Int J Parallel Prog (2015) 43:1192-1217 @ CrossMark
DOI 10.1007/510766-014-0322-9

The Scalability of Disjoint Data Structures on a New
Hardware Transactional Memory System

Gong Su - Stephen Heisig

Received: 23 December 2013 / Accepted: 22 August 2014 / Published online: 4 September 2014
© Springer Science+Business Media New York 2014

Abstract In this paper we present our experiences constructing and testing in-memory
data structures designed to be disjoint enough for transactional memory to be prof-
itable as a serialization mechanism with no fallback to traditional locking. Our goal
was to restrict memory conflicts to actual contention situations so that transactional
memory techniques could be used as efficiently as possible. We describe the hardware
transactional execution facility in the IBM zEnterprise EC12 server. We present an
order preserving hashed structure that permits insertion, deletion, and traversal oper-
ations typically supported by a sorted linked list. We also present a concurrent open
addressing hash table structure. We measure the performance and scalability for these
data structures on the IBM zEnterprise EC12 server. Our results show near linear scal-
ability of the insertion and deletion operations for up to 96 CPUs. We also discuss
transaction abort frequency and hardware/software interactions.

Keywords Hardware transactional memory - Disjoint data structure -
Linked list - Order preserving hashing - Spanning - Open addressing hash table -
Probing sequence - Rehash

1 Introduction

The concept of transactional memory has existed since 1986 [1] and Herlihy and Moss
coined the actual term Transactional Memory [2] in 1993. Transactional memory can
be implemented either purely in software (STM) [3-5], or purely in hardware (HTM)
[2,6-9], or a combination of software andhardware (Hybrid TM) [10—-15]. Due to the

G. Su (X) - S. Heisig
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
e-mail: gongsu@us.ibm.com

S. Heisig
e-mail: heisig@us.ibm.com

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-014-0322-9&domain=pdf

Int J Parallel Prog (2015) 43:1192-1217 1193

performance overhead [16], STM remains mainly of academic interest. HTM promises
better performance but new architectures with HTM support have been slow to come
to market. Hybrid TM uses HTM when it is available and switches to STM otherwise.
While useful for testing transactional programs on architectures without HTM support,
Hybrid TM cannot really be used in practice without HTM since it falls back to
STM. It is therefore clear that HTM remains the key implementation for transactional
memory.

Although it has taken some time, new architectures with HTM support are finally
reaching the market. Sun (now Oracle) ROCK [17] processor is the first commercial
general purpose architecture with HTM support although it was canceled in 2010.
Azul Vega [18] (a Java accelerator) and IBM Blue Gene/Q [19] (a supercomputer)
both have HTM support although they are considered special purpose architectures.
Intel Haswell [20] introduced general purpose HTM support in 2013. Released in
August 2012, the IBM zEnterprise EC12 server [21] becomes the first general purpose
architecture including a Transactional Execution Facility that provides HTM support
to reach the market.

Due to the lack of a commercial general purpose HTM architecture, limited work
[18,22,23] has been done to evaluate whether HTM will live up to the promise of
high concurrency and performance, particularly when scaled to a large number of
CPUs. The purpose of this paper is to help fill this gap. While other internal pre-
release efforts were involved in attempting to exploit more traditional transactional
lock elision techniques, our approach was to try to design new disjoint data structures
that would be more naturally suited to transactional execution. Simple lock elision
without changing the existing data structure may not exploit the full potential of HTM
since the data structures may not be free of false memory conflicts. The initial intent
of our work was to find places to exploit HTM in the OS. We faced resistance from
software engineers with ‘set size anxiety’. There are many linked list type structures
that are normally quite short. However there is no guarantee in the code that under
pathological circumstances these lists couldn’t grow without bound. Our first task was
to figure out how to process an arbitrarily long linked list using HTM. The solution
was to break the structure into pieces small enough to be guaranteed to fit inside a
transaction. We ultimately tried to create new data structures as disjoint as possible in
order to fully exploit HTM. We demonstrate that, with disjoint data structures, HTM
can achieve impressive concurrency and performance, even when scaled to a large
number of CPUs. However, there are some downsides: (1) it requires considerable
effort to design a disjoint data structure; and (2) the best-effort hardware primitives
create considerable complexity in programming HTM. Addressing (1) requires con-
sidering HTM constraints as an initial requirement. To address (2), either the hardware
needs to provide guaranteed functions, or higher level deterministic software services,
such as list insertion, deletion, and traversal, etc., must be provided to hide the lower
level probabilistic best-effort primitives.

The key contributions of this paper include the following:

e We demonstrate on currently available hardware that with a disjoint data struc-

ture, HTM lives up to some of the promise of high concurrency, performance, and
scalability to a large number of CPUs.

@ Springer

1194 Int J Parallel Prog (2015) 43:1192-1217

e We analyze abort types and frequencies to provide insight into the behavior of HTM,
which may help devise better retry strategies and provide feedback to improve data
structures and minimize aborts.

e We test and analyze the impact of different transaction sizes on performance.

e We share our experiences in developing code specifically for HTM on a general
purpose architecture, useful techniques, and potential pitfalls.

The rest of the paper is structured as follows: Sect. 2 gives a brief description of
the transactional memory hardware in the IBM zEnterprise EC12 server and its pro-
gramming semantics; Sect. 3 describes a disjoint data structure for performing sorted
linked list operations; Sect. 4 presents experimental results for this structure; Sect. 5
discusses the pluses and minuses of HTM based on our experience; Sect. 6 surveys
related work; and Sect. 7 concludes with future work.

2 Description of HTM on System z

The Transactional Execution Facility in the IBM zEnterprise EC12 provides hardware
primitives to specify critical sections of code that will execute atomically. Instructions
in a transaction execute with both linearizability [24] and opacity [25]. Linearizability
means that concurrent transactions appear to execute sequentially without overlap-
ping in time. Opacity means that transactional instructions appear to have either all
executed instantaneously or none has executed. Writes to memory locations by a
transaction are isolated from other transactional and non-transactional instructions.
This is known as strong atomicity and means that any changes to memory locations
made in a transaction will not be visible to any other instructions unless the trans-
action successfully commits. This isolation makes things much easier for program-
mers since code will never operate on intermediate and thus potentially inconsistent
results.

Conceptually there is a read set for memory locations that have been read from
and a write set of memory locations that have been changed by a processor in a
transaction. The read set is not a dedicated area but a set of tags in the L1 cache
array. It may also overflow to include L2 cache lines. The write set is held in a new
hardware structure called the Store Cache. It contains half lines and bits to indicate
changed bytes with half lines. Figure 1 shows a cartoon of the read set and write set
hardware. An in-depth discussion of HTM in the zEnterprise EC12 can be found in
[28].

Two types of transactions are defined: constrained transactions (beginning with
TBEGINC) and unconstrained transactions (beginning with TBEGIN). Both types
are terminated with the TEND instruction. They both also have restrictions on which
instructions can be executed. For example, privileged, control type, and cryptographic
instructions are all prohibited. Making sure no restricted instructions appear within a
transaction is a new dependency for humans and compilers.

In constrained transactions, there are further restrictions on the number (maxi-
mum of 32) and type of instructions (e.g., no backwards branches so loops are
prohibited). There are also restrictions on how much memory they can reference.

@ Springer

Int J Parallel Prog (2015) 43:1192-1217 1195

Valid
Read Set 64 X 6W L1 Cache Iﬁ'RD?ad
-Dirty
Line Data 256 Bytes l?'-l Tags
~ 64

Write Set 64 X 128 Bytes

128 per Byte
128 Data Bytes Valid Bits

64

Fig. 1 Read and write set hardware

But if these restrictions are met, the hardware assures the transaction will even-
tually complete. Retries are handled by the hardware transparent to the software.
Therefore, there is no need for a user supplied abort analysis routine. The hard-
ware will take a series of increasingly drastic actions to improve the success of
a transaction that has failed multiple times. These actions include inserting ran-
dom wait times between retries, reducing speculative execution, and delaying con-
flicting work on other processors. Example 1 shows a sample constrained transac-
tion.

XferAmt: TBEGINC
Donor = Donor - Amt;
Receiver = Receiver + Amt;
TEND

Example 1: Constrained transaction example
Unconstrained transactions are executed on a best effort basis and so have a more
visibly probabilistic nature. They can be thought of as a single large instruction that

may fail for various reasons and need to be retried. The TBEGIN instruction has
operands for the address of a Transaction Diagnostic Block (TDB), and a directive to

@ Springer

1196 Int J Parallel Prog (2015) 43:1192-1217

Table 1 Abort reason codes

Abort code Abort reason Condition code
2 External interruption 2

4 Program interruption (unfiltered) 2or3
5 Machine-check interruption 2

6 I/0 interruption 2

7 Fetch overflow 2or3
8 Store overflow 2or3
9 Fetch conflict 2

10 Store conflict 2

11 Restricted instruction 3

12 Program-interruption condition 3

13 Nesting depth exceeded 3

14 Cache fetch-related 2or3
15 Cache store-related 2or3
16 Cache other 2or3
255 Miscellaneous condition 2or3
256 TABORT instruction 2o0r3

save registers. If registers are not saved, the TBEGIN only takes a few cycles. The TDB
contains potentially useful information in the case of aborts. It has an abort reason
code, and depending on the abort, a conflict address, and an instruction address. See
Table 1 for a complete list of abort codes and reasons.

An unconstrained transaction code example is shown in Example 2. An abort in
a transaction transfers control to the instruction immediately following the TBEGIN.
This instruction tests the condition code (CC) to determine whether this is an abort flow
or normal transaction begin. The CC is set to 0 for normal begin, 1 for an indeterminate
condition for which the TDB could not be updated, 2 for a transient condition and 3
for a persistent condition. In the case of an abort, we check the retry limit, perform
abort analysis by examining the CC and TDB (if it was stored), potentially take some
action to increase the success of the next transaction, then go back to retry.

In the case where the registers were saved by TBEGIN they are restored on abort and
of course all transaction storage changes will have vanished. This does make it difficult
to tell exactly what went wrong if there is a data dependent bug in the transaction. A
non-transactional store instruction (NTSTG) can store data from within a transaction
without updating the write set. This can be very useful in tracing data addresses in
situations where the address causing an abort is unknown or doesn’t seem to make
sense. There is also a TABORT instruction that can be issued from inside a transaction
to immediately abort. In the example, after an abort control passes to the Aborts label
where the total number of consecutive aborts is incremented. If the retry limit has
not been equaled an abort analysis routine is called and control passes back to the
TBEGIN.

@ Springer

Int J Parallel Prog (2015) 43:1192-1217 1197

Retry = 0;
Limit = 100;
XferAmt: TBEGIN Addr (MyTDB) Regs (F)
IF CC>0 THEN GOTO Aborts;
Donor = Donor - Amt;
Receiver = Receiver + Amt;
TEND
Compare-And-Swap (NumXfers, ...);
GOTO Success;
Aborts: Retry = Retry + 1;
IF Retry=Limit THEN GOTO GiveUp;
CALL AnalyzeAbort;
GOTO XferAmt;
Success: /* Both fields updated */
GiveUp: /* Neither field updated */

Example 2: Unconstrained transaction example

Missing from the code example above is any footprinting or recording of what
resources are held. Unlike code that gets a lock, if the transaction aborts or the pro-
gram blows up there is no need to worry about cleaning up serialization resources in
recovery processing. This is a significant savings in complexity in both main path and
recovery code.

Since we were interested in understanding the boundary behavior of large data
structures we discuss unconstrained transactions for the rest of the paper.

3 Disjoint Data Structures

Speculative Lock Elision [26] is a technique to allow concurrent access to shared data
structures by optimistically speculating that multiple threads will not conflict, hence
there is no need to acquire a lock. Conflicts are detected and recovered from by aborting
and rolling back the involved thread(s). In fact, one of the often suggested usages of
HTM is lock elision, i.e., replacing lock/unlock with TBEGIN/TEND to allow higher
degree of concurrency.

The advantage of using HTM for lock elision is that it is easy to implement. One
simply needs to replace lock/unlock with TBEGIN/TEND without changing the exist-
ing data structure. The disadvantage, however, is that the existing data structure may
not be disjoint enough for the multiple threads to access the shared data structure
concurrently. For example deleting the largest/smallest element from even a large
heap structure requires accessing a single memory location and so guarantees conflict.
In order to take maximum advantage of HTM, existing data structures need to be
redesigned and/or new data structures need to be invented to minimize memory con-
flicts. In this section, we describe how to make a traditional sorted linked list as disjoint
as possible by spanning and hashing. We also demonstrate how an open addressing
hash table can be made concurrent with HTM very easily.

3.1 Linked List

A sorted linked list is acommonly used data structure where nodes with values (without
loss of generality we assume the values are integers) are maintained in a sorted list
and accessed via a list head. The list typically supports 3 operations:

@ Springer

1198 Int J Parallel Prog (2015) 43:1192-1217

Fig. 2 Spanning with relay span span
nodes r A \ r A \
t f
relay relay

e insert: insert a node with a value into the list
e delete: delete a node with a value from the list
e fraverse: enumerate all the node values in the list

Note that both insert and delete need to traverse at least part of the list in order to
find the insertion point (node in front of which the new node is to be inserted) and the
deletion point (the node to be deleted), respectively.

We immediately faced two problems when trying to use HTM for concurrent
access to a sorted linked list. First, the list can be arbitrarily long. HTM has a
limit on the size of a transaction due to the finite capacity in the read and write
sets. Therefore, if a list is too long to fit in a single transaction, we cannot com-
pletely traverse it in a single transaction. Second, even if the list is short enough to
be traversed in a single transaction, all nodes between the list head and the inser-
tion/deletion point will be in the read set of a transaction. Another thread with an
insertion/deletion point closer to the list head will change a node that is in the
read set of the first thread with insertion/deletion point further from the list head.
That is, a transaction which changes a node can abort all other transactions which
are deeper in the list. Essentially, a sorted linked list and its operations are not
disjoint.

3.1.1 Spanning

A natural solution to solve these two problems is to break up the traversal of the list into
multiple transactions, each traversing a small number of nodes. For example, we can
traverse node 1-32 in a transaction, then traverse node 33—64 in a second transaction,
etc., as shown Fig. 2. We call this technique spanning and we call the number of
nodes processed in one transaction a span. A similar technique called telescoping was
mentioned in [27] but few details were given.

Spanning is a fairly simple and straightforward idea but certain details deserve
more attention. Care must be taken with the relay nodes (shaded nodes) as indicated
in Fig. 2. A relay node is the last node of a span at which we end a transaction during
our traversal. The tricky problem is that once a thread ends a span and before it starts
the next span, the relay node may be deleted by another thread, making it impossible
for the first thread to continue its traversal.

To prevent a relay node from being deleted, thread A increments a stop count
in the relay node just before it ends the transaction. When thread B tries to delete
a node, it first checks if the stop count of the node is 0. If yes, the node can be
immediately deleted as usual. Otherwise, the node can be removed from the list but
cannot be freed since one or more threads have stopped at this relay node and are in

@ Springer

Int J Parallel Prog (2015) 43:1192-1217 1199

Fig. 3 Order preserving hashing with linear keys

between transactions. Instead, a dead bit in the relay node will be set by thread B.
Now when thread A starts a new span to continue its traversal, it first decrements the
stop count (which is guaranteed to be nonzero) of the relay node. If the count becomes
0, thread A needs to check if the dead bit is set. If yes, the relay node has been deleted
by another thread and there is no other thread stopped at this relay node (since the
stop count is 0). If so, thread A must now free the relay node and then continue its
traversal.

3.1.2 Hashing

While spanning allows traversal of an arbitrarily long list and makes the insertion,
deletion, and traversal operations more disjoint, it still suffers from another problem:
all threads must start their traversal from the single list head, potentially causing more
conflicts and aborts at the beginning of the traversal.

We solve this problem with order preserving hashing. A hash function # is order
preserving if for any two keys k1 < k», it follows that 4 (k1) < h(k2). As an example,
assuming our key space is integers uniformly distributed from 0 to 255 (OxFF) and the
hash function is (k) = (k& 0xFO) > 4 (taking the highest 4 bits of k). It is not hard
to see that /4 is an order preserving hash function where hash value 0 holds keys 0O to
0xOF, hash value 1 holds keys 0x10 to Ox1F, etc. As another example, hash function
h(k) = [logok] is also an order preserving hash function.

With order preserving hashing, we can start traversing a sorted linked list from
multiple heads computed by the hash function rather than a single list head. Using the
same example as above, assuming the node values are from 0 to 255 and with the hash
function h(k) = (k& O0xFO0) > 4, we can start traversing the list from 1 of 16 heads
given a node value, as shown in Fig. 3.

Essentially, we break up the list into 16 sub-lists, each having its own head and
value range. In the diagram above, node values in the range [0, OxOF] hash to O and
therefore we start traversing from head 0; node values in the range [0x 10, Ox 1F] hash
to 1 and therefore we start traversing from head 1, etc. This allows us to start traversing
from the middle of the list rather than always from the beginning. Note that due to
the order preserving property, we can still perform a full list traversal to enlist all the
nodes in the list by traversing each sub-list in order.

Although our example above assumed a uniform distribution of integer keys, other
key distributions can be handled with a suitable order preserving hash function. For
example, if the keys are exponentially distributed, a logarithmic hash function such as
h(k) = |logok]| (which gives uniformly distributed hash values) can be used. Figure 4
shows an example of applying this logarithmic hash function to 32-bit integer keys,
breaking a list into 32 sub-lists.

@ Springer

1200 Int J Parallel Prog (2015) 43:1192-1217

1) ii2,3 4,7) 2%, 2% |

A P e Pl o]

Fig. 5 Adaptive recursive order preserving hashing with linear keys

3.1.3 Adaptive Recursive Hashing

Combining spanning and order preserved hashing, we make a long sorted linked list
very disjoint. We demonstrate this by presenting results in Sect. 4 to show near linear
scalability for insertion and deletion with up to 96 CPUs. With a short list, however,
our tests still showed bad scalability. This is because with a short list, each sub-list
may have fewer nodes than a span’s worth, essentially rendering spanning useless.

To resolve this problem, we apply the order preserving hashing recursively to a
sub-list to further break it down such that each node gets its own head, i.e., the sub-
lists of a sub-list have just one node. We illustrate the idea in the diagram below using
the same example as that in Sect. 3.2.

As illustrated in Fig. 5, the sub-list pointed to by head 1, which holds values in the
range [0x 10, Ox 1F], has been further broken into 16 sub-lists, each has just one node
pointed to by its own head. Head 1[0x 10,0x 1F] now points to an array of (2nd level)
heads 0-15 instead of a list of nodes. In this particular example, the hash function to
compute the 2nd level heads is to take the next highest 4 bits after the highest 4 bits
taken by the 1st level heads, which is 2 (k) = k & 0xOF.

Since creating more levels of list heads incurs higher memory overhead, by default
we only create the Ist level list heads. We monitor conflicts in the sub-lists and dynam-
ically expand and contract additional levels of list heads for “hot” and “cold” sub-lists,
respectively. With this adaptive recursive hashing technique, we were able to achieve
near linear scalability for short list insertion and deletion with up to 96 CPUs as well.
We present the results in Sect. 4.

3.2 Open Addressing Hash Table

Hash tables [36] are widely used data structures in computer science. Two common
variants of hash tables are separate chaining and open addressing. They differ in how

@ Springer

Int J Parallel Prog (2015) 43:1192-1217 1201

thread 1 probing stop thread 2
insert x insertion point delete y
i i1 i+2 43 i i+ i+2 43
(1) thread 1 insert x (2) thread 2 delete y [[]iree
- occupied
thread 3 insertion probing thread 1
insertx point stop insert x deleted

VAN |
A E BEEEE B F

i i+ i+2 i+3 i i+l i+2 i+3

(3) thread 3 insert x (4) inconsistency

Fig. 6 Race condition in concurrent open addressing hash table

collisions are resolved. To store two different keys that hash to the same slot, separate
chaining uses a secondary data structure outside the hash table itself, such as a linked
list, while open addressing probes to find alternative slots in the hash table. Each
variant has its pros and cons and both are widely used.

Many existing concurrent hash table implementations, such as those supplied with
Java JVM, are separate chaining based. The only concurrent hash table implementa-
tions based on open addressing we could find [30,31] use a non-blocking algorithm.
They are complex and tricky to implement, and neither implementation demonstrated
scalability with more than 16 threads.

We show that HTM is a perfect match to make open addressing concurrent. An
open addressing hash table is already a fairly disjoint data structure. A good hash
function such as xxhash [32] or MurmurHash [33] is expected to distribute the hash
keys uniformly across the entire hash table. With HTM, making an open addressing
hash table concurrent is as simple as surrounding the single thread algorithm with
TBEGIN and TEND.

We present an example to illustrate a race condition for concurrent open addressing
hash table. In this case the lock-based approach is very difficult to make it concurrent
but with HTM it is almost trivial to do so. Note that there are different probing strategies
for open addressing such as linear probing, quadratic probing, and double hashing,
etc. For the purpose of our discussion, they do not matter so we will use linear probing
with a step size 1 to illustrate the issue. We also assume that readers are familiar with
the basic open addressing hash table algorithmcer [34-36]. We also use the simpler
hash set (key only) rather than hash map (key-value pair) for our example although
the discussion will be exactly the same for both.

As illustrated in Fig. 6, events occur in the following order:

(1) Thread 1 inserts key x, which hashes to slot i. Since slot i is occupied, it probes
slot i 4+ 1, i 4+ 2, which are also both occupied, until slot i + 3 which is free. Now

@ Springer

1202 Int J Parallel Prog (2015) 43:1192-1217

thread 1 concludes that key x is not in the hash table and is ready to insert key x
at slot i + 3. However, before it gets a chance to do so, events (2) and (3) occur.

(2) Thread 2 deletes key y, which hashed to slot i + 1. Now slot i 4 1 is marked as
deleted.

(3) Thread 3 also inserts key x, and will go through the same probing sequence as
thread 1 did (the deleted sloti 41 does not stop probing). When thread 3 encounters
the free slot at i + 3, it also concludes that key x is not in the hash table and inserts
key x into the hash table. The algorithm is such that it would insert key x at the
first deleted slot during probing, which is slot i + 1. Therefore, thread 3 inserts
key x atsloti + 1.

(4) Finally, thread 1 finishes inserting key x at slot i + 3. This causes an inconsis-
tency since key x is now inserted twice, which breaks the fundamental hash table
association property of a key being unique.

From this example, we can see that it is not enough to serialize only the update of the
insertion or deletion slot at the end of the probing sequence. The entire set of probing
sequence slots must be serialized. Without protecting the entire probing sequence, two
threads attempting to insert the same key can observe different slot states when going
through the same probing sequence. As illustrated by the example, thread 1 did not
see a deleted slot during its probing while thread 3 did, due to the deletion of a key in
the probing sequence by thread 2 “behind thread 1’s back™.

To protect the entire probing sequence with a lock based approach, one would have
to associate a lock with each and every slot, and lock the entire set of probing sequence
slots. While conceptually possible, it is very cumbersome and incurs additional mem-
ory overhead. It would also limit concurrency since if two threads’ probing sequences
touched any common slot, one thread would have to wait. On the other hand, this
situation is exactly what HTM is designed for: to serialize an arbitrary collection of
memory locations. Note that probing consists of a series of reads followed by a write.
So only the last memory location of the probing sequence will be in the write set
of HTM, while all the others will be in the read set. Therefore, as long as the slot
written to by one thread does not intersect the probing sequence of another thread,
both threads will succeed without abort. This provides higher concurrency than a lock
based solution since only writes (as opposed to reads) to objects in the read or write
set cause a retry.

With HTM, it was pretty easy to make an open addressing hash table concurrent.
By simply surrounding the single thread algorithm with TBEGIN and TEND, along
with abort and retry handling all contention cases were covered. We have implemented
such a concurrent open addressing hash table with HTM and we present its scalability
results in the next section.

Our focus was on using HTM to speed up hash table insert and delete operations
and so we did not test the case where the hash table needs to grow in size by rehashing.
However, we did think about how rehashing can be done in a concurrent environment
without having to resort to a global lock. Since this technique uses only inserts and
deletes which can be serialized with HTM it doesn’t require additional invention. We
briefly describe our idea and propose it as future work. The basic idea is that during

@ Springer

Int J Parallel Prog (2015) 43:1192-1217 1203

rehash operations will act on both the old and the new hash tables. The basic algorithm
looks like this:

e A flag is set indicating rehashing is in progress. A rehashing thread is now going
through the old hash table and migrating the keys to the new hash table. The rehash-
ing thread will remove a key from the old hash table only after it has inserted it into
the new table. Therefore, there is a moment a key appears in both the old and the
new hash tables. But there is never a moment a key appears in neither.

e For the insert operation, first check if the key is in the old table. If yes, it is a
duplicate. If no, insert it into the new hash table (can be a duplicate in the new hash
table). Basically, once the flag is set, new incoming keys will only be inserted into
the new table.

e For the delete operation, first attempt to delete in the old hash table. Regardless
of whether the key is found and deleted from the old hash table, attempt again to
delete from the new hash table. We must check both the old and the new hash tables
because the key in the old hash table may just have been migrated to the new hash
table, and it might not have been removed from the old hash table yet.

e For the lookup operation, first search the old hash table, if not found, search the
new hash table.

e Once the rehashing thread finishes migrating all the keys, it resets the flag and all
operations now go directly to the new hash table.

4 Experimental Results

We tested our disjoint sorted linked list and open addressing hash table on an IBM
zEnterprise EC12 server with a total of 99 CPUs. The results show various aspects
of the interaction of the data structure with the hardware. We discuss abort analysis,
varying span size, scalability of long lists, short lists, and open addressing hash tables.

4.1 Abort Analysis

Aborts fundamentally impact the performance of transactional memory. It is imper-
ative to thoroughly understand the abort mechanism and behavior of HTM on a par-
ticular architecture to minimize aborts and maximize performance. Even without any
explicit shared data contention, transactions can abort for a variety of reasons. For
example, a cache line holding transactional data can be evicted by the cache LRU
algorithm; or a thread can be interrupted by I/O, scheduling event, etc. Therefore,
we begin by examining the behavior of single threaded transactional code with no
contention.

4.1.1 Cache Size Limitation
Figure 7 shows the results of unspanned traversals of a linked list traversal program

that attempts to traverse a list 100 times to increasing depth inside an unconstrained
transaction. This program writes into each list element which is 24 bytes long. Since

@ Springer

1204 Int J Parallel Prog (2015) 43:1192-1217

Write Traversals

8
1 nyh
T Store Overflow | l"

Aborts

< CC3 Threshold 335

Fig. 7 Aborts for unspanned write traversals

we make 100 traversal attempts at each length we can take the number of aborts as
an estimator for the probability that a transaction will fail for each length. It is clear
that the abort rate is very low until the list gets close to 340 nodes, at which point it
becomes 100 % likely that the transaction will abort with a store overflow abort. We
saw previously the write set hardware holds 64 128-byte half lines, so it will hold 341
nodes in those 8,192 bytes. In this isolated scenario we can see a very abrupt boundary
between the size of a structure that can be updated in a transaction and a slightly
larger one that is 100 % certain to abort. In this case the point where the hardware
returns CC3 (persistent condition) on abort is actually very close to the point where
all transactions fail.

In Fig. 8 the traversal program only reads the content of each list element. We saw
the L1 cache has 64*6 256-byte lines or 96K total capacity so we would expect it
to hold roughly 4096 24-byte nodes. The figure shows that the abort probability for
store conflicts starts to rise at this point. As TX-dirty lines are LRUed out of L1 they
can overflow into the L2 cache and get tracked by the LRU extension mechanism.
The hardware starts returning CC3 when lines start overflowing which seems to be
pretty conservative since we can traverse almost four times as many nodes at an
abort rate of only about 20 %. The private L2 cache is 1 megabyte in size so would
hold over forty two thousand list elements if used completely. We can see a sharp
jump in fetch overflow aborts at around twenty seven thousand elements. This is
due to increasing L2 associativity conflicts where the transaction code is LRUing out
its own lines in this situation. As with the write example there is an abrupt jump
between an acceptable abort probability and an unacceptably high one dictated by

@ Springer

Int J Parallel Prog (2015) 43:1192-1217 1205

Read Only Traversals

Total Aborts I‘q
o !
© |
[
Fetch Overflow I Eq:
3 i
© 7 |
!
i
£ A
o Q4 , Vf
2 :J\'J I
CC3 Threshold 3742 Store Conflict f"bﬁ I
!
& A \“
]
~ld
f) \
A N Y A
A\ MWsiore Overflow
o e MV et N N
T T T T T T T
0 5000 10000 15000 20000 25000 30000
Nodes

Fig. 8 Aborts for unspanned read only traversals

micro-architectural parameters. One of the objectives of spanned transactions is to
eliminate programmer anxiety about how close to this boundary the size of a structure
operation might get.

4.1.2 Cache Hierarchy Implication

It should be clear that transaction success can be heavily dependent on the behavior
of other threads touching memory that is not in the transaction. In Fig. 9 the same
program is run while 3 other copies with their own lists run on other processors. The
effect should be to put more pressure on the cache hierarchy without causing any
explicit conflicts. Here the persistent condition threshold returned by the hardware
was reduced by about one sixth and once lines start overflowing to L2, fetch overflow
aborts rise rapidly. The overall 100 % abort threshold occurred abruptly at about 4,000
elements rather than 30,000 with no other work. Since the cache hierarchy in current
System Z machines is inclusive, one processor can evict a line out of a higher level
shared cache congruence class and cause it to get evicted from all the lower level
(including private) caches. When this happens to a line currently in the read or write
set of a transaction it will abort. The zEnterprise EC12 has 6 cores per chip, 6 chips
per multi-chip module, and 4 multi-chip modules (MCMs). This means there is the
potential to see interference from many other processors.

In Fig. 10 the flow of one thread touching unrelated lines causing LRU cross-
invalidates (LRU-XIs) is illustrated. There could also be multiple operating system
(OS) images running virtualized on an MCM. It is possible a transaction could be

@ Springer

1206 Int J Parallel Prog (2015) 43:1192-1217

Read Only Traversals

o
© -
- Total Aborts /
|
I
Fetch Overflow| ~
o | v
© i
I
3 E
3
2 b
8 {
< i
<<
2 {
¥ b
[}
CC3 Threshold 2927 E
& 1
)/
/'
"'0' ' _
N S o W
O 4 oo e e o o o, e i M2 R L o
T T T T T
0 1000 2000 3000 4000

Nodes

Fig. 9 Aborts for read only traversals with interference

aborted due to interactions with code running in another OS image. It is currently
difficult to disambiguate true and false storage conflicts which can result in the same
abort reason codes. It is therefore problematic to programmatically discern legitimate
conflict in a data structure from the actions of other processors not explicitly touching
the same memory locations.

4.1.3 Various Abort Types

The reasons for aborts may need to be taken into account before retrying. For example,
in the case of an abort due to an External Interrupt (time slice) it would be a waste of
time to invoke back off logic since the code is now at the beginning of a time slice and
hasn’t seen a conflict. We wrote abort analysis routines to both capture the frequency of
aborts and compare the effects of different responses. Figure 11 shows the frequency
of various aborts for one of two threads concurrently doing spanned traversals of the
same long queue. In the previous figures the code was disabled for interrupts so we
could focus on memory effects. In this test the code was enabled so we can see the
effects of interrupts. Interrupts of all kinds will abort a transaction. These events were
previously (before transactional memory) transparent to software which was unaware
it was virtualized but now become visible and a possible constraint to the length of a
transaction.

Time slice interrupts effectively place an upper bound on the number of instructions
a transaction can execute. For example, a minor time slice in z/OS is 50ms and
a processor can execute roughly 5,000 instructions per microsecond. Therefore the

@ Springer

Int J Parallel Prog (2015) 43:1192-1217 1207

EC12 Cache Hierarchy

Shared L4
384 MB L4
24W Set Associative
... 6 chips per
64 MB L3 12W Set (Multi Chip Modu
Associative
% Shared L3 NN
A
1MBL2 ... Private L2 ...
—
* A
96K (D) L1 M I I I ... Private L1 ... | Pq | | | |

Cores 012 3 4 5 ..6coresperchip... 303132333435
Fig. 10 Cache hierarchy and LRU XI flow

upper bound on the number of instructions in a transaction before a time slice abort
is 250K. If a transaction starts at a random point in a time slice you would expect on
average to have half a time slice remaining so you would only expect to be able to
run 125K instructions before a time slice abort. Programmers need to be aware that
transactions have both data size limits and instruction size limits.

There are also hardware millicode interrupts (External Alarm in Fig. 11) which
occur when hardware functions have housekeeping to do. These can be more frequent
than real conflicts in a system with disjoint structures. External Alarm and External
Interrupt (time slice) are the two most frequent abort types and increase linearly with
the amount of time spent in a transaction. Conflicts of other types both real and false
were much less frequent in this test.

@ Springer

1208 Int J Parallel Prog (2015) 43:1192-1217

Abort Types

200000

O Total Aborts o =
o External Alarm a

A External Interrupt B g
+ Store Overflow o o
x Store Conflict

71 | © Cache Fetch
v Fetch Overflow

150000

Aborts
100000

50000

T T T T T T T
0e+00 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06
Transactions

Fig. 11 Abort types

While the architecture strictly defines the syntax of the actual instructions there are
clearly ill-defined, machine specific aspects to the facility that need to be understood
by the programmer. The size and congruence class arrangement of the read and write
sets, number of cores per chip and chips per multi chip module as well as the activity of
instructions running on other cores all affect the probability of success of a transaction.
Cache hierarchy parameters are machine dependent so code will behave differently
from generation to generation.

Other seemingly mysterious effects are the result of hardware prefetch, branch
prediction, and the length of the out of order processor pipeline. The hardware prefetch
engine may recognize a stride based on instruction activity and bring in lines that have
not been referenced by a specific instruction yet. This speculative prefetching can
cause aborts in cases where a line is prefetched in exclusive mode and results in a
demote cross invalidate to the previous owner. If the line is in the write set of the old
owner its transaction will abort. Branch prediction logic can also cause operand fetch
for an instruction that never actually gets executed (due to a branch guessed wrong).
In complicated data structures this can be common.

Finally, due to the length of the pipeline, an instruction just beyond a TEND such
as the Compare-And-Swap in example 2 can go through operand fetch for a location
that will now be included in the transaction before the TEND has completed, possibly
resulting in an abort. In this case the idea was to move the update of a global perfor-
mance counter for the number of transfers just outside the transaction and serialize
it using compare and swap. Global performance counters are a common code pattern
that can increase the abort rate for a critical section. If speculative instructions in the

@ Springer

Int J Parallel Prog (2015) 43:1192-1217 1209

pipeline are suspected, one way to test this is to add an instruction which collapses
the pipeline (such as Purge ALB on Z) immediately after the TEND. Although this
situation can be detected this way it imposes a new dependency that humans and
compilers are not used to handling. Even though programmers may think they know
exactly which instructions they are executing and which data locations are being ref-
erenced there is previously transparent speculative processing that now has visible
consequences.

We found it invaluable during the development process to instrument our code. The
abort routine maintained a frequency table of abort addresses, conflict addresses, and
abort reason codes. It was easy to see hot spots in data structures and iteratively fix
them with this data. During this hotspot analysis it should be noted that it was often
necessary to imagine how two or more transactions were interacting. This complexity
contradicts the idea that isolated, atomic code sections are easier to reason about than
sections linearized by a lock. We also made use of non-transactional stores to create
a trace table during debugging to quantify these interactions. This infrastructure can
be shared by system services that wrap HTM exploiting code to provide higher level
deterministic primitives to OS functions needing serialization. One last concern about
abort analysis is that logging data and making retry decisions can introduce new effects
which didn’t exist previously.

4.2 Varying Span Size

An important parameter in our data structure is the number of nodes in a span. Intu-
itively, a smaller span size should incur more transaction begin and end costs and a
larger span size incur higher abort and retry costs. Therefore one expects a certain mid-
dle span size to provide the best tradeoff. We measured the throughput, total aborts,
and abort ratio of our data structure while varying the span size from 1 to 128. The
list had a total of 1 million nodes broken into 1 thousand sub-lists. Each sub-list had 1
thousand nodes. The results shown in Figs. 12 and 13 are for one, two, and four CPUs.
Results for more CPUs are similar and therefore are omitted. The figures match our
intuition and provide the basis of our argument against an adaptive span size suggested
by [27].

Figure 12 shows throughput per thread and total aborts of all threads versus span
size; and Fig. 13 shows the throughput per thread and abort ratio of all threads versus
span size. The figures show that throughput reaches its peak somewhere between
span size 32 and 64, this region having the fewest number of total aborts. The abort
ratio, on the other hand, increases as the span size increases since the total number
of transactions decreases with larger span size. We use some simplified analysis to
explain the U-shaped curve for total aborts in Fig. 12 which provides insight for the
choice of span size.

The first observation is that the number of total aborts is proportional to the total
length of transactional execution time. We start with an estimation of the total length
of transactional time. We make the following assumptions:

e TBEGIN and TEND add a fixed amount of transactional time #, and ., respectively
o Each node takes a fixed amount of transactional time f,, to process

@ Springer

1210 Int J Parallel Prog (2015) 43:1192-1217

Varying Spans (total 1M nodes, 1K sub-lists)

65 M T T T T 4500
=) Throughput 1 thread (yl-axis) -{3- Total Aborts 1 thread (y2-axis) ——
g 60 | Throughput 2 threads (y1-axis) --&- Total Aborts 2 threads (y2-axis) —<— 4 4000 §
é Throughput 4 threads (y1-axis) --A\- Total Aborts 4 threads (y2-axis) —K— g'_,
2
172)
'qg) 3500 gﬁ;
2 3
E 3000 >
z 3
2 2500 =
i g
= o
5 2000 =
o =
=
a 1500 g
=) d 2
= 0 =1
o LN 1000 &
= g ~
H ¥

25) N 1 1 1 1 1 1 1 1 500

L4 8 16 32 48 64 80 96 112 128

Span Size (nodes)

Fig. 12 Throughput and total aborts with varying spans

Varying Spans (total 1M nodes, 1K sub-lists)
70 T T T T T T m 45

Throughput 1 thread (yl-axis) -{3- Abort Ratio | thread (y2-axis) ——
65 1 Throughput 2 threads (y1-axis) --&- Abort Ratio 2 threads (y2-axis) —¢— 4 40
Throughput 4 threads (y1-axis) --A\- Abort Ratio 4 threads (y2-axis)

Throughput Per Thread (x1K nodes/second)
(%) speaIy L, [TV oney Hoqy

L4 8 16 32 48 64 80 96 112 128
Span Size (nodes)

Fig. 13 Throughput and abort ratio with varying spans

e Total number of nodes is N and span size is n

The transactional time for processing one span is #, +f. +ntp and there are N/n spans.
Since all spans are eventually processed successfully, the total amount of successful
transactional time spent on processing the spans is (f, + fe +ntp) X N/n. However, a
certain percentage of the spans aborted before succeeding. We assume this percentage
isa(n). For each abort, we assume that on average we waste half of the span processing,
i.e., we waste an amount of #, + nfp/2 transactional time for each abort. And we
assume that the average number of aborts for a span is some function of its size, call

@ Springer

Int J Parallel Prog (2015) 43:1192-1217 1211

Varying Spans (total 1M nodes, 1K sub-lists)

30 T

1 thread: Abort waste --+-- TBEGIN/TEND overhead --—+- T(n) 53—
2 threads: Abort waste -->-- TBEGIN/TEND overhead --->¢- T(n) ——
4 threads: Abort waste --3K-- TBEGIN/TEND overhead --3K- T(n) -A—

25

Total Estimated TX Time (seconds)

R4 8 16 32 48 64 80 96 112 128
Span Size (nodes)

Fig. 14 Total estimated transactional execution time

this B(n). Therefore, the total amount of wasted transactional time due to aborts is
B(n) x (tp + ntp/2) x a(n) N/n. Adding the two terms, we arrive at our estimation
of the total transactional time 7 as a function of the span size n as:

T (n) = [(t + te + ntp) x N/nl+ [B(n) x (t + nty/2)
xXam)N/n] = Na(n) B (n) (tb +ntp/2)
/n+ N (th +te) /n+ Nt,

We can further simplify this function by observing that 8(n) x a(n)N/n = A(n),
where A(n) is the total number of aborts. Therefore, Na(n)B(n) = nA(n) and we
have:

T(n) = A(n)(ty + nty/2) +N(tp +1e)/n + Ni,

| |
Abort waste TBEGIN/TEND overhead

Intuitively, the first term is the wasted time due to aborts. As span size n increases,
we expect this term to increase. While we do not know the analytical form of A(n), we
can use our test results for A(n) to plot the first term and verify. The second term is the
fixed overhead due to TBEGIN/TEND. Clearly, this is a decreasing function of span
size n since the overhead as a percentage of the transaction declines with larger spans.
The sum of the two terms therefore should give a U-shaped curve of T (n) similar to
that of A(n) we observed in Fig. 11. We plot the first term, the second term, and 7 (n)
itself in Fig. 14. For the plot, we used 50 cycles for #, and ., and 75 cycles for #,.

From our test results and analysis, we believe that an architecture will likely have
a fairly narrow range of span sizes that could be practical. An adaptive span size
mechanism is unlikely to be very helpful since an increase in aborts can happen when

@ Springer

1212 Int J Parallel Prog (2015) 43:1192-1217

Sorted Linked List Insertion+Deletion (total 1M nodes)

8000 T . T
Linear --x-
HTM ——
7000 -

6000 |- X
5000
4000
3000

2000

Throughput (x1K nodes/second)

1000

Number of CPUs

Fig. 15 Long sorted linked list scalability

the span size gets close to either boundary. This further suggests that, unless contention
is very low, large or unlimited size transactions are of questionable value. The cost
of aborts and retries would be so high even a low abort rate would result in a large
amount of wasted rework.

4.3 Long and Short Lists

Below are scalability results for insertion and deletion operations for the disjoint sorted
linked list. For the long list, there are a total of 1 million nodes broken into 1 thousand
sub-lists. Each sub-list has 1 thousand nodes. For the short list, there are a total of 192
nodes broken into 192 sub-lists. So each sub-list has 1 node. For the long list, we use
a span size of 32. For different number of CPUs, each thread is bound to its own CPU
and gets N/m nodes (where N is the total number of nodes and m is the total number
of threads). Each thread repeatedly inserts and deletes its N/m nodes into and out of
the list. The results are shown in Figs. 15 and 16.

We can see that with spanning and order preserving hashing, the throughput of
inserting and deleting nodes into and out of a long sorted linked list scales near linearly
for up to 96 CPUs. With adaptive recursive hashing, the throughput of inserting and
deleting nodes into and out of a short sorted linked list also scales near linearly for up
to 96 CPUs. These results show that disjoint data structures can indeed achieve high
concurrency, performance, and scalability to a large number of CPUs.

4.4 Open Addressing Hash Table

Figure 17 shows the scalability results for insertion and deletion operations against the
open addressing hash table serialized with HTM. A total of 1 million uniformly dis-

@ Springer

Int J Parallel Prog (2015) 43:1192-1217 1213

Sorted Linked List Insertion+Deletion (total 192 nodes)

2000 : : - w
Linear --x-
1800 | HTM —— a
X
1600 | X
1400

1200

1000

800

600

Throughput (x1M nodes/second)

400

200

Number of CPUs
Fig. 16 Short sorted linked list scalability

Hash Table Insertion+Deletion (1M keys, 75% load factor)

330 ‘ ‘ - \

Linear --x-

HTM —+— X
300 F <4
250 | i
200

150

100

Throughput (x1M keys/second)

50

Number of CPUs

Fig. 17 Open addressing hash table scalability

tributed random keys of 64-bit long integer were inserted and deleted. We maintained
a load factor of 75 %, which means that the hash table needed at least 1.3 million slots
rounding up to the next power of 2. So the hash table had 22'=2,097,152 slots. While
the scalability was not as good as the disjoint sorted linked list, the improvement we
saw is still a respectable result given the almost trivial amount of coding needed to
make the hash table concurrent.

@ Springer

1214 Int J Parallel Prog (2015) 43:1192-1217

5 Discussion

Our experience with HTM on the zEnterprise EC12 is congruent with much of the
previous work in that we found HTM solves some problems but presents new ones.
The pros and cons we experienced included:

+ HTM is conceptually simpler to use than lock free techniques. Linearizability, opac-
ity and the strong atomic guarantee make it easier to argue the correctness of the
program.

+ HTM can perform and scale very well with disjoint data structures that minimize
memory conflicts.

+ HTM uses no serialization resources so when it aborts there is no need to keep track
of or clean up during failure recovery.

— To fully exploit HTM, one needs to understand the microarchitecture and HTM
mechanism intimately. This makes HTM programs hard to write, debug, and opti-
mize in practice even though they are conceptually simpler. This also makes HTM
programs hard to port from architecture to architecture, and perhaps even from
generation to generation on the same architecture.

— Most programmers are used to and prefer deterministic services. Best-effort prob-
abilistic HTM services increase the complexity of programs in practice.

— Debugging HTM programs is challenging because the machine state during a trans-
action disappears after an abort when memory changes vanish and registers are
restored.

We do feel that previous work has not placed enough emphasis on the impact of
aborts on HTM. Our experience taught us that it is critically important to thoroughly
understand the abort mechanism and behavior on an architecture in order to minimize
aborts and maximize performance.

6 Related Work

Although a large body of prior HTM work exists, commercial HTM implementations
remain scarce and so there is still a lack of evaluation and experience on commercial
HTM. To date, only four other commercial machines besides the IBM zEnterprise
EC12 exist: Sun ROCK [17], Azul Vega [18], IBM Blue Gene/Q [19], and Intel
Haswell [20]. Papers [22], [18], and [23] provide valuable information on the these
architectures, as well as evaluation and experience on them. Our work adds an entry
to this collective effort. Wang et al. [23] has a summary table comparing some key
characteristics of the three prior architectures. We extend the table to include Haswell
and EC12, as shown in Table 2. Note that EC12 has two flavors of transactional
execution: constrained (CTX) and unconstrained (UTX).

We used spanning in our disjoint data structure to overcome the physical transaction
size limits. A similar idea called telescoping was proposed in [27]. A number of
approaches [7-9] describe hardware architectures that overcome resource limitation to
provide unlimited transaction size. They generally work by storing alog of overflowing
transactional states in memory. Lev and Maessen [15] provides unlimited transactional

@ Springer

Int J Parallel Prog (2015) 43:1192-1217 1215

Table 2 Comparison of existing commercial HTM features

HTM BG/Q Rock Azul Haswell ECI12
CTX UTX
Best effort Yes Yes Yes Yes No Yes
Buffer capacity 20MB 32 lines 16KB 64KB(w) 256KB(r) 128B 8KB(w) 96KB(r)
Speculative buffer L2 L2 L1 L1 L1/L2 L1/L2
Reg. save/restore ~ No Yes No Yes Optional Optional
Unsupported ISA None div/call/sync None Yes** Yes* Yes*
Conflict detection 8-64B n/a 32B 64B 1B 1B
User-level abort No n/a Yes Yes n/a Yes

* The full list of restricted instructions can be found in [29]
*% The full list of restricted instructions can be found in [20]

size by breaking a transaction into small segments. Each segment is executed by HTM
but software maintains the states for the entire transaction. These are general solutions
not tied to any particular application data structure and/or algorithm. Our experience
suggests that in practice very large transactions may be of limited value. Since the
rework penalty for aborts in large transactions is so severe the performance advantage
of a very large transaction vanishes unless there is very little or no contention.

7 Conclusions and Future Work

We have reported our experience with the first commercial general purpose HTM on
the IBM zEnterprise EC12 server. We demonstrated that, with disjoint data structures,
HTM achieves scalability up to 96 CPUs. This result came after we spent considerable
time understanding abort frequencies and the behavior of the hardware then aggres-
sively refactored our data structure and code to minimize aborts. Our experience sug-
gests that, while transactional memory provides a conceptually simpler programming
model than traditional locking, the best effort hardware services and thus the need
to handle aborts make programming HTM much more complex in practice. We feel
that the necessary infrastructure can be provided by software service wrappers that
encapsulate probabilistic HTM behavior and present a deterministic interface. In the
context of the disjoint sorted linked list, we have also tested and analyzed the impact
of different transaction size on performance. Our experience suggests that for a par-
ticular architecture, there is likely a sweet spot for the transaction size that provides
the best performance with fewest aborts, neither too small nor too large. This fur-
ther suggests that unbounded transactions are of questionable value. Our experience
with open addressing hashing suggests that, given the right access scenario, HTM
can be a powerful tool to improve scalable concurrency with very little extra coding
effort.

For future work, we would like to look at structures other than sorted linked lists
and hash tables. And we would like to implement our concurrent rehashing for hash
table growth idea. Our tests with HTM have also uncovered certain microarchitectural

@ Springer

1216 Int J Parallel Prog (2015) 43:1192-1217

behaviors which contribute to higher than necessary abort rates. We would like to feed
our experience back to the hardware engineers to help improve the next generation of
hardware.

Acknowledgments The authors would like to thank their colleagues for valuable help in this work.
Christian Jacobi provided many insights into the Transactional Execution Facility hardware in zEnterprise
EC12. Maged Michael discussed issues related to disjoint data structures. Robin Tanenbaum was critical
in wrangling the unreleased hardware so the authors could actually conduct the experiments.

References

1. Knight, T.: An architecture for mostly functional languages. In: Proceedings of the 1986 ACM LISP
and Functional Programming Conference

2. Herlihy, M., Moss, J.E.: Transactional memory: architectural support for lock-free data structures. In:
Proceedings of the 20th Annual International Symposium on Computer Architecture, San Diego, CA,
May (1993)

3. Shavit, N. Touitou, D.: Software transactional memory. In: Proceedings of the 14th Annual ACM
Symposium on Principles of Distributed Computing, Ottawa, Ontario, August (1995)

4. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional memory for dynamic-
sized data structures. In: Proceedings of the 22nd Annual ACM Symposium on Principles of Distributed
Computing, Boston, MA, July (2003)

5. Saha, B., Adl-Tabatabai, A.R., Hudson, R.L., Minh, C.C., Hertzberg, B.: McRT-STM: a high perfor-
mance software transactional memory system for a multi-core runtime. In: Proceedings of the 11th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, New York, NY,
March (2006)

6. Hammond, L., Wong, V., Chen, M., Carlstrom, B.D., Davis, J.D., Hertzberg, B., Prabhu, M.K., Wijaya,
H., Kozyrakis, C., Olukotun, K.: Transactional memory coherence and consistency. In: Proceedings of
the 31st Annual International Symposium on Computer Architecture, Munich, Germany, June (2004)

7. Ananian, C.S., Asanovic, K., Kuszmaul, B.C., Leiserson, C.E., Lie, S.: Unbounded transactional mem-
ory. In: Proceedings of the 11th IEEE Symposium on High-Performance Computer Architecture, Feb-
ruary (2005)

8. Rajwar, R., Herlihy, M., Lai, K.: Virtualizing transactional memory. In: Proceedings of the 32nd Annual
International Symposium on Computer Architecture, June (2005)

9. Moore, K.E., Bobba, J., Moravan, M.J., Hill, M.D., Wood, D.A.: LogTM: Log-based transactional
memory. In: Proceedings of the 12th Annual International Symposium on High Performance Computer
Architecture, Austin, TX, February (2006)

10. Damron, P., Fedorova, A., Lev, Y.: Hybrid transactional memory. In: Proceedings of the 12th Interna-
tional Conference on Architectural Support for Programming Languages and Operating Systems, San
Jose, CA, October (2006)

11. Kumar, S., Chu, M., Hughes, C.J., Kundu, P., Nguyen, A.: Hybrid transactional memory. In: Proceed-
ings of the 11th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
New York, NY, March (2006)

12. Minh, C.C., Trautmann, M., Chung, J.W., McDonald, A., Bronson, N., Casper, J., Kozyrakis, C.,
Olukotun, K.: An effective hybrid transactional memory system with strong isolation guarantees. In:
Proceedings of the 34th Annual International Symposium on Computer Architecture, San Diego, CA,
June (2007)

13. Shriraman, A., Spear, M.F., Hossain, H., Marathe, V.J., Dwarkadas, S., Scott, M.L.: An integrated
hardware-software approach to flexible transactional memory. In: Proceedings of the 34th Annual
International Symposium on Computer Architecture, San Diego, CA, June (2007)

14. Lev, Y., Moir, M., Nussbaum, D.: Ph'TM: phased transactional memory. In: Proceedings of the 2nd
ACM SIGPLAN Workshop on Transactional Computing, Portland, OR, August (2007)

15. Lev, Y., Maessen, J.-W.: Split hardware transactions: true nesting of transactions using best-effort
hardware transactional memory. In: Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, Salt Lake City, UT, February (2008)

@ Springer

Int J Parallel Prog (2015) 43:1192-1217 1217

16.

17.

18.

19.

20.
21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

Yoo, R.M.,, Ni, Y., Welc, A., Saha, B., Adl-Tabatabai, A.-R., Lee, H.-H.S.: Kicking the tires of software
transactional memory: Why the going gets tough. In: Proceedings of the 20th ACM Symposium on
Parallelism in Algorithms and Architectures, Munich, Germany, June (2008)

Tremblay, M.: Transactional memory for a modern microprocessor. In: Keynote speech at 26th Annual
ACM Symposium on Principles of Distributed Computing, Portland, OR, August (2007)

Click, C.: Azul’s experiences with hardware transactional memory. Bay Area Workshop on Transac-
tional Memory, January (2009)

Haring, R., Ohmacht, M., Fox, T., Gschwind, M., Satterfield, D., Sugavanam, K., Coteus, P., Heidel-
berger, P., Blumrich, M., Wisniewski, R., Gara, A., Chiu, G.-T., Boyle, P., Chist, N., Kim, C.: The IBM
blue gene/Q compute chip. IEEE Micro 32(2), 48-60 (2012)

Intel Corporation: Intel Architecture Instruction Set Extensions Programming Reference. 319433-014,
August (2012)

IBM: IBM zEnterprise EC12 Technical Guide. SG24-8049-00, September (2012)

Dice, D., Lev, Y., Moir, M., Nussbaum, D.: Early experience with a commercial hardware transactional
memory implementation. In: Proceedings of the 14th International Conference on Architectural Support
for Programming Languages and Operating Systems, Washington, DC, March (2009)

Wang, A., Gaudet, M., Wu, P., Amaral, J.N., Ohmacht, M., Barton, C., Silvera, R., Michael, M.:
Evaluation of blue gene/Q hardware support for transactional memories. In: Proceedings of the 21st
International Conference on Parallel Architectures and Compilation Techniques, Minneapolis, MN,
September (2012)

Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM Trans.
Program. Lang. Syst. 12(3), 463—492 (June 1990)

Guerraoui, R., Kapalka, M.: Opacity: a correctness condition for transactional memory. Technical
Report LPD-REPORT-2007-004, EPFL, May (2007)

Rajwar, R., Goodman, J.R.: Speculative lock elision: enabling highly concurrent multithreaded execu-
tion. In: Proceedings of the 34th International Symposium on Microarchitecture, Austin, TX, December
(2001)

Dragojevic, A., Herlihy, M., Lev, Y., Moir, M.: On the power of hardware transactional memory to
simplify memory management. In: Proceedings of the 30th Annual ACM Symposium on Principles
of Distributed Computing, San Jose, CA, June (2011)

Jacobi, C., Slegel, T., Greiner, D.: Transactional memory architecture and implementation for IBM sys-
tem z. In: Proceedings of the 45th Annual IEEE/ACM International Symposium on Microarchitecture,
Vancouver, Canada, December (2012)

IBM: z/Architecture Principles of Operation. SA22-7832-09, 10th edn (2012)

Purcell, C., Harris, T.: Non-blocking hashtables with open addressing. Technical Report, University
of Cambridge Computer Laboratory. UCAM-CL-TR-639, September (2005)

Martin, D.R., Davis, R.C.: A scalable non-blocking concurrent hash table implementation with incre-
mental rehashing. Unpublished manuscript, December 1997

xxhash. https://code.google.com/p/xxhash/

MurmurHash. http://en.wikipedia.org/wiki/MurmurHash

Hash table. http://en.wikipedia.org/wiki/Hash_table

Open addressing. http://en.wikipedia.org/wiki/Open_addressing

Knuth, D.E.: The Art of Computer Programming, vol. 3, Addison-Wesley, Boston (1998)

@ Springer

https://code.google.com/p/xxhash/
http://en.wikipedia.org/wiki/MurmurHash
http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Open_addressing

	The Scalability of Disjoint Data Structures on a New Hardware Transactional Memory System
	Abstract
	1 Introduction
	2 Description of HTM on System z
	3 Disjoint Data Structures
	3.1 Linked List
	3.1.1 Spanning
	3.1.2 Hashing
	3.1.3 Adaptive Recursive Hashing

	3.2 Open Addressing Hash Table

	4 Experimental Results
	4.1 Abort Analysis
	4.1.1 Cache Size Limitation
	4.1.2 Cache Hierarchy Implication
	4.1.3 Various Abort Types

	4.2 Varying Span Size
	4.3 Long and Short Lists
	4.4 Open Addressing Hash Table

	5 Discussion
	6 Related Work
	7 Conclusions and Future Work
	Acknowledgments
	References

