Therefore it is able to represent a
global feature of the sequence.

– An outstanding merit of statistical features is that it is possible to achieve high
identification performances only using two statistical features. Each of the statisti-
cal feature sets we used only contains two selected features, and performs almost
as well as the other feature sets do. It means that it is possible to express a traffic
object exactly just using a few of its early stage global features.

– We have found accidentally in the study that the minimum is far less effective
than the maximum. The reasons are not very hard to be discovered: the lower
packet payload size limits of different applications are relatively fixed in a same
range, while the upper limits usually vary with the applications. For example, the
minimum payload sizes of a chat traffic and ftp traffic may both be in a range
of 1–10 bytes, and the differences are not significant. However their maximum
payload sizes are quite different: the chat traffic usually generates the maximum
packet with several hundred bytes, while the maximum packet of the ftp traffic
usually reaches the MTU size.

– The NaiveBayes classifier does not perform stably using different feature sets. The
reason behind lies in the classification mechanism of the NaiveBayes classifier,
and further discussions exceed the topic of this study. Although the performances
of classifiers is not themain point of our study, the characteristic of the NaiveBayes
classifier should be noticed when applying this classifier.

6 Conclusions

We have tried to evaluate the effectiveness of the statistical features for early stage
traffic identification in this paper. We use both mutual information analysis and exper-
imental methods for our study. Three traffic data sets include two opening data sets
and 10 well-known classifiers are applied. According to the experimental results, we
conclude that: as global features,most statistical features are as effective as the payload
sizes do for early stage traffic identification. And high identification performances can
be achieved by using few statistical features, our experimental results have shown this.
However, not all statistical features are effective for early stage traffic identification.
Our study shows that the minimum feature is not suited for identification. Further-
more, some original features such as the payload size of the first two packets in our
study, are also not effective for identification. Thus, Features using for identification
application should be carefully selected. How to select high effective feature sets for
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early stage traffic identification is an important problem to be resolved in our future
work.
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Appendix: Detailed Results of the Experimental Study

See Tables 3, 4, 5 and 6.

Table 3 Mutual information of
all features (the best performed
one of each column is shown in
bold)

Features Auckland II UNIBS UJN Avg.

ps1 0.1248 0.0217 0.1204 0.0890

ps2 0.0945 0.1281 0.1249 0.1158

ps3 0.6705 0.1007 0.7701 0.5138

ps4 0.6907 0.9474 0.7507 0.7963

ps5 0.6090 0.4793 0.6646 0.5843

ps6 0.6825 0.6056 0.6326 0.6402

avg 0.7935 0.8786 0.7362 0.8028

stdev 0.8253 0.8739 0.7302 0.8098

min 0.0861 0.0316 0.2123 0.1100

max 0.7772 0.8171 0.6483 0.7475

gm 0.6833 0.6941 0.5742 0.6505

var 0.9238 1.0387 0.8838 0.9488

Table 4 Accuracy results for the Auckland II data set (the best performed one of each row is shown in
bold)

Algorithms 6ps avg+stdev gm+var max+stdev 4ps+avg+var 6ps+avg+var

NaiveBayes 94.01 94.32 94.54 91.94 93.30 94.01

BayesNet 97.98 97.73 97.60 98.29 98.11 98.27

AdaBoost 87.61 91.41 91.41 91.41 91.41 91.41

Bagging 99.05 98.78 98.77 98.83 99.13 99.15

OneR 94.43 97.98 97.98 97.98 97.98 97.98

PART 99.22 98.87 98.75 98.94 99.28 99.34

KNN 99.38 99.14 99.01 99.17 99.37 99.39

J48 99.15 98.88 98.76 98.89 99.24 99.26

RandomForest 99.42 99.14 99.04 99.05 99.42 99.40

NBTree 99.24 98.59 98.62 98.78 99.26 99.23

Avg. 96.95 97.48 97.45 97.33 97.65 97.74
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Table 5 Accuracy results for the UNIBS data set (the best performed one of each row is shown in bold)

Algorithms 6ps avg+stdev gm+var max+stdev 4ps+avg+var 6ps+avg+var

NaiveBayes 79.49 74.61 65.29 66.84 79.00 68.46

BayesNet 98.29 97.45 97.37 97.44 98.47 98.44

AdaBoost 87.82 88.02 88.02 88.02 87.82 87.82

Bagging 99.16 98.48 98.64 98.19 99.13 99.16

OneR 97.17 97.68 97.68 97.68 97.68 97.68

PART 99.27 98.50 98.72 98.25 99.23 99.22

KNN 99.28 98.87 98.82 98.25 99.26 99.27

J48 99.24 98.60 98.77 98.20 99.27 99.25

RandomForest 99.42 98.73 98.85 98.37 99.37 99.39

NBTree 99.26 97.61 98.69 97.39 99.29 99.27

Avg. 95.84 94.85 94.08 93.86 95.85 94.80

Table 6 Accuracy results for the UJN data set (the best performed one of each row is shown in bold)

Algorithms 6ps avg+stdev gm+var max+stdev 4ps+avg+var 6ps+avg+var

NaiveBayes 52.26 83.23 83.15 83.23 53.35 51.15

BayesNet 94.54 94.40 94.70 94.15 94.86 93.45

AdaBoost 83.23 83.23 83.23 83.23 83.23 83.23

Bagging 96.29 95.69 95.97 94.52 96.41 96.51

OneR 94.90 94.15 94.15 94.15 94.90 94.90

PART 96.25 95.73 95.73 94.54 96.37 96.49

KNN 95.77 95.26 95.10 93.97 95.77 95.83

J48 96.47 95.77 95.69 94.50 96.51 96.67

RandomForest 96.65 96.01 95.69 94.09 96.59 96.88

NBTree 96.33 95.24 95.08 94.11 96.31 96.92

Avg. 90.27 92.87 92.85 92.05 90.43 90.20

References

1. Bernaille, L., Teixeira, R., Akodkenou, I., Soule, A., Salamatian, K.: Traffic classification on the fly.
In: ACM SIGCOMM’06, pp. 23–26 (2006)

2. Bahl, L.B., de Souza, P., Mercer, R.P., et al.: Maximum mutual information estimation of hidden
Markov model parameters for speech recognition. In: IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP’86), pp. 49–52, IEEE Press (1986)

3. Breiman, L.: Bagging predictors. Mac. Learn. 24, 123–140 (1996)
4. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27

(1967)
5. Dainotti, A., Pescapé, A., Claffy, K.C.: Issues and future directions in traffic classification. IEEENetw.

26(1), 35–40 (2012)
6. Dainotti, A., Pescapé, A., Sansone, C.: Early classification of network traffic through multi-

classification. Lect. Notes Comput. Sci. 6613, 122–135 (2011)
7. Domingos, P., Pazzani, M.: On the optimality of the simple Bayesian classifier under zero-one loss.

Mach. Learn. 29, 103–137 (1997)

123



196 Int J Parallel Prog (2016) 44:181–197

8. Estan, C., Varghese, G.: New directions in traffic measurement and accounting: focusing on the ele-
phants, ignoring the mice. ACM Trans. Comput. Syst. 21(3), 270–313 (2003)

9. Este, A., Gringoli, F., Salgarelli, L.: On the stability of the information carried by traffic flow features
at the packet level. In: ACM SIGCOMM’09, pp. 13–18 (2009)

10. Este, A., Gringoli, F., Salgarelli, L.: Support vector machines for TCP traffic classification. Comput.
Netw. 53, 2476–2490 (2009)

11. Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization. In: The Fifteenth
International Conference on Machine Learning, pp. 144–151. IEEE Press (1998)

12. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29(2–3), 131–
163 (1997)

13. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application
to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

14. Holte, R.C.: Very simple classification rules perform well on most commonly used datasets. Mach.
Learn. 11(1), 63–90 (1993)

15. Huang, N., Jai, G., Chao, H.: Early identifying application traffic with application characteristics. In:
IEEE International Conference on Communications (ICC’08). pp. 5788–5792 (2008)

16. Huang, N., Jai, G., Chao, H., et al.: Application traffic classification at the early stage by characterizing
application rounds. Inf. Sci. 232(20), 130–142 (2013)

17. Hullár, B., Laki, S., Gyorgy, A.: Early identification of peer-to-peer traffic. In: 2011 IEEE International
Conference on Communications (ICC), pp. 1–6. IEEE Press (2011)

18. Gringoli, F., Salgarelli, L., Dusi, M., et al.: Gt: picking up the truth from the ground for internet traffic.
ACM SIGCOMM Comput. Commun. Rev. 39(5), 12–18 (2009)

19. Kohavi, R.: Scaling up the accuracy of Naive-Bayes classifiers: a decision-tree hybrid. In: The Second
International Conference on Knowledge Discovery and Data Mining (KDD), pp. 202–207. IEEE Press
(1996)

20. Li, W., Moore, A.W.: A machine learning approach for efficient traffic classification. In: Proceedings
of IEEE MASCOTS’07, pp. 310–317 (2007)

21. Maes, F., Collignon, A., Vandermeulen, D., et al.: Multimodality image registration by maximization
of mutual information. IEEE Trans. Med. Imaging 16(2), 187–198 (1997)

22. Maron, M.E.: Automatic indexing: an experimental inquiry. J. ACM 8(3), 404–417 (1961)
23. Moore, A.W., Zuev, D., Crogan, M.: Discriminators for use in flow-based classification. Intel Research

Tech. Rep (2005)
24. Moore, A.W., Zuev, D.: Internet traffic classification using Bayesian analysis techniques. In: ACM

SIGMETRICS’05, pp. 50–60 (2005)
25. Nguyen, T.T.T., Armitage, G.: A survey of techniques for internet traffic classification using machine

learning. IEEE Commun. Surv. Tutor. 10(4), 56–76 (2008)
26. Nguyen, T.T.T., Armitage, G., Branch, P., et al.: Timely and continuous machine-learning-based clas-

sification for interactive IP traffic. IEEE/ACM Trans. Netw. 20(6), 1880–1894 (2012)
27. Peng,H.:Mutual infomationMatlab toolbox, http://www.mathworks.com/matlabcentral/fileexchange/

14888-mutual-information-computation
28. Peng,H., Long, F.,Ding,C.: Feature selection based onmutual information criteria ofmax-dependency,

max-relevance, andmin-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)
29. Peng, L., Zhang, H., Yang, B., et al.: Traffic labeller: collecting internet traffic samples with accurate

application information. China Commun. 11(1), 67–78 (2014)
30. Qu, B., Zhang, Z., Guo, L., et al.: On accuracy of early traffic classification. In: IEEE 7th International

Conference on Networking, Architecture and Storage (NAS), pp. 348–354. IEEE Press (2012)
31. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kauffman, Los Altos (1993)
32. Rizzi, A., Colabrese, S., Baiocchi, A.: Low complexity, high performance neuro-fuzzy system for

internet traffic flows early classification. In: 2013 9th International Wireless Communications and
Mobile Computing Conference (IWCMC), pp. 77–82. IEEE Press (2013)

33. Svetnik, V., Liaw, A., Tong, C., et al.: Random forest: a classification and regression tool for compound
classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 43(6), 1947–1958 (2003)

34. Tcpdump/Libpcap. http://www.tcpdump.org
35. UNIBS: Data sharing. http://www.ing.unibs.it/ntw/tools/traces/
36. Waikato Internet Traffic Storage (WITS). http://www.wand.net.nz/wits
37. Weka 3: Data Mining Software in Java, http://www.cs.waikato.ac.nz/ml/weka/

123

http://www.mathworks.com/matlabcentral/fileexchange/14888-mutual-information-computation
http://www.mathworks.com/matlabcentral/fileexchange/14888-mutual-information-computation
http://www.tcpdump.org
http://www.ing.unibs.it/ntw/tools/traces/
http://www.wand.net.nz/wits
http://www.cs.waikato.ac.nz/ml/weka/


Int J Parallel Prog (2016) 44:181–197 197

38. Zander, S., Nguyen, T.T.T., Armitage, G.: Automated traffic classification and application identification
using machine learning. In: IEEE Conference on Local Computer Networks 30th Anniversary, IEEE
Press (2005)

123


	Effectiveness of Statistical Features for Early Stage Internet Traffic Identification
	Abstract
	1 Introduction
	2 Methodology
	2.1 Features
	2.2 Mutual Information
	2.3 Experimental Framework

	3 Data Sets
	3.1 Auckland II Traffic Traces
	3.2 UNIBS Traffic Traces
	3.3 UJN Traffic Traces

	4 Classifiers
	5 Experimental Results and Analysis
	5.1 Mutual Information Analysis
	5.2 Identification Results
	5.3 Analysis and Discussions

	6 Conclusions
	Acknowledgments
	Appendix: Detailed Results of the Experimental Study
	References




