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Abstract In order to increase the efficiency of existing softwaremanyworks are incor-
porating GPU processing. However, despite the current advances in GPU languages
and tools, taking advantage of their parallel architecture is still far more complex than
programming standard multi-core CPUs. In this work, we present a library based on
a set of building blocks that enable to easily design well-known algorithms with little
effort. More specifically, we implement butterfly algorithms with this library, that is,
a set of orthogonal signal transforms and an algorithm to solve tridiagonal equations
systems. Thanks to the parametrization of the building blocks, the library can be easily
tuned depending on the desired GPU architecture. This generic approach can be used
to easily design these GPU algorithms while obtaining competitive performance on
two recent NVIDIA GPU architectures, which results specially interesting from the
productivity point of view.

Keywords Signal processing · FFT · DCT · Hartley · Tridiagonal equation system ·
GPGPU · CUDA · Tuned library

1 Introduction

Graphic Processing Unit (GPU) architectures are powerful parallel processors opti-
mized for intensive arithmetic operations, performing specially well in regular
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algorithms with reduced flow control. Their major disadvantage is that even with stan-
dard languages, such asOpenCL [1] orCUDA [2], coding forGPU architectures tends
to be more complex due to their special features and memory hierarchy. Developing
efficient algorithms may be a challenge even for experienced programmers.

In this work we present a library for butterfly algorithms, Butterfly Processing
Library forGPUs (BPLG), that is based on a set of building blocks for the construction
of the different algorithms, allowing to reduce code complexity and development time.
Specifically, our design makes extensive usage of template metaprogramming [3].
Template programming forGPU libraries have proved to be very useful in otherworks,
for instance Thrust [4] or Bolt [5], giving a powerful set of tools to the programmer.
Furthermore, the functions of this library can be tuned depending on various factors,
such as the number of registers, the shared memory size or the desired parallelism
level. Specifically, our library can be applied to support butterfly algorithms that can
be represented using a butterfly communication pattern, where a problem of size N is
solved in logR(N ) steps and each step executes N/R parallel butterfly computations
over R data elements.

Using this library is possible to design GPU algorithm such as signal transforms
[(Fast Fourier Transform (FFT ), Hartley transform and Discrete Cosine Transform
(DCT )] or a tridiagonal solver algorithm, showing that our work obtains competitive
performance with other libraries. The FFT is a very important operation for many
applications, such as image and digital signal processing, filtering and compression,
partial differential equation resolution or large number manipulation. A variant of
the FFT algorithm was defined to work on real data [6]. This is useful in many
fields like audio processing where it is known that the input signal will only take
real values. The Hartley Transform [7] also operates on real data, but in contrast to
the real Fourier transform which produces an output with complex data, the result
will also be real. The DCT [8] is a widely used algorithm for multimedia processing
and lossy compression which also works on real data. The resolution of tridiagonal
equation systems is another interesting problem in scientific computing. It is used in
many applications like fluid simulation or the Alternating Direction Implicit method
for heat conduction and diffusion equations.

In this work two main contributions are included. The first one is the CUDA imple-
mentation of a compact yet very efficient tuned library using a CPU-like methodology
based on a set of functions used as building blocks; its careful design allows to greatly
reduce the complexity of the code without compromising performance. The second
is the extension of the work proposed in [9] with the addition of a tridiagonal system
solver algorithm based on the same design methodology as the signal transforms.

1.1 Related Work

Regarding the signal transforms, for CPUs there are many commonly used imple-
mentations, such as the FFTW [10], which is able to perform the four signal trans-
forms. Other libraries, such as Intel IPP [11] or Spiral [12], do not include the
Hartley transform. Many GPU FFT implementations have also appeared, for exam-
ple [13,14] were designed for the initial Tesla GPU architecture and based on a
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hierarchic communication scheme, Nukada FFT [15], optimized for 3D problems
and multi-GPU, or [16], designed to execute large problems on clusters. However,
these papers are mostly focused on the FFT, so their contributions may not be easily
applicable to other algorithms. Another interesting approach are auto-tuning libraries,
for instance [17] is designed for CUDA and explores a wide range of combinations, or
MPFFT [18], an OpenCL library which is based on compiler technology. Maybe, the
most well-known GPU FFT implementations are NVIDIA’s CUFFT [19] and AMD’s
clAmdFft [20] included in the APPML library.

As far as we know, none of the GPU libraries cited so far directly supports the DCT
or the Hartley transform. Many works [21,22] address specialized implementations
of the DCT for small 2D blocks used in image or video processing, but only a few
works [23,24] explain generalized GPU versions that cover a wider range of problem
sizes.

With respect to resolution of tridiagonal systems, there are many well-known ser-
ial [25] and parallel [26,27] CPU algorithms. The interest of these problems also
motivated the design of parallel GPU implementations. Some methods include cyclic
reduction implementations [28], a derived version of the SPIKE algorithm [29], and
other hybrid algorithms like [30] or [31] (which later was used in the CUDPP [32]
library). NVIDIA also proposed its own tridiagonal solver, included in the CUS-
PARSE [33] library. Our work proposes a GPU solution based on the Wang and Mou
algorithm [34], which has good numerical stability for diagonal dominant matrices or
when no pivoting is needed. This algorithm offers excellent performance due to its
suitability for GPU architectures, thanks to the regular structure based on a successive
doubling method.

2 Butterfly Algorithms

Many parallel algorithms are based on a divide and conquer strategy, where the main
problem is recursively subdivided until reaching the base case or a point that can be
easily managed by the threads. Most common signal transforms can be decomposed
this way to simplify the computations and distribute the work. For instance, one well-
known case is the Cooley–Tukey [35] FFT. One interesting aspect of this algorithm
is the data communication pattern (see Fig. 1a), which is also used in many other
algorithms and is commonly described as a butterfly pattern. The Cooley–Tukey FFT
performs a bit-reversal reordering at the beginning of the transform, but thanks to the
flexibility in the communication pattern the permutation can be distributed among
the stages of the algorithm. The signal transforms of this work will use a variable
radix version of the Stockham [36] algorithm (see Fig. 1b), as it is more suited to the
GPU architecture. Specifically, each transform of size N = 2n is computed in logR N
stages using a radix-R algorithm which computes N/R butterfly operations per stage.
If m = N mod R �= 0 then a mixed-radix approach is used [6], computing a radix-m
stage at the beginning.

There are other divide and conquer algorithms that use variations of these commu-
nication patterns besides the signal transforms, for instance a similar approach can
be applied to the resolution of tridiagonal equation systems using the Wang and Mou
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(a) (b)

Fig. 1 Example of communication patterns in two FFT algorithms for radix-2 andN = 16. aCooley–Tukey
algorithm. b Stockham algorithm

algorithm [34]. The computation will be also divided in logR N stages, operating the
rows in groups of R elements and following a pattern similar to the decimation in time
Cooley–Tukey algorithm as seen in Fig. 1a, but excluding the initial bit-reversal stage.
For instance, suppose the solution of a tridiagonal system Ax = b composed of the
following four equations is needed:

a0x0 + a1x1 + a2x2 = b0, a0 = 0 (1)

a1x1 + a2x2 + a3x3 = b1 (2)

a2x2 + a3x3 + a4x4 = b2 (3)

a3x3 + a4x4 + a5x5 = b3, a5 = 0 (4)

where ai are known coefficients, xi are the unknown variables and bi are the indepen-
dent terms. Notice that for N equations the first coefficient a0 and the last coefficient
an+1 are always 0. In this case, instead of operating on signal data the butterfly is
defined to operate on triads of equations labeled Left, Center and Right. For conve-
nience each equation is internally represented as a float4 data type (each row has three
unknowns, one per diagonal, plus the independent term). Figure 2a displays how the
algorithm would handle the four equations to obtain the solution. Each box is one
triad and the numbers inside the rows represent non-zero coefficients. Only the corre-
sponding subindex of ai is displayed in the figure, for instance Eq. 2 becomes [ 1 2 3 ]
in C2. Initially the members of each triad are initialized with the values of the corre-
sponding equation, that is Li = Ci = Ri = Eq i . Following the triads are operated
pairwise until at the last stage Li = {a0, a1, an+1, b0}, Ci = {a0, ai , an+1, bi } and
Ri = {a0, an, an+1, bn}. At this point the solution is computed as xi = bi/ai , with
1 ≤ i ≤ N .

Figure 2b show details of how each pair of triads is combined by theWang andMou
algorithm. Each circle represents a reduction operation, where one equation is used
to exchange one of the unknowns in another equation. The small vertical numbers
present an example of how the algorithm would perform the last stage for N = 8,
operating the second triad with the sixth triad. Notice that due to the recursive nature
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(a) (b)

Fig. 2 Data communication pattern for the Wang and Mou tridiagonal algorithm. a Data exchange among
triads for N = 4. b Detail of the butterfly operator

of the algorithm the left triad coincides with the second output from Fig. 2a. At the
end of the sequence both left equations will be identical (see L ′), the same happens
with both right equations (see R′).

3 BPLG Basic Functions

This section describes the basic functions that will be used to build our library. The
building blocks of the algorithms are created in several layers, and each function
only performs a small part of the work. Thanks to the behavior of templates many
optimizations will take place at compile-time, reducing code complexity or avoiding
temporal registers for function calls. Furthermore, more efficient code is generated
using the additional information that is provided to the CUDA nvcc compiler about
things like the problem size, the thread configuration or the radix-sequence. In fact,
when this information is known at compile-time, private thread data reordering is per-
formed using register renaming and data are directly accessed in the original structures
instead of navigating through pointers. Another advantage is that array data can be
processed using loops without being a major efficiency concern because static loops
will be fully unrolled. In particular this avoids dynamic addressing of register arrays,
which in the current GPU generations produces local memory spilling (see CUDA C
Best Practices Guide [2], Section 6.2.3).

All the described functions were designed to operate in any space of theGPU mem-
ory hierarchy, but it is recommended to use data in registers for computations because
they offer the highest bandwidth. However, when making heavy use of registers it is
important to check the compiler statistics, because if too many registers are used the
compiler will generate local memory spilling with the consequent performance loss.
Due to this space limitation, to handle the processing of a large problem the input
data has to be split in smaller chunks among the threads collaborating in each CUDA
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Fig. 3 Classification and module dependences of the building blocks involved in the library

block. Each thread usually operates over a subset of data stored in registers, therefore
it should be aware of the relative position in the data input.

In summary, the proposed library ismainly composed of optimized high level blocks
that implement the basic functions and one parametrized kernel for each algorithm that
properly combines these blocks. The building blocks can be classified into computation
(butterfly, twiddles or signal scaling) and reordering operations (bit-reversal or the
family of strided copy operations). Figure 3 presents a scheme with the classification
of the principal functions used to build the five algorithms: Complex FFT, Real FFT,
Hartley Transform, DCT and Tridiagonal System Solver. The solid line indicates a
dependency while the dashed line represents an optional component. Figure 4 presents
the templates that will become the building blocks of our library. Size-dependent
specializations and function overloads are omitted due to space constraints, however
most of the code is present in the figure.

3.1 Reordering Blocks

Data are passed among the different blocks as pointers, without worrying about the
number of modules cooperating. The blocks are combined in a final kernel with the
appropriate code to manage the parallel work distribution, creating the sequences of
the different algorithms.

Data is moved inside the GPU using the Copy function (see Fig. 4a), which reads
an array X of N elements with stride ss and writes the result to a different array Y of
the same size N but with stride sd: Y [1 : N : sd] := X [1 : N : ss]. Both data buffers
can be pointers to arrays in global memory, shared memory or registers; the input
buffer can also point to read-only constant memory or texture memory. The source
X and destination Y do not have to reside in the same memory space, however it is
recommended tominimizememory transfers, specially on the lower levels of theGPU
memory hierarchy where bandwidth is a precious resource. The strides sd and ss are
optional parameters and by default consecutive data is assumed. When the strides are
known at compile time, the data offsets can also be precomputed. The caller function
has the responsibility to use the adequate strides in order to minimize bank conflicts or
to perform coalescent global memory access. Thanks to the C++ function overloading
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Fig. 4 Template code for each one of the building blocks used by the signal algorithms

mechanism it is possible to define source stride without explicitly specifying a value
for the destination stride. Observe that the number of elements is known at compile
time, thus, the unroll directive in line 4 will instruct the compiler to unroll the loop in
line 5 and optimize the stride expression whenever possible.

The bit-reversal operation is a binary data permutation efficiently performed by
the Bit Reverse function (see Fig. 4b). It reads an array of N elements with stride
sd and writes the result to the same array using the same stride: X [1 : N : sd] :=
X [1 : N : sd]. For example, the function prototype (line 1) and the N = 4 (lines 4–7)
and N = 8 (lines 9–13) specializations are displayed in the figure. The definition
of a series of specializations usually results more efficient than the same operation
performed by a size-independent generalized algorithm. Furthermore, if sd is known
at compile-time the function performs static indexing and the source code will be
optimized by the compiler into a simple register renaming.

3.2 Computing Blocks

In contrast to the reordering blocks, the computing blocks modify their input data. The
different algorithms will be defined combining the basic reordering and computing
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Fig. 5 Specialized template code for the tridiagonal solver algorithm

blocks.Note that small auxiliary functionsmaybe required for some tasks, for instance,
our DCT and Hartley implementations are derived from the complex FFT, therefore a
pre-processing or post-processing filtering stage is required [37]. The real FFT is also
a specialized version of the complex FFT algorithm that treats the real input signal
as a complex array of half the length, avoiding redundant computations [37]. Last,
tridiagonal systems have a similar algorithm structure, but use another data exchange
pattern and a radically different radix operator as will be seen in Fig. 5.

If data scaling for inverse transform is desired the Scale operator can be applied to
the data array (see Fig. 4c). The input data (X ) is multiplied by a scalar value, which
is inversely proportional to the specified scaling factor F . In our case, the value of F
is the complete problem size being processed, which is used in line 3 to calculate at
compile-time the corresponding f actor value. Then, for each element of the array, the
scaling factor is applied (see line 6) taking into account the optional stride parameter
ss. As the number of iterations is known at compile-time the loop in line 5 will be
fully unrolled. Furthermore, if the stride is known at compile time, the data offsets can
also be precomputed.

The Butter f ly function handles the computations associated to each radix stage,
receiving a data vector X and a stride value ss. The function prototype is indicated in
Fig. 4d (lines 1 and 2), however the actual computations are performed by the corre-
sponding specializations (in the example line 5 for N = 2 and line 12 for N = 4).
Two sets of specializations are defined depending on the direction of the transform
(D = 1 for forward transforms as in the figure, and D = −1 for inverse transforms).
Observe that when N > 2 the operation is implemented splitting the input and calling
the same operation again over each part (with a different data pointer X and stride
ss) until reaching a two element butterfly. This is not a real recursion, because a dif-
ferent specialization is called. All the stride and pointer arithmetics involved in the
Butter f ly function template will be resolved at compile-time, without any runtime
performance penalty. In the case of tridiagonal systems, as detailed in Sect. 2, the but-
terfly operator is quite different. Figure 5 displays two examples of the corresponding
code. Butter f ly_step (Fig. 5b) is the general case and Butter f ly_ini t (Fig. 5a) is a
specialization optimized for the first stage of the algorithm, where the three equations
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of each triad are equal. These functions work over equations, progressively reducing
the variables as defined by the algorithm (see Fig. 2b). As the equations are represented
by a single float4 no information is provided about the relative position of the variables,
therefore the reduce function receives a parameter to properly align the equation data
for the reduction operation.

The twiddle factors are computed and applied by the corresponding Twiddle func-
tion template (see Fig. 4e). It just multiplies the elements of the input array X accessed
with a stride ss by a complex number. This value is derived from the location of the
element being operated (the iteration index i , declared in line 4 and used in lines 6 and
7) and the twiddle angle ang that was specified when calling the function. As in other
examples, the size parameter N is used to statically unroll the loop in line 4. In line 5 a
complex variable is defined to hold the twiddle factor. The trigonometric computation
is performed in line 6 using the iteration number, the value specified by ang and the
f astCosSin function (which will call the CUDA native __sincos f intrinsic).
Finally, the Radix function (see Fig. 4f) is used to perform the computations of

each stage. The parameter N determines the radix size, which is used to select the basic
Twiddle, Butter f ly and Bit Reverse kernels to call inside the template. When the
transform direction D is 0 operations are disabled, thus only the bit-reversal (line 5)
and other data permutation take place. As in the previous cases, the data is stored in
the array X and will be accessed using the stride specified by ss. The optional ang
parameter is only used to specify the corresponding twiddle for line 3 in multi-stage
FFTs after the first stage. A mixed-radix overload is defined for those cases when the
input array X contains data from different signals, which have to be processed in batch
mode without interactions among them.

Figure 5 presents two examples of the Radix function used by the tridiagonal
algorithm.Tridiagonal systems do not use the bit-reversal operator nor the computation
of the twiddle, however they still require the code to handle mixed-radix cases. This
task is performed by the Mix R specialization (Fig. 5c), which will always perform
the first stage of the algorithm, thus instead of calling the general Butter f ly_step
function (as in Fig. 5d) it will use Butter f ly_ini t .

4 Algorithm Design Based on BPLG

Thanks to the functions that were introduced in Sect. 3 it is possible to generate
the code of the different algorithms in an easy and compact way. Each algorithm is
implemented by a single main kernel, which is a template with four parameters: the
problem size N , the transform direction D used in the orthogonal transforms, the radix
size R and the amount of shared memory S. These parameters are known at compile-
time, therefore conditional execution and many function calls involving offsets and
strides can be easily optimized by the compiler as stated before. When S > N each
CUDA block will be assigned to process S/N independent problems in batch mode,
therefore increasing performance for large quantities of small problems. Following
we will describe two of the library kernels in order to explain the general form of the
algorithms with more detail.
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Fig. 6 Kernel code for the DCT algorithm

4.1 Signal Processing Transforms

As explained in Sect. 3 the realFFT, theDCT and theHartley transformwill be derived
from the complex FFT algorithm using a pre-processing and/or post-processing
stage [37]. In Fig. 6, the kernel code for the DCT algorithm is presented. This example
will also allow us to display the usage of the functions that were introduced in Sect. 3.
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The kernel has four template parameters which are supplied at compile-time (see N ,
D, R and S in line 1). The signal transforms are performed in-place and the kernel
only requires two runtime parameters (see line 2): a data pointer src (used as both
input and output) and si ze (which is the actual signal size and can be used to add
padding in order to process non power of two problems). Regarding the structure of
the algorithm, it can be divided into six main sections:

(1) Initialization section (represented by lines 3 and 4), where thread and group iden-
tifiers are used to obtain the global memory offsets. In this section, the registers
and shared memory resources are statically allocated as two simple arrays (shm
and reg) based on the kernel template parameters.

(2) Pre-processing stage (lines 6–11), which loads data from global memory and may
also perform some operations over it depending on the particular algorithm and
the direction parameter. For instance, in the case of the forward DCT data has
to be reordered before the execution of the radix stages (pack DCT in line 10),
while in the case of the Complex-FFT data is loaded directly to registers with no
pre-processing.

(3) First radix stage of the algorithm (lines 13–15). When N mod R �= 0 a mixed-
radix algorithm is performed. The optional template argument Mix R (computed
at compile-time) is used to perform several independent radix operators of smaller
size with data in the registers. This section also includes the signal scaling oper-
ation for the inverse transform (scale in line 14).

(4) Remaining radix stages (lines 17–33). They are computed using a loop and each
iteration is composed of a reordering stage (lines 24–28), which uses shared
memory to exchange information among the threads, and a computing stage (lines
30–32). The data exchange is easily performed by the copy function (lines 26 and
28) when called with different offsets and strides (obtained in lines 20–22). The
computing stage is performed by the radi x function (line 32), which only requires
the angle for the current iteration and thread (obtained in 31).

(5) Post-processing stage (lines 35–40), that depending on the algorithmmay perform
some computations or reorder the previous results.

(6) Results are written to global memory (lines 42–44). In the DCT signal data will
reside in sharedmemory,while in the case of theComplex-FFT nopost-processing
is required, therefore data can be directlywritten from registers after the final radix
stage (either line 15 or line 32, depending on N ).

4.2 Tridiagonal System Algorithm

Figure 7 presents the code structure for tridiagonal systems, which shares many sim-
ilarities with Fig. 6. Observe that in this case problem data is stored in a sparse for-
mat (see lines 2 and 3 with the function prototype), using four separate arrays as in
NVIDIA’s CUSPARSE library (gtsvStridedBatch function). There are three read-only
buffers for the diagonals (srcL for lower, srcC for main and srcR for upper) plus
another read/write buffer (dst X ) for the right-hand-side term, that will be also used to
store the solution at the end of the kernel. The read only buffers are declared as const
__restrict pointers, which in the Kepler architecture enables to optimize the memory
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Fig. 7 Kernel code for the tridiagonal algorithm

access using texture cache. In contrast to signal processing algorithms there are no
pre-processing or post-processing stages and the code can be divided into five main
sections:

(1) Initialization section (lines 5–8). Thread and group identifiers are used to obtain
global memory offsets. Register data (line 7) and shared memory space (line 8)
are allocated for the equations. The equations are represented by the customized
Float4 data type, and each row requires three equations (regL , regC and regR)
to store the triads in the registers. However, to minimize shared memory usage, a
single equation array shm will be allocated.
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(2) Load data from global memory (lines 10–17). The algorithm can easily perform
coalescent read operations to load data at the beginning of the algorithm without
any shared memory reordering stage. Instead of accessing a single data element
per memory request, we will use 64 bit loads for radix-2 (lines 12 and 13) to fetch
2 consecutive elements from each array, or 128 bit loads for radix-4 (lines 14 and
15), which provides four consecutive elements. These elements can be directly
used as the input arguments of the first radix stage. Remember that initially the
three equationof the triadwill be equal, therefore only regC needs to be initialized.

(3) First radix stage of the algorithm (lines 19–20). In a similar fashion to the signal
processing algorithms, in order to reduce the number of processing stages (and
consequently the number of intra-block synchronizations) it is possible to define
a radix-R algorithm. The first radix stage is separated from the rest because when
N mod R �= 0 an initial mixed-radix Mix R stage is performed, furthermore, at
the beginning the three equations from each row (left, center and right) will be
identical. The different radix operators can be defined either recursively or using
a specialization for the desired size, which helps reducing the number of private
registers.

(4) Remaining radix stages (lines 22–39). Each iteration of the loop (line 23) reor-
ganizes data (lines 29–35) and then performs a radix stage (line 38). In lines 26
and 27 the offset and strides for the data exchange are efficiently computed using
bit masks, binary operators and displacements. Following, the data exchange is
performed using shared memory.

An interesting optimization over the original algorithm proposed in [34] is to use
only the center equation when performing the exchange. Each thread still requires
to read 3 × R equations (lines 33–35) to perform the radix-R stage, however it only
needs to write R equations (line 31). This is based on a property of the algorithm,
which relies on the fact that the left and right equations are equal to two of the center
equations. More specifically, in stage i the left equation of row j can be obtained as
Eqle f t → 2i × ⌊

j/2i
⌋
and the right equation Eqright → 2i × (1+ ⌊

j/2i
⌋
)− 1. This

way, the shared memory bandwidth required by the algorithm can be reduced.

(5) Results are written to global memory (lines 41–44). Due to the topology of the
Cooley–Tukey algorithmwhenusing decimation in time, coalescencewill be good
for equation systems where N ≥ 32× R. Even for smaller problems coalescence
will not be an issue thanks to the cache hierarchy of the GPU.

5 Obtaining of Tuning Parameters

One of the main requirements for GPU performance is to explicitly expose sufficient
parallelism. The parallelism is controlled through the CUDA grid configuration (block
parallelism) and block size (thread parallelism). In order to tune the kernel and con-
figure the execution for optimal parallelism it is recommended to determine the main
performance limiting factor. The most relevant factors are the number of registers
assigned per thread, the shared memory per block, the desired number of concurrent
blocks per SM (up to 16 in Kepler and up to 8 in Fermi), and last, the block size (up
to 1,024 threads per block in both architectures). Blocks are not started until enough
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resources are available, and once started they lock their resources until completion.
The programmer can tweak the balance between the number of simultaneous blocks
and the number of threads per block in order to offer the hardware enough indepen-
dent instructions to accommodate multi-issue scheduling and enough tasks to take
advantage of latency hiding techniques. Note that large block sizes may result in more
expensive synchronizations, furthermore a high number of very light tasks may intro-
duce some overhead. In fact, one of the most time consuming tasks in order to achieve
high performance on the GPU is profiling and tuning the code to find the right balance
among the resources.

5.1 Streaming Multiprocessor (SM) Parallelism

Regarding the SM parallelism limiting factor, suppose that BSM is the number of
blocks that can be processed simultaneously by each SM. It is given by the expression:

BSM = Min(Br
SM , Bs

SM , Bl
SM , Bmax

SM ) (5)

where Br
SM is the number of blocks limited by the registers available in the SM and

how many are allocated for each block, and is computed as:

Br
SM = Rmax

SM /RB, with RB = Rt × L . (6)

with Rmax
SM the total number of registers per SM (65,536 inKepler and 32,768 inFermi)

and RB the number of registers used by each block, which is computed as the number
of registers per task Rt multiplied by the number of tasks per block L (can be adjusted
independently for each problem size). The second term of Expression 5 (Bs

SM ) is the
number of blocks limited by shared memory, computed as:

Bs
SM = Smax

SM /SB, with SB = si zeo f (Dt ) × R × L (7)

where Smax
SM is the size of the shared memory (49,152 bytes for both architectures) and

SB is the amount of shared memory reserved for each block, which is computed as
the size of the data type (4 bytes for float data, 8 bytes for complex data and 16 bytes
for float4 used in tridiagonal equations) multiplied by the product of the number of
registers R used to store signal data in each thread (depends on the desired radix size)
and the number of tasks L created in eachCUDA block. The third term of Expression 5
(Bl

SM ) is the maximum number of blocks limited by the number of warps in-flight of
the architecture:

Bl
SM = 32 × Lmax

SM /L (8)

where Lmax
SM is the SM warp limit of the architecture (64 for Kepler and 48 for Fermi).

Finally, Bmax
SM is the last term of Expression 5 and represents the SM block limit of the

hardware, which is 16 for Kepler and 8 for Fermi.
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5.2 Batch Execution in Order to Increase Parallelism

In our algorithms each thread performs the computations associated to a R butterfly
in each stage, with data being stored in private registers. Thus, barring temporal data
storage used by the compiler for any operations, our algorithm would require at least
si zeo f (Dt )× R bytes, where Dt is the data type used by the algorithm. Each problem
is processed by L1 = N/R tasks and, in order to increase the thread parallelism, when
L1 is low the number of tasks per block can be increased using batch execution L2.
Therefore, each blockwill be composed of L = L1×L2 tasks. Although computations
are entirely performed in registers, data interchanges within each block rely on shared
memory, which should be large enough to fit the data stored in registers during the
exchanges.

Depending on the data type, the problem size and the desired batch execution, the
required shared memory will be SB = si zeo f (Dt ) × N × L2 bytes. The maximum
size using real signal data is N = 8,192, for complex signals is N = 4,096, and for
tridiagonal systems is N = 2,048. These limits are given by the maximum shared
memory that can be allocated for a single block. Bigger problems would require a
different approach, like a staggered data exchange or a multi-pass algorithm, which
will be studied in a future work.

5.3 Simultaneous Block Processing Optimization

Our main objective in the optimization of the algorithm is to maximize BSM , adjust-
ing R and L2 to tune the algorithm for each problem size on each architecture. To
illustrate our proposal, suppose that we are trying to optimize the processing of the
complex FFT with N = 128 and R = 4 for the Kepler architecture. According to
the compiler this kernel requires 28 registers, therefore Br

SM = 65,536/(28× L). On
the other hand, Bs

SM = 49,152/(si zeo f (Dt ) × 4 × L) and Bl
SM = 32 × 64/L . In

order to maximize these expressions, they can be rewritten assuming that Bx
SM = 16,

which is the maximum allowed value given by Bmax
SM . Consequently: Br

SM → L =
65,536/(28 × 16) = 146.3, Bs

SM → L = 49,152/(8 × 4 × 16) = 96, and
Bl

SM → L = 32 × 64/16 = 128. Therefore, the recommended values for L are
96 or, rounding to the next power of two, 128 (in practice both configurations offer
nearly identical results). Regarding the number of threads per block, L = L1×L2 and
L1 = 128/4 = 32,which is exactly onewarp, therefore in this case L2 = 128/32 = 4,
thus 4 warps will be working in batch mode processing different signals within each
block and 12 blocks will be simultaneously processed by each SM. In the example,
using R = 4 the algorithm will perform n = log4(128) = 3.5 stages, which means
one radix-2 stage followed by three radix-4 stages (the optimal R will be analyzed in
Sect. 6).

Formore information, the final configuration table for the complexFFT is presented
in Table 1. Observe that for N > 512 BSM keeps decreasing as more shared memory
SB is reserved for each block, however the performance impact is mitigated by the
increase in thread parallelism L1.
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Table 1 Tuning configuration for the complex FFT algorithm

N n R Rt L1 L2 SB BSM

4 2 2 14 2 64 2,048 16

8 3 2 18 4 32 2,048 16

16 4 2 18 8 16 2,048 16

32 5 2 18 16 8 2,048 16

64 3 4 28 16 8 4,096 12

128 3.5 4 28 32 4 4,096 12

256 4 4 27 64 2 4,096 12

512 4.5 4 28 128 1 4,096 12

1,024 5 4 27 256 1 8,192 6

2,048 3.6 8 37 256 1 16,384 3

4,096 4 8 36 512 1 32,768 1

6 Experimental Results

Table 2 describes the test platforms that were used in this work. All the tests were
evaluated in single precision using problem sizes in the range N = {4, . . . , 4,096}.
Batch execution is used to process 224/N different problems, therefore, therefore
as the input signal increases the number of batch executions decreases. All the data
resides on the GPU device memory at the beginning of each test, so there are no data
transfers to CPU during the benchmarks to prevent interactions with other factors
in the study. Our implementation makes extensive usage of shared memory for data
exchange among the tasks, thus, the default GPU cache configuration with 48 KB of
shared memory and 16 KB of L1 cache was used.

The performance of the complex FFT will be expressed in GFlops through the
commonly used expression: 5N · log2(N ) · b · 10−9/t [35], where N is the size of the
input, b is the total number of signals processed and t is the time in seconds. A similar
expression 2.5N · log2(N ) ·b ·10−9/t can be used for the real FFT. As far as we know
there is no standardized expression for the DCT and the Hartley transform, therefore
to offer a similar measurement we will use the same formula as the real FFT.

Table 2 Description of the test
platforms

Platform 1 Platform 2

CPU Core i7 2600 Core 2 Duo E8400

Memory 8 GB DDR3 1333 2 GB DDR3 1333

OS Win7 x64 SP1 WinXP x64 SP2

Compiler MSVC 2010 SP1 MSVC 2010 SP1

GPU GeForce 580 GeForce Titan

Driver v320.17, SDK 5.0 v320.17, SDK 5.0
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6.1 Orthogonal Signal Transforms Performance

In this section we will analyze the global performance of the complex FFT, real FFT,
DCT and Hartley transforms in the two GPU architectures. Obviously the more pow-
erful Kepler GPU will offer better performance, but it is also interesting to check the
scalability of the algorithm. For comparison purposes, NVIDIA’s CUFFT 5.0 results
will be included in the figures. As the CUFFT does not support the Hartley and the
DCT transforms, they were implemented using a similar strategy to BPLG. However,
as we do not have access to the source code, this requires to launch at least two separate
kernels, thus limiting the maximum performance. As far as we know there are no other
general GPU implementations for these algorithms. The DCT included in the CUDA
SDK is an specialized version for small 2D blocks with a fixed size of 8×8, and other
publications [24] do not offer comparable benchmarks.

6.1.1 Balancing Warp and Block Parallelism

As mentioned in Sect. 5, it is important to configure the kernel for optimal SM usage.
In fact, finding the right balance between thread-level and block-level parallelism
usually results a time-consuming task for programmers. To facilitate the study of
this factor Table 3 presents the complex FFT performance on Platform 2 for three
different radix configurations depending on the signal size N and the tasks per block
L (due to space constraints only the more significant power of two values are repre-
sented). Unavailable configurations are shaded in gray, while the best cases aremarked
in bold. The first group shows the results for the radix-2 algorithm. Observe that with
some exceptions L = 128 tends to offer the best performance. The next group repeats
the analysis for radix-4. Excluding a few cases, the best configuration is now L = 256.
Finally, the third group displays the results for radix-8. In this case, the best perfor-
mance is usually obtained for L = 64, however the results do not outperform the
radix-4 version. The only exceptions are the two last cases, N = 2,048 with L = 256
and N = 4,096 which requires L = 512.

Table 3 Impact of the task number for the FFT using Radix-2, Radix-4 and Radix-8 (Platform 2)

Radix-2 Radix-4 Radix-8
N L64 L128 L256 L128 L256 L512 L1024 L64 L128 L256 L512
4 143.6 143.7 142.1 111.3 111.8 106.1 80.6
8 211.6 220.3 220.2 171.3 172.9 155.4 117.0 116.1 115.9 114.9 108.0

16 222.8 266.6 271.0 227.4 224.4 207.4 170.3 123.5 123.1 121.0 98.1
32 273.9 344.7 343.0 302.5 308.4 299.4 203.2 236.9 235.7 228.5 175.9
64 369.2 434.0 432.4 438.7 439.4 432.9 265.4 358.9 353.1 339.0 266.5

128 316.5 371.6 370.4 511.9 513.2 495.1 283.8 436.5 418.7 395.8 248.1
256 391.3 391.1 584.2 585.9 562.0 325.7 574.3 560.1 519.3 309.9
512 383.0 646.2 628.5 576.1 324.9 618.9 596.0 562.8 343.5

1024 701.9 628.4 364.7 663.6 619.6 368.2
2048 629.5 360.5 667.3 401.3
4096 396.0 436.1
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Fig. 8 Algorithm performance for the complex FFT algorithm

Comparing the results for the different radix values it can be observed that for
N = {4 . . . 32} the best performance is obtained with the radix-2 version of the
algorithm. For N = {64 . . . 1,024} the situation changes and radix-4 performs better.
Finally, for N = {2,048, 4,096} the radix-8 version comes ahead. According to our
tests, going to a radix-16 configuration would not increase the performance.

6.1.2 Complex FFT Performance

Figure 8 shows the performance of the complex FFT on both platforms. As it can
be observed, on Platform 2 our generic approach (BPLG-cFFT ) offers very similar
performance to the CUFFT for problem sizes up to N = 1,024 with 701.9 GFlops,
while the CUFFT only offers 680.2 GFlops. For bigger problems the shared memory
becomes the main limiting factor of our algorithm. Surprisingly, although the reduced
complexity of the proposed algorithm, the average advantage of the CUFFT is only
7.3%.

Our BPLG-cFFT algorithm is able to adapt quite well to the Fermi architecture
of Platform 1, however in this case the CUFFT is very optimized and has more
advantage (around 14.2% on average). Nonetheless, in some cases our algorithm is
able to overtake the CUFFT, for instance, for N = 128 we achieve 322.9 GFlops,
while NVIDIA’s implementation only offers 313.2 GFlops.

6.1.3 Real FFT Performance

Next, Fig. 9 analyzes the performance of the real FFT. Although the number of trans-
forms per second is higher than the complex FFT, each transform performs fewer
arithmetic operations, thus penalizing the GFlop estimation. The optimal radix is sim-
ilar to the complex FFT, but as half the data is required it is displaced one location.
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Fig. 9 Algorithm performance for the real FFT algorithm

For instance, while for N = 2,048 BPLG-cFFT performs better with radix-8, BPLG-
rFFT would obtain the optimal behavior using radix-4. The performance scaling is
not so proportional to the signal size, but is quite good, specially compared to the
CUFFT. Excluding the outlier case for N = 4, the average improvement over the
CUFFT on Platform 1 is on average 42.2%, while on Platform 2 reaches a remark-
able 60.4%. Observe that our BPLG-rFFT algorithm executed on Platform 2 has very
similar performance to the CUFFT executed on Platform 1, which is quite more pow-
erful. According to NVIDIA’s profiler the CUFFT is launching two separate kernels
for each transform, therefore requiring twice the global memory bandwidth for the
same signal size.

6.1.4 Discrete Cosine Transform

Figure 10 displays the test results for DCT algorithm on both platforms. The CUFFT
results are also displayed, but recall thatNVIDIA’s library does not directly support this
transform, therefore it is computed with the aid of a second filtering kernel, doubling
the global memory bandwidth requirements. As expected BPLG-DCT outperforms
the CUFFT version, moreover, in many cases it is able to offer more than twice the
computation rate. On average our library is around 87.1% faster on Platform 1 and
149.0% faster on Platform 2.According to the profiler analysis, the pre-processing and
post-processing stages introduce someoverhead, and the sharedmemory access pattern
generates more replays than the real FFT, which explains that lower performance. For
instance, for N = 1,024 our DCT reaches 142.9 GFlops on Platform 2 and 346.3
GFlops on Platform 1, while in the real FFT transform BPLG-rFFT was able to
obtain 365.9 GFlops and 580.2 GFlops, respectively.
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Fig. 10 Algorithm performance for the discrete cosine transform algorithm

Fig. 11 Algorithm performance for the Hartley transform algorithm

6.1.5 Hartley Transform

Figure 11 presents the execution results of our library for the Hartley algorithm using
both platforms. Once again the CUFFT version is computed using the FFT and filter-
ing stage kernel, offering about half the performance. More specifically, on Platform
1 our library is on average 110 % faster than the CUFFT, while on Platform 2 our
mean advantage is 118 % (in both cases excluding the outlier observed for N = 4).
Notice that although the overall graphic outline is very similar to the DCT, both GPU

123



1098 Int J Parallel Prog (2015) 43:1078–1102

Table 4 Impact of the task number for tridiagonal systems using Radix-2 and Radix-4 for BPLG-TS
(Platform 2)

Radix-2 Radix-4
N L32 L64 L128 L256 L512 L1024 L32 L64 L128 L256 L512
4 6003 9272 9610 9512 9228 5511 7635 9314 6326 6365 6478
8 5459 7412 7568 7535 7072 4433 5724 6509 6468 6216 4098

16 3887 5367 5479 5474 5231 3634 5390 7396 7299 7094 4463
32 3194 4670 4786 4700 4550 3257 5545 6744 6641 6265 4264
64 3252 5289 5656 5431 5014 3384 5292 6993 6845 6353 3870

128 4652 5013 4872 4061 3054 4666 5838 5721 5288 4568
256 4501 4037 3677 2777 6030 5768 5420 3195
512 3582 3348 2551 4522 4482 3072

1024 3092 2350 4332 2814
2048 2179 2693

libraries obtain better results in the Hartley transform. For instance, for N = 1,024
BPLG-Hart obtains 216.2 GFlops on Platform 1 and 408.1GFlops on Platform 2. The
reason behind this is the shared memory access pattern of the filtering stage, which is
simpler in the Hartley transform.

6.2 Tridiagonal Equation Systems Performance Analysis

The performance of the tridiagonal solver will bemeasured inmillion rows per second,
using the formula N ·b ·10−6/t , where N is the number of single-precision equations
per tridiagonal system, b is the total number of problems processed and t is the time
in seconds. In our tests the batch size was defined as b = 222/N , therefore all the
tests will process the same number of rows. Two reference points are provided: one is
NVIDIA’s CUSPARSE library (v5.0) and the other is the algorithm presented in [31],
which is available as part of the CUDPP library (v2.1).

6.2.1 Balancing Warp and Block Parallelism

Once again it is important to find the optimal balance between thread-level parallelism
and block-level parallelism to maximize SM utilization. Table 4 shows the tridiagonal
system resolution performance of BPLG-TS on Platform 2 depending on the radix size
R, the problem size N and the number of tasks per block L . Unavailable configurations
are shaded in gray, while the best cases are marked in bold.

Observe that L = 128 tends to offer better performance for radix-2, only the two
first system sizes (N = 4 and N = 8) perform faster with L = 64. If R is increased
to radix-4 L = 64 is the preferred option, though L = 128 is competitive at the
beginning, as size increases the gap between L = 64 and L = 128 becomes wider.
In this case, radix-8 results are not provided because the algorithm requires too many
registers, which incurs in local memory spilling and the consequent performance
degradation. Notice that there is a similar resource balance when using radix-2 and
L = 128 compared to radix-4 and L = 64, as both process 256 equations per block.
Nonetheless, radix-4 is usually better because it minimizes shared memory exchanges
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Fig. 12 Algorithm performance for tridiagonal equation system resolution

and synchronizations, which are more expensive compared to the signal processing
algorithms because more data is exchanged in each stage.

6.2.2 Tridiagonal System Resolution Performance

As it can be seen in the Fig. 12, BPLG-TS implementation offers excellent perfor-
mance compared with other two state-of-the-art solutions. The batch support provides
a very good startup, whichmakes the library suitable for small problems (up to 9,609.8
Mrows/s for N = 4 running on Platform 2). The percentages near the lines of BPLG-
TS represent the performance improvement over the fastest one from the other two
implementations (CUDPP or CUSPARSE) running on the same platform. Even in the
worst case BPLG-TS achieves over an 83.6% advantage over CUSPARSE. Further-
more, BPLG-TS executed on Platform 1 is usually faster than the other two running
on Platform 2. The jagged outline observed in N = 32 or N = 128, is due to the
mixed-radix stage. Performance tends to decrease with the number of stages because
more synchronizations are required and the sharedmemory becomes a scarce resource,
which reduces SM block parallelism. As in the case of the signal transforms, for equa-
tion systems where N > 2,048 a different approach would be required, for instance
using a multi-kernel algorithm. This will be considered on future version.

Regarding the other two libraries, CUSPARSE and CUDPP, the observed perfor-
mance difference between the two GPU architectures is smaller, specially in the case
of CUDPP. Surprisingly, NVIDIA’s own library usually offers the worst performance.
Profiling CUSPARSE reveals that it is launching several kernels to solve the batch of
problems, therefore the global memory bandwidth becomes a limiting factor. Only
for the larger problems it is able to amortize the cost of the multi-kernel approach,
which hints that it was probably designed with large equation systems in mind. Last,
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regarding CUDPP, at the beginning is quite similar to CUSPARSE, however as the
problem size increases it gets better, being able to improve NVIDIA’s library perfor-
mance. Nonetheless, for N > 512 it becomes slower. This behavior is easily explained
by the fact that each system is assigned to a single CUDA block. For small systems the
kernel will be launched with a single warp per block, furthermore some of the threads
will be idle. For larger problems the shared memory becomes a limiting factor.

7 Conclusions

In this work, we designed a library based on a set of functions which enabled the
implementation of several well-known butterfly algorithms for CUDA GPUs, namely
the complex and real version of the FFT, the DCT and the Hartley signal transform
algorithms, as well as a tridiagonal equation system solver. The resulting implemen-
tations were tested on different platforms, comparing the efficiency with other state
of the art libraries. Our approach provides excellent performance in many cases, an
average 60.4% advantage in the real FFT or over 200% advantage for tridiagonal
equation systems, and as far as we know it is also the fastest general purpose imple-
mentation of theDCT and theHartley transforms. Regarding the complex FFT, BPLG
still offers competitive results with respect to the CUFFT, especially considering that
our primary focus on this work has been to provide a library flexible enough to improve
GPU programmability.

One of the most interesting features of the proposed library is the modular design
based on small building blocks. The building blocks of the algorithms where imple-
mented using high-level C++ templates, with emphasis on flexibility and configura-
bility. The library parameters were adjusted to obtain good efficiency on two recent
GPU architectures.

There aremany interesting topics as futurework, one of themost promising topics is
to address the design and optimization of these orthogonal transforms based on a series
of formal algebraic operators, which will control the data mapping to the hardware
resources. We also plan to extend the algorithms for bigger signals and enable support
for other data types and 2D transforms.
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