
Int J Parallel Prog (2015) 43:1004–1027
DOI 10.1007/s10766-014-0336-3

Invasive Compute Balancing for Applications with
Shared and Hybrid Parallelization

Martin Schreiber · Christoph Riesinger ·
Tobias Neckel · Hans-Joachim Bungartz ·
Alexander Breuer

Received: 7 January 2014 / Accepted: 9 October 2014 / Published online: 26 October 2014
© Springer Science+Business Media New York 2014

Abstract Achieving high scalability with dynamically adaptive algorithms in high-
performance computing (HPC) is a non-trivial task. The invasive paradigm using
compute migration represents an efficient alternative to classical data migration
approaches for such algorithms in HPC. We present a core-distribution scheduler
which realizes the migration of computational power by distributing the cores depend-
ing on the requirements specified by one or more parallel program instances. We
validate our approach with different benchmark suites for simulations with artificial
workload as well as applications based on dynamically adaptive shallow water simu-
lations, and investigate concurrently executed adaptivity parameter studies on realistic
Tsunami simulations. The invasive approach results in significantly faster overall exe-
cution times and higher hardware utilization than alternative approaches. A dynamic
resource management is therefore mandatory for a more efficient execution of scenar-
ios similar to our simulations, e.g. several Tsunami simulations in urgent computing, to
overcome strong scalability challenges in the area of HPC. The optimizations obtained

M. Schreiber (B) · C. Riesinger · T. Neckel · H.-J. Bungartz · A. Breuer
Fakultät für Informatik, Technische Universität München, Boltzmannstraße 3, 85748 Garching,
Germany
e-mail: martin.schreiber@in.tum.de

C. Riesinger
e-mail: riesinge@in.tum.de

T. Neckel
e-mail: neckel@in.tum.de

H.-J. Bungartz
e-mail: bungartz@in.tum.de

A. Breuer
e-mail: breuera@in.tum.de

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-014-0336-3&domain=pdf

Int J Parallel Prog (2015) 43:1004–1027 1005

by invasive migration of cores can be generalized to similar classes of algorithms with
dynamic resource requirements.

Keywords Invasive computing · Compute migration · High-performance comput-
ing · Hybrid parallelization · Dynamic adaptive mesh refinement

1 Introduction

In many applications modeled with partial differential equations (PDE) the current
trend is to use dynamic-adaptive mesh refinement (DAMR). Adaptivity in general
accounts for feature-rich areas by refining the grid, if this area significantly con-
tributes to the final result, and coarsening the grid in case that the result is not highly
dependent on this area [5,11,30,46]. In comparison to regularly resolved simulations,
such simulations aim e.g. for the highest possible science-per-flops-ratios [25]. This
approach leads to significantly shorter run times while keeping the order of accuracy
of highly refined regular grids. Figure 1 shows an example of a shallow water simu-
lation which uses dynamical h-adaptive grids also applicable to Tsunami simulations
[3] (see Fig. 2).

Feature-rich areas near the wave fronts are higher resolved than other areas. How-
ever, realizing dynamical h-adaptivity involves additional demands not only on the
underlying grid and data management but also on providing subgrid-migration for
parallelization with distributed-memory concepts.

Fig. 1 Visualization of dynamically changing triangular grid created by dynamical adaptive simulation
with 1st order basis functions. Blue cells represent the mesh with their height the water surface elevation.
The red borders indicate the partitions (Color figure online)

Fig. 2 Visualization of selected time steps of a Tsunami simulation executed on a dynamic adaptive
triangular grid based on displacement datasets for the Chile earthquake 2010. The water is colored with a
rainbowmap according to its displacement relative to sea surface and the water surface elevation is scaled up
for enhanced visualization.Note the highly increased grid resolutionwhich is directly related to the changing
computational workload before and after the propagating Tsunami wave fronts (Color figure online)

123

1006 Int J Parallel Prog (2015) 43:1004–1027

Due to the computational intensity and the memory bandwidth requirements, a
parallelization of adaptive PDE algorithms is mandatory. Currently, such paralleliza-
tions are usually achieved via threading libraries such as OpenMP, via MPI, or via
hybrid approaches combining distributed- and shared-memory parallel programming
to obtain benefits of both implementations [16].

The trend for modern CPU architectures is clearly towards many-core processors
with shared-memory domains (e.g. Intel Xeon Phi). A purely threaded parallelization
can lead to several overheads such as increased management of structures and thread
synchronization [37], false sharing [10] and resource sharing of a single program
[29].

All the beforementioned overheads can be damped by using a lower number of
threads in each program context. Here, we evaluate two different parallelization meth-
ods for concurrently running programs: First, a pure shared-memory parallelization
with resource-competing and concurrently-running applications and second a hybrid
parallelizationwith a single application executed on multiple multi-threaded program
instances on each MPI rank. With our requirements of running more than one thread
in a program context, pure distributed-memory parallelization methods are not con-
sidered in the discussion. For the following sections, we use the MPI and OpenMP
terminology for the distributed and shared-memory parallelization, respectively.

With parallelization models for distributed- and hybrid-memory systems, state-of-
the art simulation software for dynamically changing grids has to cope with load
imbalances to provide a scalable simulation. These imbalances are typically tack-
led with a data migration approach. This sets up demands to the application devel-
oper either to extend interfaces of meshing tools supporting dynamical remeshing
and load balancing or to manually implement the load balancing and data migra-
tion in the simulation software. Tackling load balancing so far was only resolved by
explicit (developer-provided), or implicit (framework-provided) workload migration,
thus requiring extensions for redistributing data. This typically involves severe pro-
grammability (see e.g. required interfaces in [11,46]) andmigration-latency overheads
(see [15]). Additionally, spontaneous and typically non-predictable load imbalances
can occur such as for computations with local-state depending number of instructions
[21] and computations executed only on subsets of the overall grid, e.g. for local-
residual corrections [34] and simulation output of data only laying in a fast moving
field of view [17]. These effects can lead to frequent data migration of larger chunks.
Here, dynamically changing resources provide a potential solution to (a) programma-
bility by clearly defined interfaces and programming patterns and (b) data-migration
overheads by using compute migration; furthermore, spontaneous workload imbal-
ances can be handled more efficiently by fast compute migration.

2 Existing Work and Invasive Computing

Handling changing demands for resources during run timewas investigated in different
areas in the last two decades: the basic principles for scheduling of multi-programmed
applications originate from embedded systems, especially in the context of real-time
applications (c.f. [33]), which need special scheduling algorithms (c.f. [45]) that deal

123

Int J Parallel Prog (2015) 43:1004–1027 1007

with the inherent dynamics. However, these algorithms do not consider hybrid paral-
lelization or HPC systems. Embedded systems often consist of heterogeneous multi-
processorswhere the single cores have different capabilities such as additional floating-
point units, exclusive caches, etc. (c.f. [2,6]). In our work, we focus on homogeneous
multi-core processors. CurrentHPC systems also utilize amemory protection, prevent-
ing inter-applicationwork stealingwith today’s HPC threading libraries (e.g.OpenMP,
TBB) due to separated address spaces. This leads to additional constraints for the HPC
architectures considered in this work.

An additional challenge arises when several multi-programmed applications with
changing demand on resources run on the same node in parallel and compete for
congested resources. Bhadauria et al. [8] tackle this problem and optimize the thread
throughput of all running applications in a global view. For that, information on the
scalability of the single applications is required. This information is collected by a
software-based performance monitoring unit (PMU) during run time. Corbalan et
al. [13,14] are using a similar approach. The scalability information is gathered by
the SelfAnalyzer during run time, the scheduling itself is done by the Performance-
Driven Processor Allocation (PDPA) policy. In contrast, our approach can also use
information such as scalability graphs and workload information based on the explicit
knowledge of the application developer. This results in more recent (e.g. using the
number of workload of the current time step) rather than over-time derived perfor-
mance information. In addition, we are pursuing for maximal global throughput while
Corbalan et al. try to fulfill certain given target efficiencies.

Hybrid parallelization is indispensable when exploiting modern HPC clusters
(c.f. [16,27]) but little investigation has been done in combination with changing
demand of resources during run time. Garcia et al.’s approach (c.f. [20]) tackles the
issue in an interesting manner, but loses flexibility due to limitations of OpenMP and
SMPSuperscalar and does not offer the opportunity to provide scalability information
on the application by the developer.

The approach considered by Hsieh [24] is closely related to our approach: Instead
of migrating data, computational resources are migrated when they are needed which
avoids data-migration overheads. He also uses distributed shared-memory systems as
target platform. However, his approach is not based on standard HPC programming
models (OpenMP/TBB, e.g.), hence requires significant changes in the application,
and thus does not evaluate dynamic resource scheduling for applications developed
with standard HPC programming models.

The invasive computing paradigm was originally introduced to be applied on
embedded systems (see [42] for an overview) targeting to optimize dynamically sched-
uled resources by developing InvasIC-enabled hardware and software. The paradigm
is currently subject of research in the InvasIC TCRC891 with itsmain focus on embed-
ded systems. For HPC systems, this paradigm covers all issues involved in compute
migration: From the application developer’s point of view, resources assigned to an
application are dynamically changing during run time. Resources which are not used
by an application can be assigned to another application. Applications themselves

1 http://invasive-computing.de

123

http://invasive-computing.de

1008 Int J Parallel Prog (2015) 43:1004–1027

behave in a resource-aware manner, offering information to a resource manager or
multiple cooperating resource managers to optimize the resource distribution over all
applications and providing computing resources if demanded by the resource man-
ager. Three clear basic interfaces are suggested in the context of Invasive Comput-
ing, which can be directly applied to our compute migration issue: invade, retreat
and infect. With invade, resources are requested depending on particular application-
specific requirements. Free resources matching the requirements are then returned to
a so-called claim. Computations on the granted resources are then started by execut-
ing kernels on resources made available in the claims, also described by infecting
resources. Resources can be finally released by using retreat on the owned resources.

In contrast to auto tuning, Invasive Computing puts its focus on application-
supported optimization, thus moving the input for optimizations to the responsibility
of the application developer. Optimizations are then achieved by a centralized [4] or
decentralized [26] resource manager.

When applying this invasive paradigm in reality, several extensions are required,
such as asynchronous invades [4] to overcome scheduling latencies and iOMP as an
extension to OpenMP [22].

3 Contribution

Our contribution is the exploration and optimization with the Invasive Computing
paradigm applied to compute migration for simulations with shared- and hybrid-
parallelization on dynamically adaptive grids in the context of PDE simulations.

These simulations (see Sect. 4) lead to dynamically changing application require-
ments regarding computational resources and, thus, extensions in the invasive resource
manager for dynamical compute balancing.We then present the realization of compute
balancing with Invasive Computing for shared- and hybrid-parallelized application
scenarios based on a resource manager (Sect. 5). The benefits of compute balancing
for this class of applications are then shown for several different benchmark suites
(Sect. 6).

4 Simulations with Dynamic Adaptive Mesh Refinement

The shallow water equation (SWE) Tsunami simulations described below are based
on a dynamically adaptive triangular grid: In each time step, the grid is refined by
triangle bisection in grid areas with a large contribution to the result we are interested
in and coarsened in grid areas with a low contribution. Triangles are chosen as basic
elements assembling the domain to run computations on conforming grids which
clearly would not be possible with h-adaptive Cartesian grids. Running simulations on
such dynamically adaptive grids typically leads to a higher science-per-flop ratio, but
introduces load-imbalances due to the dynamically changing grid and thus workload.

On shared-memory systems, a parallelization of spatial meshes can be tackled in a
variety ofways: (a) One approach is storing patches in each cell: Instead of storing only
the data for a single cell in one dynamically adaptive grid cell, regular grid structures
(patches) containingmultiple cells are stored in each patch. Parallelization within each

123

Int J Parallel Prog (2015) 43:1004–1027 1009

patch by executing operations on the patch concurrently [31] leads to low scalability for
small patch sizes. (b) Another way is ordering all cells, e.g. based on one-dimensional
space-filling curves (SFC) index projections [7,36], and using the one-dimensional
representation for partitioning. Here, the communication meta information is stored
per-cell or for each hyper face shared among different partitions. However, such meta
information typically only allows single-threaded processing of each partition (see
e.g. [28] with the parallelization from [44]). (c) Cluster-based parallelization strategies
provide an alternative to the previously mentioned parallelization strategies and we
continue with a description of this new alternative: They split the domain into a bulk
of connected grid cells with consideration of spatial locality, e.g. by using space-
filling curves, but contrary to (b), this approach uses a different meta-information
scheme and software design: we demand the ability of efficient cluster-based local-
time stepping (C-LTS) [12]. An efficient software design of such a C-LTS yields
requirements of replicated interfaces [40] between each clusters and communication
schemeswith run-length encoding for efficient communication in amulti-threaded and
multi-node environment [38]. The resulting software design directly yields efficient
DAMR simulations with shared and hybrid parallelization.

For this work, our cluster generation is based on tree splits of SFC-induced space-
trees: clusters are then split and joined depending on local or global information on the
grid [39]. Since this algorithm offers high scalability as well as performance boosts via
cluster-based optimizations and is applicable to Tsunami simulations [3], this provides
a solid base line for the evaluation of our invasive compute-balancing strategies with
realistic applications.

Our major target application is given by concurrently executed Tsunami simula-
tions. Instead of running a three-dimensional flow simulation, one may apply a fre-
quently used and well established approximation based on the assumption of shallow
water in the regions of interest. This allows a simplification of the three-dimensional
Navier–Stokes equations to the two-dimensional shallowwater equations (SWE). Fur-
thermore, we use a discontinuous Galerkin (DG) method for the spatial discretization
(see e.g. [1]). We consider the homogeneous form given by the conservation law of
hyperbolic equations

∂U (x, y, t)

∂t
+ ∂G(U (x, y, t))

∂x
+ ∂H(U (x, y, t))

∂y
= 0, (1)

or in shorthand form

Ut + Gx (U) + Hy(U) = 0
with U = (h, hu, hv)T and

G(U) =
⎛
⎝

hu
hu2 + 1

2gh
2

huv

⎞
⎠ H(U) =

⎛
⎝

hv

huv

hv2 + 1
2gh

2

⎞
⎠ .

The conserved quantities (h, hu, hv)T = (height, x-momentum, y-momentum)T of
the water are given by U (x, y, t) with parameters dropped for sake of clarity. The

123

1010 Int J Parallel Prog (2015) 43:1004–1027

particle velocity components as part of the primitive variables along the unit vector
ei in direction i are given by (u, v)T and can be directly computed by (huh , hv

h)T

using the conserved quantities. The so-called flux functions G(U) and H(U) describe
the change of the conserved quantities U over time by the possible interplay of each
conserved quantities U . By multiplying Eq. (1) with a test function ϕi and applying
the divergence theorem, this yields the weak form

∫
T
Utϕi

︸ ︷︷ ︸
mass term

−
∫
T
G(U) · ∂ϕi

∂x
+ H(U) · ∂ϕi

∂y︸ ︷︷ ︸
stiffness term

+
∮
T
F(U)ϕi · n

︸ ︷︷ ︸
flux term

= 0

with T representing a triangular grid cell and n(x, y) the outward pointing normal at
the boundary of the grid cell. Next, we approximate the solution U in each cell by
N ansatz functions: U (x, y, t) ≈ Ũ (x, y, t) = ∑N

j=1 Ũ j (t) ϕ j (x, y). Furthermore,
let F be a solver for discontinuity on the the nodal points used for the Lagrange
reconstruction of the flux polynomial on each edge. Such a flux solver can be e.g. the
Rusanov flux solver.We can then rearrange the equations tomatrix–matrix and vector–
matrix operations. Using an explicit Euler time stepping, this yields

Ũ t+Δt
i = Ũ t

i + ΔtM−1
(
Sx Ũ (t) + SyŨ (t) + F(Ũ−(t), Ũ+(t))

)
.

This represents the very basic implementation of the DG method, see e.g. [23] for
enhanced versions.

For the benchmarks with a hybrid parallelization, we used the Rusanov flux solver
[35] and a discretization based on a constant basis function on each cell support, thus a
finite volumediscretization. For the simulations used in theTsunami parameter studies,
varying underwater depth (bathymetry) data has to be considered. Here, we used the
computationally more intensive Augmented Riemann solver [21] andmulti-resolution
sampled GEBCO [9] bathymetry datasets.

We use these simulations as a realistic basis for an application scenario with vary-
ing workload. In particular for hyperbolic simulations, a changing workload leads to
varying efficiency which cannot be considered with a static resource allocation.

This changing efficiency information can be provided in differentways to a resource
manager which then optimizes the current resource distribution. The next Section
presents such a solution of a dynamic resource allocation.

5 Realizing Invasive Computing

We first introduce our point of view on hybrid-parallelized applications (Sect. 5.1) and
the challenges in the context of concurrently executed shared-memory parallelized
applications (Sect. 5.2). Afterwards, a generic view on the optimization algorithm in
the resource manager is given (Sect. 5.3) and the interface requirements between the
resource manager and the applications to distribute computational resources to MPI
ranks and other concurrently running applications are presented (Sect. 5.4). Finally,
we explain a resource manager as the core component of the Invasive Computing
approach which is responsible to distribute resources to applications (Sect. 5.5).

123

Int J Parallel Prog (2015) 43:1004–1027 1011

cores

cache coherent
shared memory
bus system

MPI ranksMPI rank 1MPI rank 0

worker
threads

logical separation
of applications

ph
ys

ic
al

 la
ye

r
lo

gi
ca

l l
ay

er

Fig. 3 Overview of the dynamical assignment of cores to ranks with hybrid parallelization. The top layer
represents the physical cores available for computations with each processor providing four cores for
computations. The bottom layer associates the physical coreswith threads executing instructions and threads
being dynamically assigned to MPI ranks

5.1 Hybrid Parallelization

Invasive Computing for hybrid parallelized applications involves a mix of shared
and distributed memory parallelization strategies. Figure 3 gives an overview of the
dynamically changing resource layers of a hybrid simulation on a single shared-
memory HPC system. The top physical layer describes the physical resources includ-
ing the cache-coherent bus system. For operating systems, such a cache-coherency
is required internally whereas for applications pinned to cores, this is typically not
required between different MPI ranks due to separated address space. The lower logi-
cal layer maps resources to the physical components. Each worker thread operates on
a single core and in case of using MPI, one MPI rank usually contains several worker
threads. The number of worker threads per MPI rank in combination with the pin-
ning to cores is static over run time with existing standard parallelization models. This
leads to compute or work-imbalances amongMPI ranks due to refining and coarsening
(coarse grids cause less computational load, fine grids cause more) with the compute
imbalance being research of this paper. Therefore, we suggest a dynamically changing
number of worker threads and dynamic pinning of threads to cores.

5.2 Concurrently Running Applications

Considering concurrently running applications on cache-coherent memory systems,
the typical way of parallelization is accomplished with a threading library such as
OpenMP and TBB. However, once running applications concurrently, resource con-
flicts can lead to a severe slowdown in performance due to frequently executed context
switches on shared cores. This results in overheads induced by cache thrashing and
costs of context switches. Furthermore, originally load-balanced computations suffer
from load-imbalances due to computing delays introduced by the before-mentioned
issues.

123

1012 Int J Parallel Prog (2015) 43:1004–1027

Table 1 Symbols representing the data structures used by the resource manager

Symbol Description

R Number of system-wide available computing resources

N Number of concurrently running processes

A List of running applications or MPI processes

ε Placeholder for “no application”

C State of resource assignments to applications

Di Optimal resource distribution assigning Di cores to application Ai
Pi Optimization information (scalability graphs, e.g.) for application i

Ti Optimization targets (throughput, energy, etc.) for each application

Gi Number of resources currently assigned to application i

Fi List of free resources

Wi Workload for application i

T (c) Throughput for c cores

Si (c) Scalability graph for application i .

In the next Section, we introduce a resource manager which assigns resources
dynamically to applications, focusing to avoid the beforementioned issues.

5.3 Resource Manager

The resource manager (RM) itself is implemented as a separate process running in
background on one of the cores utilized by the simulation software. Its responsibility
is to optimize the resource distribution. This optimization is achieved by utilizing the
information provided by the applications through their developers. Such information
can be scalability graphs to optimize for non-linear workload-to-scalability and range-
constraints requesting resources within a specific range such as “1–6 cores”.

The communication to the RM is achieved via IPC message queues [18] due to
their low overhead compared to TCP/IP or other socket-based communication. Thus,
the RM provides a service bound to a particular message queue ID and each process
has to subscribe to the service by a handshake protocol. With the utilization of mes-
sage queues, the addresses of the processes and the RM are made unique by tagging
messages to the RM with ID 0 and those to each process by the unique process id.

For sake of clarity, Table1 contains an overview of the symbols introduced in the
following. For the management of the cores, the RM uses the vectorCwith each entry
representing one of the R = |C| physical cores. In case of core i being assigned to a
process, the process id is stored to the entry Ci and ε otherwise.

5.3.1 Scheduling Information

Next, we discuss our algorithm for optimizing the resource distribution for concur-
rently executed applications. Let R be the number of system-wide available compute
resources, N be the number of concurrently running applications, ε be a marker for

123

Int J Parallel Prog (2015) 43:1004–1027 1013

a resource not assigned to any application and A be a list of identifiers of concur-
rently running applications, with |A| = N . We then distinguish between uniquely
system-wide and per-application stored management data.

System-wide data: We define the system-wide management data given by the
resource assignment which is done by the RM and the optimization target such as
maximizing application throughput or minimizing for energy efficiency. The current
state on the resource assignment is given by

C ∈ ({ε} ∪ A)R,

uniquely assigning each compute resource to either an application a ∈ A or to none
ε. The optimal resource distribution is given by

D ∈ {0, 1 . . . , R}N

with each entryDi storing the number of cores to be assigned to the i-th applicationAi .
To avoid oversubscription of these resources to the applications, we further demand

∑
i

Di ≤ R. (2)

This subscription constraint avoids assignment of more resources than there are avail-
able on the system, whereas the explicit assignment of resources in an exclusive way
via the vector C avoids resource collision per se. For enhanced releasing of cores, the
cores currently assigned are additionally maintained in a list for each application.

Per-application data: The data Pi stored for each applicationAi consists of the cur-
rently specified constraints which were sent to the RM with a (non-)blocking invade
call. These constraints provide the basis for the optimizations with different optimiza-
tion targets available and discussed in Sect. 5.3.3.

5.3.2 Optimization Loop

After its setup, the RM processes messages from applications in a loop. Updates of
resource distributions are then based on messages processed in a way optimizing the
current resource distribution C towards the optimal target resource distribution D.
We can separate the optimization loop into the following three parts:

– Computing target resource distributionD: For setup, shutdown and in particular
invade messages, new parameters for computing the target resource distribution
are handed over to the RM via the constraints. This triggers execution of the
optimization function, in its general form given by

(D(i+1),C(i+1)) := foptimize(D(i),C(i),P,T) (3)

with T being a vector of optimization targets for each application such as
improved throughput or load distribution, P the application constraints, the cur-
rent core-to-application distributionC(i) and the optimizing function foptimize as
input parameters. foptimize computes the quantitative target resource distribution

123

1014 Int J Parallel Prog (2015) 43:1004–1027

D(i+1) to which the computing cores have to be updated to. The superscript (i)
annotates the i-th execution of the optimization function in the RM.
In its generic form, also the core-to-application assignment is returned inC(i+1).
We expect this to get beneficial in case of accounting for non-uniform memory
access (NUMA) prone applications and mandatory, once extending the RM to
distributed memory systems. So far, this direct core-to-application assignment
is not considered in computation of the target resource distribution and we
continue solely using the quantitative optimization given in D(i+1).

– Optimizing current resource distribution C: With an optimized resource distri-
bution D(i+1) at hand, the current resource distribution in C has to be succes-
sively updated. During this resource reassignment, resources can be assumed
to be only immediately releasable under special circumstances. Such circum-
stances are e.g. that the cores have to be released for the application for which
the optimization process with a blocking (re)invade call is currently processed.
Otherwise, the RM has to send a message with a new resource distribution to
an application. Only as soon as the application replies with its updated resource
distribution, these resources can be assumed to be released. Hence, resources
cannot be assumed to be directly released in general during the optimization
process inside the RM, e.g. after sending a release message. This results in a
delay in resource reassignment, hence idling time, which has to be compensated
by the benefits of core-migration.
The resource redistribution step then iterates over the list A of applications.
For each application Ai , either the resources stay unmodified, are released or
assigned from or to the application. LetGi := |{ j |Ai = C j ,∀ j ∈ {1, . . . , R}}|
be the number of resources currently assigned to application Ai and a list of
free resources F with CF j = ε. The redistribution process then iterates over all
applications:
– Gi = Di : No update
The number of resources assigned to an application equals the currently
assigned resources. Therefore, there are no resources to update for this appli-
cation.

– Di < Gi : Release resources
In case of less resources to be assigned to the application, a message is sent
to the application. This message is either send directly to the application
in case of a non-blocking communication or as a response message to a
blocking (re)invade call. In every case, the message includes only a shrank
set of resources,Gi−Di cores less than currently assigned to the application.
Note that the current resource distribution C is not updated yet. Otherwise,
those resources could be assigned to other applications, leading to resource
conflicts.

– Di > Gi : Add resources
Assignment of additional resources is accomplished by searching for
resources in the list of free resources and assigning up to k ≤ Di − Gi

of them to the application with

∀ j ∈ {F1, . . . ,Fk} : C j := Ai .

123

Int J Parallel Prog (2015) 43:1004–1027 1015

– Client-side resource update messages: As soon as the change of resource uti-
lization is assured, e.g. by an application respondingwith the resources currently
used, the RM tests for further optimizations in case of released resources. We
then apply the same operations for the standard optimization of the resource
distribution C since this also accounts for assigning recently released resources
by adding resources in case of Di > Gi .

5.3.3 Scheduling Decisions

We use the previously introduced data structures to compute our optimized target
resource distribution D depending on the specified optimization target T and per-
application specified information P.

Recapitulating our original optimization function (3), we drop the core dependen-
cies C yielding an optimization function

D(i+1) := foptimize(D(i),P,T) (4)

with a reduced set of parameters.We then apply optimizations based on the constraints
given for all applications in P and depending on the optimization target T.

Requirements on constraints:Resource-aware applications are expected to forward
information on their state aswell as their requirements via constraints to theRM,which
keeps this information in P. Depending on the optimization target T, the RM then
schedules resources based on these constraints. We further distinguish between local
and global constraints, respectively, depending on their capability of optimization per
application or for all applications.

Local constraints: With constraints such as a range of cores, an application can
always request between 1 and the maximum number of cores available on the system.
Such constraints do not yield a way of adopting the application’s resources under
consideration of other concurrently running applications without knowledge on the
state (FLOP/s, throughput, etc.) of these applications. Therefore we refer to such
constraints as local ones.

Global constraints:With global constraints, we refer to constraints to be evaluated
by the optimization function leading to a global cooperative way:

– Application’s workload: Under the assumption of similar applications, load bal-
ancing related values such as the workload can be used to schedule resources.
Using this constraint, our target function then distributes R compute resources to
N applications with workload Wi for each application i :

Di :=
⎡
⎢⎢⎢⎢
R · Wi∑
j
W j

⎤
⎥⎥⎥⎥

− αi , αi ∈ {0, 1}

This assigns Di resources to application Ai . α has to be chosen in a way to avoid
over-subscription [see Eq. (2)].
Only considering the assigned resources Di , we take a different point of view lead-
ing to alternative global scheduling: Each application has a perfect strong scalability

123

1016 Int J Parallel Prog (2015) 43:1004–1027

S(c) for c cores within the range [1;Di]: S(c) := min(c,Di). The cores are then
assigned to the applications until their scalability does not yield any performance
improvement. Obviously, such a strong scalability graph represents only an approx-
imation of the real scalability graph which we discuss next:

– Application’s scalability graph: We consider applications messaging strong scal-
ability graphs to the RM. Such scalability graphs are linearly dependent on the
application’s workload throughput via the strong scalability:
We compare the throughput T (c) depending on the number of cores c. With the
throughput for a number of cores given by the fraction of the time taken to com-
pute a solution and the fixed problem size w = Wi , we compute the throughput
improvement with the baseline set at the throughput with a single core:

w
T (c)
w

T (1)

= T (1)

T (c)
=: S(c)

yielding the scalability graph S(c). Therefore this justifies relating the scalability
graph to the application’s throughput. Moreover, a scalability graph also yields a
way to optimize for throughput for different application types due to the normal-
ization S(1) = 1 for a single core.
Given a scalability graph Si (c) with subindex i for the i-th application, we further
demand each graph to be monotonously increasing Si (c) − Si (c − 1) ≥ 0, and
concave Si (c + 1) − Si (c) ≤ Si (c) − Si (c − 1), thus assuming no super-linear
speedups with the concavity property.
We can then search for combinations in D maximizing the global throughput by
formulating our optimization target as amaximization problem:maxD

(∑
i Si (D j)

)
with the side constraint avoiding over-subscription

∑
j D j ≤ R. Hence, we get a

multivariate optimization problem with D j the search space.
A sketch of this optimization is given in Fig. 4. Here, we consider two applications,
each one providing a scalability graph. The scalability graph for the first application

0

5

10

15

20

25

30

35

40

0/
40

2/
38

4/
36

6/
34

8/
32

10
/3

0
12

/2
8

14
/2

6
16

/2
4

18
/2

2
20

/2
0

22
/1

8
24

/1
6

26
/1

4
28

/1
2

30
/1

0
32

/8
34

/6
36

/4
38

/2
40

/0

Sc
al

ab
ili

ty
 /

th
ro

ug
hp

ut

Core to client distribution (Appl. 1 / Appl. 2)

Throughput Appl. 2

Throughput of Appl. 1 + Appl. 2

Throughput Appl. 1

Fig. 4 Examples for scalability graphs: The scalability graph for the first application is givenwith increasing
number of cores from left to right and for the second application vice versa. The global throughput is given
with different assignments of all cores to both applications with the maximum throughput our optimization
target

123

Int J Parallel Prog (2015) 43:1004–1027 1017

is given with increasing number of resources (red solid line) and the second scal-
ability graph (greed dashed line) with increasing numbers of resources from right
to left. Then the theoretical optimal resource distribution is given by the global
maximum of the sum of normalized throughput of both applications (blue dotted
line) for different valid resource constellations.
Using our assumptions of strictly monotonously increasing and concave scalability
graphs, we can solve this maximization problem for more than two applications
with an iterative method similar to the steepest descent solver [19]:
Initialization:We introduce the iteration vector B(k) assigning Bi computing cores
to application i in the k-th iteration. Since each application requires at least one
core to continue its execution, we start with B(0) := (1, 1, . . . , 1), assigning each
application a single core at the start.
Iteration:With our optimization target aiming for improved application throughput,
we then compute the throughput improvement for application i if a single core is
additionally assigned to this application

ΔSi := Si (Bi + 1) − Si (Bi). (5)

and determine the application n, which yields the maximum throughput improve-
ment ΔSn := max j {ΔS j }.
The resource distribution is then updated by

B(k+1)
i := B(k)

i + δi,n (6)

with the Kronecker delta δ.
Stopping criterion: We stop the iterative process, as soon as all resources are dis-
tributed, thus if

∑
i B

(k)
i = R. The target resource distribution D(k+1) is then given

by the last iteration vector B.

5.4 Resource Manager and Hybrid-Parallelized Applications Interplay

In order to apply Invasive Computing for applications with hybrid parallelization,
two additional extensions have been realized: (a) an extension to the RM to start it
on the first MPI rank with appropriate synchronizations for contacting the RM by
the other MPI ranks and (b) a dead-lock free implementation due to intermixing the
communication of the RM with MPI synchronization barriers with the dead-lock free
implementation discussed next.

We start with an example of such a deadlock which can occur during the initial-
ization phase of Invasive Computing for a better understanding of the challenges of
core migration: We assume (without loss of generality) only two MPI ranks being
executed in parallel. All cores are initially assigned to the first MPI rank which starts
the computations in parallel whereas the second rank is waiting for resources. This
waiting is due to avoidance of oversubscription of resources, see Eq. (2). During the
computations, an MPI reduce operation is executed—e.g. to compute the maximum
allowed time step width. However, the second MPI rank is not allowed to start any
computations since all resources are already reserved by the first MPI rank which is

123

1018 Int J Parallel Prog (2015) 43:1004–1027

executing the barrier. Due to the blocking barrier, this MPI rank is not able to free
resources and make them available for other MPI ranks to call the barrier. The solution
is given by non-blocking invasive requests during the setup phase. These non-blocking
invased are executed until at least one computational resource is assigned to each MPI
rank, implemented with an MPI reduce.

We conclude that non-blocking invasive interfaces during the setup phase are
mandatory for Invasive Computing for our hybrid parallelized applications. The simu-
lation loop itself can be executed deadlock-freewith blocking or non-blocking invasive
commands. With the (MPI-)setup phase being provided by the invasive framework
layer, our deadlock-free initial resource assignment is hidden from the application
developer.

5.5 Owning Computation Resources

The pinning of threads to cores is frequently used in HPC to assure locality of com-
putation cores to data on the memory hierarchy. With OpenMP, changing the number
of cores is only available out of the scope of a parallel region. Also with TBB [32],
the task scheduler has to be deleted and reallocated to change the number of cores
used for our simulation. However, dynamically changing and pinning of computa-
tional resources during a simulation are not considered by current standard threading
libraries such as OpenMP and TBB.

We extended OpenMP and TBB to allow for changing the number of active threads
and their pinning during runtime and continue describing one of our approaches for
TBB. Before the setup phase of the simulation, as many threads as cores are available
on the system are started. A list of mutices with each mutex assigned to one of the
available threads is used to enable and disable threads of doing work stealing with
work stealing initially disabled. Then, for all but the first master thread, tasks are
enqueued with setting affinities to the corresponding threads requesting a lock to one
of themutices. Clearly, no spin-lockmay be used in this circumstances since the thread
really has to idle to make it available to other applications. Otherwise this would lead
to resource conflicts as discussed in Sect. 5.2.

For requesting a different number of resources, we distinguish between an increase
or a decrease in the requested number of cores. If the number of cores has to be
increased, work-stealer tasks can be enabled directly by unlocking the corresponding
mutex. For decreasing the number of cores, tasks requesting the mutex are enqueued,
leading to worker-threads with an idling state.

We are now able to change the number of cores used for running computations for
each program context. To consider the memory hierarchy, we describe our pinning
method of threads to cores, which avoids memory conflicts. Without pinning, our
invasive applications would not be able to work cooperative with other applications
due to violating exclusive resource agreements. The information on which cores an
application should run on is dynamically given to the application during run time.After
changing the number of resources, we set the thread-to-core affinities by enqueuing
tasks, which set affinities of the currently executing thread to the desired core. This
assures that threads, which continue running computations on particular cores, don’t
conflict with others.

123

Int J Parallel Prog (2015) 43:1004–1027 1019

To improve the programmability forMPI parallelized applications, theRMis started
on the first rank and running in background on an additional thread. Contrary to the
exclusive pinning of threads to cores for the application’s threads, we rely on the
operating system scheduler to use pre-emptive scheduling for the RM.

6 Results

All experiments presented in this section were conducted on an Intel Westmere EX
machine with 4 Intel Xeon CPUs (E7-4850@2.00GHz) and 256 GB memory totally
available on the platform. This gives 4 × 10 physical cores plus 4 × 10 additional
hyper threading cores, with the latter ones not used during the benchmarks.

All the benchmarks used in this section use a changing workload in each mem-
ory context, hence leading to the requirements of coping with the load imbalances
induced by the changing workload. While the non-invasive benchmarks do not use
core-migration between each time steps, the invasive benchmarks allow changing the
thread-to-core assignment between time steps if triggered by the resource manager.
Regarding the programmability issues of data migration, we purely focus on core
migration only and do not consider data migration approaches.

For sake of reproducibility of our results, the source code is released at
http://www5.in.tum.de/sierpinski/,
http://www.martin-schreiber.info/sierpinski/ (mirror) and
https://github.com/schreibm/ipmo

6.1 Micro Benchmark for Invasive Message Passing and Processing

Invasive execution of our applications typically involves a message passing to the
resourcemanager. This leads to overheads due to themessage passing and the response
latency. We measure this overhead with a micro benchmark based on a very small
single-process SWE scenario (with a regularly refined spacetree resulting in 128 grid
cells), ignoring the influence of other applications. The size of this setup is just large
enough to obtain significantly measurable times for communication overheads. The
tests were conducted in three different variants: (a) a pure threaded execution, (b) a
scenario sending requests to resource manager in a blocking way, thus waiting and
forcing cores to idle until the resource manager responds, and (c) invasive requests to
the resourcemanager using a non-blocking communication. Such a non-blocking com-
munication sends new requirements to the resource manager, tests for and processes
resource-update messages from the resource manager and immediately continues the
simulation in case of messages left in the message queue to the resource manager.
Results for multiple runs of identical scenarios are given in Fig 5. These micro bench-
mark scenarios show in general small overheads of Invasive Computing due to the
communication with the resource manager. Compared to the non-invasive execution,
the blocking communication to the resource manager leads to additional and scattered
overhead of up to 15%. With non-blocking communication, the maximum overhead
and its scattering is reduced to 5% providing a robust improvement for invasive exe-
cutions.

123

http://www5.in.tum.de/sierpinski/
http://www.martin-schreiber.info/sierpinski/
https://github.com/schreibm/ipmo

1020 Int J Parallel Prog (2015) 43:1004–1027

Fig. 5 Invasive message
passing and processing
overheads: 25 identical
simulation runs execute on a
single MPI rank. We compare a
purely threaded simulation, a
non-blocking invasive execution
and a blocking execution

2.1

2.2

2.3

2.4

2.5

2.6

2.7

0 5 10 15 20 25

S
ec

on
ds

Simulation test run

invasive
invasive non-blocking

OpenMP

6.2 Artificial Hybrid-Parallelized Load-Imbalance Benchmark

Our next benchmark suite for invasive executions involves more than a single program
context and is based on artificial workload executed with two MPI ranks to show the
general applicability, but also restrictions of our approach.

Let r be the MPI rank of a single simulation run. We execute our test application
with artificial load simulating an application with T computation steps and each com-
putation step denotedwith t ∈ [0; T−1]. Then, theworkload for rank r at computation
step t is given with Lr (t). For our artificial test case executed on two MPI ranks, we
chose linear functions creating the workloads L0(t) := T − t for rank 0 and for rank 1
L1(t) := t . Our artificial workload is simulated by L2

r square roots computed for each
rank and for each simulation time step. Thus, MPI rank 0 starts with a workload of 0
quadratically increased to T and MPI rank 1 vice versa. This artificial workload rep-
resents the changing number of grid cells and a barrier is executed after each artificial
workload L2

r e.g. to account for similar parallel communication pattern of hyperbolic
simulations.

Our artificial load imbalance benchmark scenarios are conducted for different num-
bers of time-steps T and, thus, workload sizes. We compare the benchmark setup for
our invasive implementation, which allows compute balancing via the RM, with the
non-invasive counterpart. This assigns the resources equally distributed to all MPI
ranks at simulation start. All other simulation parameters (such as adaptivity by refin-
ing and coarsening) are identical in both variants. For a better comparison, we use
the ratio of the time for the invasive execution Tinv to the time for the non-invasive
execution Tde f ault .

The results are given in Fig. 6 with the break-even point at 1 representing the
normalized run time of the non-invasive application. For small problem sizes, Invasive
Computing has a clear overhead compared to the non-invasive execution. However,
this soon improves starting with still relatively small problem sizes with T = 8,192
and remains a robust optimization for larger problem sizes. Comparing the run times
for our largest test simulation (Tde f ault = 6,057.24, Tinv = 2,870.82), the run time
was improved by 53%. Therefore, the realization of the invasive paradigm, even
though including the overheads determined with the micro benchmarks, really pays
off.

123

Int J Parallel Prog (2015) 43:1004–1027 1021

0
1
2
3
4
5
6
7
8
9

10

number of computation steps T

break even point

in
va

si
ve

 ru
nt

im
e

no
rm

al
iz

ed
by

 n
on

-in
va

si
ve

 ru
nt

im
e

Fig. 6 Invasive versus non-invasive execution of the artificial benchmark. For different problem sizes (e.g.
representing different initial grid refinement) depending on T , the time of the invasive execution is given
normalized to the non-invasive run time

To discuss the applicability of our results to other simulations, we consider the
threshold of the break-even point at the relatively small workload of 8,192 taking
8.43 s for the non-invasive and 8.39 s for the invasive execution. Our simulations with
dynamically changing resource requirements typically yield larger workloads, hence
we expect robust performance improvements for typical DAMR simulations with
similar workload changes.

6.3 Shallow Water Simulation Benchmark

For our simulation based on a dynamically adaptivemesh refinement, we used the shal-
low water equations explained in Sect. 4. The scenarios are conducted with an initial
refinement depth of 14, thus creating (2×2)14 bisection-generated initial grid-cells for
a triangulated domain setup by two initial triangles and a relative refinement depth of
10. The domain was initially split up along the diagonals assigning the computations
for each quarter to an MPI rank. This assignment to MPI ranks is kept over the entire
simulation run time, thus without data migration, with each MPI rank being able to
split its subregion to improve local load balancing by massive splitting in combination
with threaded parallelization as proposed in [38]. The adaptivity criterion was chosen
to refine and coarsen based on the relative water-surface displacement to the horizon.

The results for the benchmark are given in Fig. 7. A robust improvement of simu-
lation run time for all different utilized cores and MPI ranks can be observed. For the
scenario using 20 cores and 4 MPI ranks, an increased load imbalance can be shown.
The computational efficiency of this scenario was mostly improved by invasive core
migration whereas for the non-invasive scenario, the lost computation time was due
to idling cores.

Due to different results depending on using owner-compute for scheduling on sim-
ulations with a longer run time [39], we decided to run additional simulations with
owner-compute cluster scheduling to improve awareness of NUMA effects: instead
of generating a task for each cluster, we assign one or more clusters to a thread. The

123

1022 Int J Parallel Prog (2015) 43:1004–1027

0

50

100

150

200

250

300

40 / 2 40 / 4 20 / 2 20 / 4 40 / 2 40 / 4 20 / 2 20 / 4

si
m

la
tio

n
tim

e
in

 s
ec

on
ds

cores / MPI ranks

non-inavsive
invasive

Without NUMA awareness

0

50

100

150

200

250

300

si
m

la
tio

n
tim

e
in

 s
ec

on
ds

cores / MPI ranks

non-inavsive
invasive

NUMA aware with owner-compute

Fig. 7 Invasive versus non-invasive execution times with default TBB affinities for different combinations
of number of cores and MPI ranks. See text for further information on NUMA aware execution

0

5

10

15

20

25

30

35

40

st
ac

ke
d

co
re

-to
-r

an
k

sc
he

du
lin

g

execution time

Rank 3

Rank 2

Rank 1

Rank 0

Fig. 8 Overviewof core-to-MPI rankdistribution. The cores are given in a stacked representation depending
on the real time in which the scheduler is reassigning the resources

results for a simulation with the owner-compute scheme enabled are visualized in the
right image in Fig. 7 with a performance similar to the default simulation. The owner-
compute simulations are even slightly slower compared to the default work stealing
- in particular the 40/4 combination. We account for this by NUMA effects of the
underlyingmemory architecture: due to the changing core distribution, core-to-NUMA
domain relations are frequently changingwhereas our owner-compute scheduling aims
to compensate NUMA effects under the assumption of a core-to-cluster locality over
time. However, the owner-compute scheme does not allow for work-stealing, e.g. to
compensate dynamic resource distributions introducing additional NUMA effects,
therefore leading to longer run time. We emphasize, that this is contrary to the results
obtained for the static resource assignment with the owner-compute scheme yielding
improved runtime compared to the work stealing [39].

An overview of the scheduling is given in Fig. 8.We executed our simulation with a
severely reduced problem size in order to get a better survey on the distribution of the
workload: the initial depth was set to 10, the adaptive depth leading to the dynamical
grid to 8 and the simulation was executed for 1,000 time steps taking 19.3 s to compute
the simulation. A radial breaking dam is initialized with the gravitation-induced wave
leading to a dynamically adaptive grid refinement, see Fig. 1 for an example. The first

123

Int J Parallel Prog (2015) 43:1004–1027 1023

Fig. 9 Screenshots with visualization of the dynamic adaptive grid underlying to a 2011 Tohoku Tsunami
simulation used for the Tsunami parameter study benchmark. We use a highly-refined grid at the wave front
and a coarser grid in the other areas

phase between 0 and 0.2 s is used for the setup. Afterwards, the simulation itself is
executed, starting at 0.2 s. Rank 3 was initially assigned the most computation cores
which is due to the initial radial dam break created mainly in the grid assigned to this
rank, leading to a severely higher workload at rank 3. During wave propagation, the
workload in rank 1 dominates successively and, thus, obtains more andmore resources
from rank 3. At the end of the simulation run, the grid resolution and, hence, workload
for rank 2 is increased relatively to other ranks, and it consequently reassigns resources
from other ranks. This dynamic resource distribution fits to the underlying dynamic
adaptive mesh refinement.

Without synchronization for core reassignment, idling processing time is automati-
cally introduced during the scheduling of taking away a core to initializemigrating this
core to another MPI rank. This overhead is visible at the top of the graph by the small
white gaps. Despite this core-scheduling-idling overhead, the overall reduced idling
time due to compute imbalances is severely reduced, thus improving the applications
efficiency.

6.4 Tsunami Parameter Study Benchmark

The final benchmark suite using several concurrently executed Tsunami simulations
represents an example of a parameter study for the 2011 Tohoku Tsunami event. The
simulation first loads the bathymetry data [9], preprocesses it to a multi-resolution
format and then sets up the initial simulation grid iteratively by inserting edges close
to the earthquake-generated displacement data [41], see Fig. 9. Such parameter studies
are e.g. required to identify adaptivity parameters such as the net-flux crossing each
edges and/or theminimum andmaximum refinement depth. The resource optimization
constraint we used in these studies is based on the workload, e.g. current number of
cells, in each parameter study.

We compare three different ways to execute such parameter studies:

– Invasive Computing:
The application is started as soon as it is enqueued. A short period after its start,
the application is waiting until a message from the RM provides at least a single
resource. This is important to avoid any conflicts with other concurrently running
applications.

123

1024 Int J Parallel Prog (2015) 43:1004–1027

0

5

10

15

20

25

30

35

40

C
om

pu
tin

g
co

re
s

Time in Seconds

Study 5

Study 4

Study 3

Study 2

Study 1

Fig. 10 Visualization of a typical resource redistribution to invasified applications executed with different
parameters and started at different points in time. The spikes at the top of the resource distribution represent
the idle time of computing cores until they are rescheduled to another application

– OpenMP sequential:
Using OpenMP scheduling, starting each application directly after its enqueuing
would result in resource conflicts, and thus severely slowing down the execution.
Therefore, this execution policy starts the enqueued application only if the execution
of the previous applications was finished.

– Threading Building Blocks (TBB):
Using TBB, we start each application as soon as it is enqueued to our system. TBB
has features which automatically circumvent resource conflicts in case of idling
resources, hence setting up a perfect baseline to compare our Invasive approach
with another optimization method.

A typical dynamic resource distribution with Invasive Computing for such para-
meter studies is given in Fig. 10. We successively increase the problem size for the
scenarios by increasing the maximum allowed refinement-depth parameter, resulting
in higher workload for each scenario. Five applications with slightly different adap-
tivity parameters are enqueued to the system with a delay of a few seconds. Such
a delay represents a more realistic, user-driven-like enqueuing of applications to the
computing system compared to starting all applications at once.

The results of the three approaches for different parameter studies are given in
Fig. 11 with increasing workload from left (scenario A) to right (scenario F). The
OpenMP sequential execution always yields the longest run time. For smaller work-
loads, the TBB implementation is competitive to the Invasive Computing approach
whereas for larger workloads, it approaches the longer OpenMP sequential run times.
Regarding our Invasive Computing approach, the costs for rescheduling resources
are compensated for larger simulations (scenario C to F). For the scenarios E and F
with a larger workload, the invasive execution of such larger problem sizes yields an
optimization of 45%.

For our simulations, the effects of the underlying NUMA architectures did not have
a significant impact on the performance. We account for this e.g. by the computational
intensive solvers, the cache-optimized grid traversal and efficient stack-based data

123

Int J Parallel Prog (2015) 43:1004–1027 1025

1

10

100

1000

10000

100000

Scen.A Scen.B Scen.C Scen.D Scen. E Scen. F

O
ve

ra
ll

ex
ec

ut
io

n
tim

e

Different Scenarios

Invasive Computing
OMP sequential
Threading Building Blocks

0
10000
20000
30000
40000
50000
60000
70000
80000

Scenario E Scenario F

O
ve

ra
ll

ex
ec

ut
io

n
tim

e

Different Scenarios

Invasive Computing
OMP sequential
Threading Building Blocks

Fig. 11 Left image The problem size was successively increased per execution scenario (left to right)
via the adaptivity parameters. Comparing our Invasive Computing approach with scenarios using typical
OpenMP and TBB parallelized applications, Invasive Computing results in a robust optimization for larger
scenarios. Right image Scenarios E and F with linear scaling for improved comparison

exchange as well as the underlying hardware which, in case of accessing a non-local
NUMA domain, requires only a single HOP. We expect higher impact on latencies on
larger systemswithmore than 1K cores, e.g.withNUMAdomain data access requiring
page-wise migration.

7 Conclusions and Future Work

We presented a new approach in the context of Invasive Computing as performance
improving solution for (a) dynamically changing resource requirements of concur-
rently running applications on cache-coherent shared-memory systems and for (b)
load imbalances for applications with hybrid parallelization. Due to the clear inter-
faces and easy extension of applications with this compute-balancing strategy, this
leads to improved programmability while accounting for changing resource require-
ments and load imbalances.

We conducted experiments based on four different benchmarks on a cache-coherent
shared-memory HPC system. The results show robust improvements in performance
for realistic PDE simulations executed onNUMAdomains with hybrid parallelization.
With the efficiency of Tsunami parameter studies considerably improved by 45%, the
Invasive Computing approach is very appealing for concurrently executed applications
with changing resource demands and time-delayed points of execution.

The presented optimizations with Invasive Computing are not only applicable to
DAMR simulations but can also be applied to other applications with dynamically
changing resource requirements in general.

Our current work is on systems with run time configurable cache-coherency pro-
tocols and cache-levels [43] to further enhance the performance and programmabil-
ity of parallel applications on such systems. With our simulations conducted on an
HPC shared-memory NUMA domain which requires only one additional hop to each
domain, thus hiding the NUMA domain effects very efficiently, we expect that evalu-
ation of the invasive concepts leads to additional requirements on larger scale NUMA
domains.

123

1026 Int J Parallel Prog (2015) 43:1004–1027

Acknowledgments This work was supported by the German Research Foundation (DFG) as part of the
Transregional Collaborative Research Centre “Invasive Computing” (SFB/TR 89).

References

1. Aizinger, V.: A discontinuous Galerkin method for two-dimensional flow and transport in shallow
water. Adv. Water Resour. 25, 67–84 (2002)

2. Al Faruque, M.A., Krist, R., Henkel, J.: ADAM: run-time agent-based distributed application mapping
for on-chip communication. In: Proceedings of the 45thAnnualDesignAutomationConference, ACM,
New York, NY, USA, DAC ’08, pp. 760–765 (2008)

3. Bader, M., Breuer, A., Schreiber, M.: Parallel fully adaptive tsunami simulations. In: Facing the
Multicore-Challenge III, Institut für Informatik, Technische Universität München, Springer, Heidel-
berg, Germany. Lecture Notes in Computer Science, vol. 7686 (2012a)

4. Bader, M., Bungartz, H.J., Schreiber, M.: Invasive computing on high performance shared memory
systems. In: Facing the Multicore-Challenge III. Lecture Notes in Computer Science, vol. 7686, pp.
1–12. Springer (2012b)

5. Bangerth, W., Hartmann, R., Kanschat, G.: Deal.II—a general purpose object oriented finite element
library. ACM Trans. Math. Softw. 33(4), 1–27 (2007)

6. Becchi, M., Crowley, P.: Dynamic thread assignment on heterogeneous multiprocessor architectures.
In: Proceedings of the 3rd Conference on Computing Frontiers, ACM, New York, NY, USA, CF ’06,
pp. 29–40 (2006)

7. Behrens, J.: Efficiency for adaptive triangular meshes: key issues of future approaches. In: Hamilton,
K., Lohmann, G., Mysak, L. A. (eds.) Earth System Modelling, vol. 2. Springer (2012)

8. Bhadauria, M., McKee, S.: An approach to resource-aware co-scheduling for CMPs. In: Proceedings
of the 24th ACM International Conference on Supercomputing, ACM, ICS ’10, pp. 189–199 (2010)

9. BODC.: Centenary Edition of the GEBCO Digital Atlas (2013)
10. Bolosky, W.J., Scott, M.L.: False sharing and its effect on shared memory performance. In: 4th Sym-

posium on Experimental Distributed and Multiprocessor Systems, pp. 57–71 (1993)
11. Burstedde, C.,Wilcox, L.C., Ghattas, O.:p4est: scalable algorithms for parallel adaptivemesh refine-

ment on forests of octrees. SIAM J. Sci. Comput. 33(3), 1103–1133 (2011). doi:10.1137/100791634
12. Castro, C., Käser, M., Toro, E.: Space-time adaptive numerical methods for geophysical applications.

Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 4613–4631 (2009)
13. Corbalán, J., Martorell, X., Labarta, J.: Performance-driven processor allocation. In: Proceedings of

the 4th Conference on Symposium on Operating System Design & Implementation, vol. 4 (2000)
14. Corbalan, J., Martorell, X., Labarta, J.: Performance-driven processor allocation. IEEE Trans. Parallel

Distrib. Syst. 16(7), 599–611 (2005)
15. De Grande, R., Boukerche, A.: Dynamic load redistribution based on migration latency analysis for

distributed virtual simulations. In: 2011 IEEE International Workshop on Haptic Audio Visual Envi-
ronments and Games (HAVE), pp. 88–93 (2011). doi:10.1109/HAVE.2011.6088397

16. Drosinos,N.,Koziris,N.: Performance comparison of pureMPI vs hybridMPI-OpenMPparallelization
models on SMP clusters. In: Parallel and Distributed Processing Symposium 2004 IEEE (2004)

17. Falby, J.S., Zyda, M.J., Pratt, D.R., Mackey, R.L.: NPSNET: hierarchical data structures for real-time
three-dimensional visual simulation. Comput. Graph. 17(1), 65–69 (1993)

18. Fleisch, B.D.: Distributed system V IPC in LOCUS: a design and implementation retrospective. ACM
SIGCOMM Comput. Commun. Rev. ACM 16, 386–396 (1986)

19. Fletcher, R., Powell, M.J.: A rapidly convergent descent method for minimization. Comput. J. 6(2),
163–168 (1963)

20. Garcia, M., Corbalan, J., Badia Maria, R., Labarta, J.: A dynamic load balancing approach with
SMPSuperscalar andMPI. In: Keller, R., Kramer, D.,Weiss, J.P. (eds.) Facing theMulticore-Challenge
II, Springer Berlin Heidelberg, Stuttgart (2012)

21. George, D.: Augmented Riemann solvers for the shallow water equations over variable topography
with steady states and inundation. J. Comput. Phys. 227(6), 3089–3113 (2008)

22. Gerndt, M., Hollmann, A., Meyer,M., Schreiber, M.,Weidendorfer, J.: Invasive computing with iOMP.
In: Specification and Design Languages (FDL), pp. 225–231. IEEE, Vienna (2012)

23. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and
Applications, pp. 97–107. Springer Verlag, New York (2008)

123

http://dx.doi.org/10.1137/100791634
http://dx.doi.org/10.1109/HAVE.2011.6088397

Int J Parallel Prog (2015) 43:1004–1027 1027

24. Hsieh, W.C.Y.: Dynamic computation migration in distributed shared memory systems. PhD thesis,
MIT (1995)

25. Keyes, D.E.: Four horizons for enhancing the performance of parallel simulations based on partial
differential equations. In: Euro-Par 2000 Parallel Processing, pp. 1–17. Springer (2000)

26. Kobbe, S., Bauer, L., Lohmann, D., Schröder-Preikschat, W., Henkel, J.: DistRM: Distributed resource
management for on-chip many-core systems. In: Proceedings of the Seventh IEEE/ACM/IFIP Interna-
tional Conference on Hardware/Software Codesign and System Synthesis, ACM, pp. 119–128 (2011)

27. Li, D., De Supinski, B., Schulz, M., Cameron, K., Nikolopoulos, D.: Hybrid MPI/OpenMP power-
aware computing. In: Parallel Distributed Processing (IPDPS), pp. 1–12 (2010)

28. Meister, O., Rahnema, K., Bader,M.: A software concept for cache-efficient simulation on dynamically
adaptive structured triangular grids. In: PARCO, pp. 251–260 (2011)

29. Michael, M.M.: Scalable lock-free dynamicmemory allocation. ACMSIGPLANNot. ACM 39, 35–46
(2004)

30. Neckel, T.: The PDE framework peano: an environment for efficient flow simulations. Dissertation,
Institut für Informatik, Technische Universität München (2009)

31. Nogina, S., Unterweger, K., Weinzierl, T.: Autotuning of adaptive mesh refinement PDE solvers on
shared memory architectures. In: PPAM 2011. Lecture Notes in Computer Science, vol. 7203, pp.
671–680. Springer, Heidelberg (2012)

32. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor Parallelism.
O’Reilly Media Inc, Sebastopol (2010)

33. Rosu, D., Schwan, K., Yalamanchili, S., Jha, R.: On adaptive resource allocation for complex real-
time applications. In: Proceedings of the 18th IEEE Real-Time Systems Symposium, IEEE Computer
Society, Washington, DC, USA, RTSS ’97, p. 320 (1997). doi:10.1109/REAL.1997.641293

34. Rüde, U.: Fully adaptive multigrid methods. SIAM J. Numer. Anal. 30(1), 230–248 (1993)
35. Rusanov, V.V.: Calculation of interaction of non-steady shock waves with obstacles. NRC, Division of

Mechanical Engineering (1962)
36. Sagan, H.: Space-Filling Curves, vol. 18. Springer, New York (1994)
37. Schmidl, D., Cramer, T., Wienke, S., Terboven, C., Müller, M.: Assessing the performance of openmp

programs on the intel xeon phi. In:Wolf, F.,Mohr, B.,Mey, D. (eds.) Euro-Par 2013 Parallel Processing.
Lecture Notes in Computer Science, vol. 8097, pp. 547–558. Springer, Berlin (2013)

38. Schreiber, M., Bungartz, H.J., Bader, M.: Shared memory parallelization of fully-adaptive simulations
using a dynamic tree-split and -join approach. In: IEEE International Conference on High Performance
Computing (HiPC), IEEE Xplore, Puna, India (2012)

39. Schreiber, M., Weinzierl, T., Bungartz, H.J.: Cluster optimization of parallel simulations with dynam-
ically adaptive grids. In: EuroPar 2013, Aachen, Germany (2013a)

40. Schreiber,M.,Weinzierl, T., Bungartz,H.J.: SFC-based communicationmetadata encoding for adaptive
mesh. In: Proceedings of the International Conference on Parallel Computing (ParCo) (2013b)

41. Shao, G., Li, X., Ji, C., Maeda, T.: Focal mechanism and slip history of the 2011Mw 9.1 off the Pacific
coast of Tohoku Earthquake, constrained with teleseismic body and surface waves. Earth Planets Space
63(7), 559–564 (2011)

42. Teich, J., Henkel, J., Herkersdorf, A., Schmitt-Landsiedel, D., Schröder-Preikschat, W., Snelting, G.:
Invasive computing: an overview. In: Multiprocessor SoC, pp. 241–268. Springer (2011)

43. Tradowsky, C., Schreiber, M., Vesper, M., Domladovec, I., Braun, M., Bungartz, H.J., Becker, J.:
Towards Dynamic Cache and Bandwidth Invasion, pp. 97–107. Springer International Publishing
(2014)

44. Vigh, C.A.: Parallel simulations of the shallow water equations on structured dynamically adaptive
triangular grids. Dissertation, Institut für Informatik, Technische Universität München (2012)

45. Vuchener, C., Esnard, A.: Dynamic load-balancing with variable number of processors based on graph
repartitioning. In: Proceedings of High Performance Computing (HiPC 2012), pp. 1–9 (2012)

46. Weinzierl, T.:A framework for parallel PDE solvers onmultiscale adaptive cartesian grids.Dissertation,
Institut für Informatik, Technische Universität München, München (2009)

123

http://dx.doi.org/10.1109/REAL.1997.641293

	Invasive Compute Balancing for Applications with Shared and Hybrid Parallelization
	Abstract
	1 Introduction
	2 Existing Work and Invasive Computing
	3 Contribution
	4 Simulations with Dynamic Adaptive Mesh Refinement
	5 Realizing Invasive Computing
	5.1 Hybrid Parallelization
	5.2 Concurrently Running Applications
	5.3 Resource Manager
	5.3.1 Scheduling Information
	5.3.2 Optimization Loop
	5.3.3 Scheduling Decisions

	5.4 Resource Manager and Hybrid-Parallelized Applications Interplay
	5.5 Owning Computation Resources

	6 Results
	6.1 Micro Benchmark for Invasive Message Passing and Processing
	6.2 Artificial Hybrid-Parallelized Load-Imbalance Benchmark
	6.3 Shallow Water Simulation Benchmark
	6.4 Tsunami Parameter Study Benchmark

	7 Conclusions and Future Work
	Acknowledgments
	References

