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Abstract According to the important methodology of convex optimization theory, the
energy-efficient and scalability problems of modern data centers are studied. Then a
novel virtual machine (VM) placement scheme is proposed for solving these problems
in large scale. Firstly, by referring the definition of VM placement fairness and utility
function, the basic algorithm of VM placement which fulfills server constraints of
physical machines is discussed. Then, we abstract the VM placement as an optimiza-
tion problem which considers the inherent dependencies and traffic between VMs.
By given the structural differences of recently proposed data center architectures,
we further investigate a comparative analysis on the impact of the network architec-
tures, server constraints and application dependencies on the potential performance
gain of optimization-based VM placement. Comparing with the existing schemes, the
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performance improvements are illustrated from multiple perspectives, such as reduc-
ing the number of physical machines deployment, decreasing communication cost
between VMs, improving energy-efficient and scalability of data centers.

Keywords Optimization theory · Virtual machine placement · Virtualization ·
Data center

1 Introduction

The functions of recent modern virtualized data center could be treated as an infrastruc-
ture for Internet applications which requires large-scale data processing services, such
as search engines, public medical services, telecommunications, sensor networking,
social networking, data mining, information storage, electronic commerce, as well as
some more general services such as software as a Service (SaaS), platform as a Service
(PaaS), infrastructure as a Service (IaaS), grid computing and cloud computing, etc.
With the development of the large scale cloud computing [1–3] and communication-
based data center [4–6], bandwidth and other resources requirements in virtual machine
(VM) [7] have increased dramatically, which has been attracting extensive interests in
underlying network architecture scalability research [8–11], these studies are trying
to reduce data center network costs by increasing the degree of network connectiv-
ity and using dynamic routing protocols to balance transmission workloads. In such
background, with the cooling energy demand and costs augment, power consumption
management has to be considered. Following this point, researchers have proposed
some green computing concepts and suggestions [12,13], the main purpose for these
work is to reduce energy consumption in massive data processing to save costs. These
methods can produce obvious effects on the data center server resources, and reduce
energy consumption by shutting down or hibernating servers with low workloads,
which facilitate us to find new mechanisms to solve the problem.

The motivation of our work is to handle the data center scalability and energy
consumption reduction problems from the perspective of optimizing virtual machine
deployment. Virtual machine placement (VMP) is to establish mapping relationships
between virtual machine and physical machine (PM) so as to select the most suit-
able hosting carrier for each virtual machine. It has been widely discussed in multiple
directions [14,15]. The basic process takes into account of the virtual machine hard-
ware, resource requirements, and anticipated deployment targets (such as maximizing
utilization of available resources, saving energy, etc.). Existing virtual machine place-
ment tools include VMware Capacity Planner [16], IBM WebSphere CloudBurst [17],
Novell PlateSpin Recon [18] and Lanamark Suite [19], etc. These tools, to a certain
extent, automatically distribute the virtual machines in data center based on the require-
ments of the CPU, physical memory and energy consumption. Since these tools do not
consider the demands of application awareness, it may lead to application associated
virtual machines being placed in physical machines that require long distance in net-
work communication, which increases the burden of data transfer within large-scale
data centers.
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The main contribution of this paper is to propose an optimization-based algorithm
for virtual machines placements. The algorithm considers both constraints of servers
and the dependency relationships between virtual machines and multiple levels appli-
cations. We try to place a virtual machine into the most appropriate physical host. By
meeting the conditions of the server-side constraints, our objective is to minimize the
number of physical hosts, improve the scalability and reduce the energy consumption.
The evaluation results show that the algorithm can adjust the allocation of resources
and reduce the transmission traffic of data center in a short period.

The structure of this paper is organized as follows: Sect. 1 introduces the back-
ground of this area and the main research contents; Sect. 2 describes the relevant vir-
tual machine placement tools and schemes; While Sect. 3 derives the utility function
meeting server-side constraints and the optimization-based utility function expres-
sion; In Sect. 4, the experimental results of the analysis under different data center
network architecture are presented based on the proposed virtual machines placement
algorithm; Sect. 5 summarizes this paper and give the future work.

2 Related Work

Existing virtual machine placement algorithms can be divided into two categories
based on the placement target: one is based on the energy consumption, these methods
mainly consider the server-side constraints; the other is based on application Quality
of Service (QoS), aiming to maximize the use of the resources allocated to applica-
tions. Several common virtual machine placements algorithms include Constraint Pro-
gramming [20,21], Bin Packing Stochastic [22], Integer Programming [23], Genetic
Algorithm [24,25], some of which involves a virtual machine dynamical migration,
while the others simply consider the static cases.

The requirements of virtual machines autonomous management satisfying the qual-
ity of service can be modeled as a Constraint Programming Problem. Van et al. [20]
proposed a constraint programming virtual machine placement algorithm that can
reduce the number of physical machines and maximize the global utility function
under the constraints of achieving quality of service service-level agreement (SLA)
and operating costs. In this paper, the utility function maps the application’s current
status (workload, resource capacity, SLA, etc.) to a constant value, which reflects the
application’s satisfaction degree. Virtual machine placement algorithm based on con-
straint planning can be seen as a compound process including both local and global
decision-making processes. The first stage is related to application environment, while
the second stage calculates the maximum of the utility function based on the inputs
of local decisions for all applications. In local decision-making stage, the application
locally maps quality of service to the utility value using the fixed QoS (service-level)
utility function, while it maps resource capacity to the utility value as well using the
dynamic quality of resources (resource-level) utility function, and ultimately quan-
tify the resource level value as the global decision-making input for each iteration.
In the global decision-making stage, the system firstly need to find each application’s
virtual machine placement vector and then get the maximum value of the global util-
ity function, followed by deploying corresponding virtual machines to physical ones
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and minimizing the number of activated physical machines. In [20], it is important
to select the appropriate application weights. If it is set by the system administrator,
the situation could be maintained; if it is achieved through automated virtual machine
management, then extra checks might be needed to find out whether the application
requires resources. Besides that, the global optimization function of the algorithm
depends on a given network architecture, limiting its scope of application.

Meng et al. [21] proposes an effective solution for data center scalability. The core
part of this work is TVMPP (Traffic-aware VM Placement Problem) algorithm. Such
algorithm is able to reasonably place virtual machines that require large number of data
exchanges and high network bandwidth, greatly reduce the bandwidth consumption
within the data center and improve the scalability. However, TVMPP algorithm only
considered the network constraints (such as bandwidth) of data center and neglects
the server-side constraints, which may lead to the virtual machine workload exceeding
the capacity of physical machines, hot spots and other critical issues.

For the basic idea of Bin Packing Problem, physical machines can be seen as a
“box”, and virtual machines can be seen as an object into the box. Bobroff et al.
[22] introduced the Measure-Forcast-Remap (MFR) algorithm, which contain three
steps: a) the formation of the expression pattern of past demand; b) predicting future
needs based on past demand patterns; c) mapping or re-mapping the virtual machine
to the suitable physical machine. MFR algorithm uses first-fit approximation to find a
virtual machine to physical machine mapping, and the migration of virtual machine is
also considered. The algorithm does not take the resource capacity constraints, which
means there may be interference, in term of, the virtual machines are placed into the
same physical machine. In addition, the algorithm highly depends on the effectiveness
of prediction algorithms, if the forecast is not accurate enough, SLA breach of contract
will exceed the tolerable range.

Chaisiri et al. [23] proposed a Statistical Integer Planning (SIP) algorithm. This
algorithm achieves the function of resources allocation via three steps as well: a)
Reservation: Cloud providers pre-reserve resources for future allocation; b) Utiliza-
tion: utilize the pre-reserved resources; c) On-demand: if the users’ needs exceed the
pre-reserved resources, additional resources based on demand can be allocated accord-
ing to the paying fees. SIP algorithm categorizes the virtual machines based on the
types of applications. Each application corresponds to a virtual machine, which mini-
mize the cost in virtual machines deployment and meet the needs of users. The authors
optimize the process of calculating the number of virtual machines at the reservation
and on-demand stage. The calculating results will be changing dynamically with the
distribution of demands. SIP algorithm is quite practical in independent demands or
cost changes. It does not require frequent calculating. However, if the estimation is
not accurate, users will pay more. In this paper, the authors did not give the mapping
algorithms corresponding virtual machines to physical machines.

Based on genetic algorithm, virtual machine placement scheme proposed by Nakada
in [24] is suitable for the situations where objective function changes dynamically.
Agrawal et al. [25] designed a grouping genetic algorithm (GGA), which can be
classified as a bin packing algorithm category. The GGA algorithm can not only
achieve the effective “packaging” from virtual machines to physical machines, but
also meet the corresponding constraints to avoid the bin packing algorithm defects.
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These previous work provide many achievements in multiple angles and motivate
us to settle the virtual machine placement issues with optimization theory.

3 Virtual Machine Placement Model

In this section, we present an optimization-based virtual machine placement model that
enables data centers to systematically place virtual machines. The energy efficiency
and scalability can be achieved as well. We consider both server capacity constraints
and application multi-tier inherent dependencies in the process. The formulations are
introduced firstly. The modeling work will be detailed in the following subsections.

3.1 Abstraction and Problem Formulation

Typically, in order to reduce the energy costs, most of the extant work focuses on only
one specific aspect of management, such as minimizing power consumption, balanc-
ing thermal distribution, or maximizing resource usage. However, with many practical
applications, minimizing the total energy consumption in a data center requires the
formulation of a joint optimization problem. Therefore, we consider server-side con-
straints associated with application multi-tier inherent dependencies as a joint opti-
mization model to solve energy efficiency and scalability problems. Due to multiple
objectives may bring conflicts with each other, the definition of virtual machine place-
ment fairness is given firstly.

Let y = (
yp, p ∈ P

)
denote a VMP approach satisfying proportional fairness:

assuming that (a) resources allocation policy is feasible, in other words, resources (such
as CPU, physical memory, storage space, etc.) allocated to each virtual machine is less
than the total capacity of the hosting physical machine. (b) for any other alternative
resource allocation approach ỹ = (

ỹp, p ∈ P
)
, the following condition is satisfied:

∑

p:p∈P

wp
ỹp − yp

yp
≤ 0, (1)

where wp is the weight of server performance or its willingness to offer resources.
As we know, proportional fairness depends on the difference between two placement

approaches, which means that both fairness and efficiency are integrated in one model.
Based on this definition, the objective function of the overall utilities can be denoted
as:

∑

p:p∈P

Up
(
yp (t)

) =
{

wp log yp (t) if αp = 1

wp
y

1−αp
p (t)
1−αp

if αp �= 1
, (2)

Here αp is the indicator of fairness among a connection of physical machines. When
αp = 1, the utility function of physical machine p is given by Up

(
yp (t)

) =
wp log yp (t). Then, maximizing the aggregate utilities of all physical machines in
data center can be given by:
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Table 1 Notation used in our model

Notation Description

V = {v1, v2, . . . , vn} Set of virtual machines, element vi ∈ V, i = 1, 2, . . . , n

P = {p1, p2, . . . , pm } Set of physical machines, element pk ∈ P, k = 1, 2, 3, . . . , m

V (p) Set of virtual machines hosted by physical machine p ∈ P

yp(t) = Loadp (t) The aggregate resource demands of virtual machines located at physical
machine p

x pv (t) = Loadpv (t) The resource demands of virtual machine v hosted by physical machine p

Capacityp Capacity of physical machine p (e.g., CPU power, memory, storage)

G = (V, E) Application dependency graph, where V is the set of virtual machines, E is
the set of depending edges

E = (
vi , v j

) : vi , v j ∈ V Set of depending edges, vi and v j are dependent with each other if any
communication takes places between them

W = {wi j = w
(
vi , v j

)

: vi , v j ∈ V } Traffic demand for each edge, element wi j ∈ W

max
∑

p∈P

wp log yp (t). (3)

Before giving the joint virtual machine placement model, some notations used in
subsequent section are listed in Table 1.

3.2 Server-Side Constraints and Virtual Machine Placement

Multiple virtual machines can reside on the same host and each VM occupies part
of physical resources. Let Loadpv (t) denote the load of VM v which resides on
PM p ∈ P , and Loadp(t) denote the aggravate loads of PM p ∈ P , the following
constraints must be satisfied: Loadp(t) = ∑

v:v∈V (p) Loadpv (t). Here Load (t) is
defined as the d dimensional vector of load requirements of VM, when CPU, memory
and storage are considered, d = 3, Load (t) is given by

Load (t) =
(

LoadC PU (t), Loadmemor y (t), Loadstorage (t)
)

. (4)

Further, we define Capacityp as the available server-side capacity on PM p ∈ P
regarding its CPU, memory, storage etc. To ensure that the total load on any physical
machine is less than or equal to its capacity, the following formula must hold:

∑

v:v∈V (p)

Loadpv (t) ≤ Capacityp. (5)

We study the problem of placing VMs on a set of physical hosts here. Typically,
tightly packing VMs onto a small number of servers and turning off other servers is an
effective way to maximize machine utilization and reduce server energy consumption.
However, concentrating workloads on a subset of the system resources can cause heat
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imbalances and create hot spots, which may impact cooling costs, shorten the server
life and degrade the system performance. An effective strategy should maintain the
tradeoffs between energy efficiency and fairness. To reflect these two considerations,
in our analysis, proportional fairness model is utilized:

(P1) : max
∑

p:p∈P

Up
(
Loadp (t)

)
(6)

Subject to
∑

v:v∈V (p)

Loadpv (t) = Loadp (t) , ∀p ∈ P (7)

∑

v:v∈V (p)

Loadpv (t) ≤ Capacityp, ∀p ∈ P (8)

Over Loadpv (t) ≥ 0, p ∈ P, v ∈ V . (9)

We call this physical machine utilization maximization problem (P1). When only
CPU, memory and storage are considered, (P1) is equivalent to:

(
P′

1

) :max
∑

p:p∈P

Up

(
LoadC PU

p (t)×Loadmemor y
p (t)×Loadstorage

p (t)
)

(10)

Subject to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

v:v∈V (p)

LoadC PU
pv (t) = LoadC PU

p (t) , ∀p ∈ P
∑

v:v∈V (p)

Loadmemor y
pv (t) = Loadmemor y

p (t) , ∀p ∈ P

∑

v:v∈V (p)

Loadstorage
pv (t) = Loadstorage

p (t) , ∀p ∈ P

(11)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

v:v∈V (p)

LoadC PU
pv (t) ≤ CapacityC PU

p , ∀p ∈ P
∑

v:v∈V (p)

Loadmemor y
pv (t) ≤ Capacitymemor y

p , ∀p ∈ P

∑

v:v∈V (p)

Loadstorage
pv (t) ≤ Capacitystorage

p , ∀p ∈ P

(12)

Over Loadpv (t) ≥ 0, p ∈ P, v ∈ V . (13)

In order to facilitate the subsequent derivation of the formula, let yp (t) =
Loadp (t). To maximize the overall aggregate utilities of data center and obtain the
optimal solution of (P1), a Lagrange function is defined as:

L (x, y; λ, η) =
∑

p:p∈P

⎧
⎨

⎩
Up

(
yp (t)

)+ λp

⎛

⎝
∑

v:v∈V (p)

x pv (t) − yp (t)

⎞

⎠

⎫
⎬

⎭

+
∑

p:p∈P

ηp

⎛

⎝Capacityp −
∑

v:v∈V (p)

x pv (t) − ε2
p

⎞

⎠, (14)
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Where both λ = (
λp, p ∈ P

)
and η = (

ηp, p ∈ P
)

are Lagrange multiplier vectors,

ε2 =
(
ε2

p, p ∈ P
)

is the relaxation factor vector. Let λpv denote the load requirements

of virtual machine v. Let ηp be the available capacity of physical machine p. Let the
total resources occupied by all the virtual machines residing on physical machine p
be denoted by

∑
v:v∈V (p) x pv (t). ε2

p ≥ 0 will indicate there are remaining resources
exist on physical machine p.

According to (7), it is easy to obtain:

L (x, y; λ, η) =
∑

p:p∈P

{
Up

(
yp (t)

)− λp yp (t)
}

+
∑

p:p∈P

∑

v:v∈V (p)

x pv (t)
(
λp − ηp

)

+
∑

p:p∈P

ηp

(
Capacityp − ε2

p

)
, (15)

Where Capacityp − ε2
p indicates the occupied resources of physical machine p.

To improve the physical machine utilization and reduce server energy consumption,
tightly packing with fairness consideration is taken to place virtual machines, then,

ηp

(
Capacityp − ε2

p

)
can be considered as the gains of physical machine p from

packing.
The dual problem of the objective function (15) is given by:

D (η) = max
x,y,λ

L (x, y; λ, η)

= max
λ

∑

p:p∈P

(
max
yp(t)

Up
(
yp (t)

)− λp yp (t)

)

+
∑

p:p∈P

∑

v:v∈V (p)

max
x pv(t)

x pv (t)
(
λp − ηp

)

+
∑

p:p∈P

ηp

(
Capacityp − ε2

p

)
. (16)

Therefore, the dual problem of the basic virtual machine model (P1), denoted as (D1),
is given by:

(D1) : min D (η) (17)

Over ηp ≥ 0, p ∈ P. (18)

Theorem 1 The basic data center virtual machine model (P1) is a convex pro-
gramming problem, the optimal resources distribution solution, denoted as x =(
x pv (t) , p ∈ P, v ∈ V

)
, exists, but not unique, while the total load requirements of

physical machines have unique solution.

123



Int J Parallel Prog (2014) 42:853–872 861

The proof of this theorem can be found in Appendix A.
Based on the virtual machine placement model (P1), the derivation yields:

∂L (x, y; λ, η)

∂yp (t)
= 0, (19)

then

yp (t) = wp

λp
. (20)

Following that we consider

L̂ (x; λ, η) =
∑

p:p∈P

⎧
⎨

⎩
wp log

(
wp

λp

)
− wp +

∑

v:v∈V (p)

x pv (t) λp

⎫
⎬

⎭

+
∑

p:p∈P

ηp

⎛

⎝Capacityp −
∑

v:v∈V (p)

x pv (t)−ε2
p

⎞

⎠. (21)

Let ∂L(x;λ,η)
∂λp

= 0, then

λp = wp∑
v:v∈V (p)

x pv (t). (22)

To simplify (21) with respect to (22), we get:

L̂ (x; η) =
∑

p:p∈P

⎧
⎨

⎩
wp log

⎛

⎝
∑

v:v∈V (p)

x pv (t)

⎞

⎠

⎫
⎬

⎭

+
∑

p:p∈P

ηp

⎛

⎝Capacityp −
∑

v:v∈V (p)

x pv (t)−ε2
p

⎞

⎠. (23)

Let ∂L(x;η)
∂x pv(t) = 0, and thus

yp (t) =
∑

v:v∈V (p)

x pv (t) = wp

ηp
. (24)

Comparing with (20), we get

λp = ηp. (25)

It can be concluded that: when λp = ηp, the load requirements of virtual machines are
equal to the availability capacity of physical machines, the optimal unique solution of
(P1) can be obtained.

123



862 Int J Parallel Prog (2014) 42:853–872

3.3 Optimization-Based Virtual Machine Placement

Assume that the data center administrator can obtain a dependency graph, G (V, E),
where V is the set of virtual machines and E is the set of edges defined as E = (

vi , v j
) :

vi , v j ∈ V . vi and v j are dependent with each other if any communication takes places
between them. Let W

(
vi , v j

)
denote traffic demand for each edge which is directly

proportional to the traffic transferred between vi and v j . At time t , the real traffic is
given by Wi j (t). Further, let Load (vi ) be the vector of load requirements of virtual
machine vi , such as the vector of CPU, memory or storage. Let Capacity (pi ) denote
the available server-side capacity of physical machine pi . Next, let Distance (pk, pl)

be the latency, delay or number of hops between physical machines pk and pl . Given
that the indicator function of virtual machine placement is defined as:

Iik =
{

1 if vir tual machine vi resides on physical machine pk

0 otherwise
. (26)

From the above,
∑|P|

k Iik = 1 is satisfied, in other words, one virtual machine vi must

be located at a physical machine pk . Similarly, let I jl
ik = Iik × I jl , I jl

ik = 1 denote the
situation where virtual machine vi is assigned to pk and v j is assigned to pl . Therefore,

Iik + I jl ≤ 1 + I jl
ik .

Let Cost (·) be the communication cost function of placement approach (repre-
sented with ypk (t)) for the physical machine pk at time t , for all pk ∈ P . Then the total
communication costs of physical machine can be defined as

∑m
k=1 Cost

(
ypk (t)

)
. In

the calculation process, Cost (·) is represented as Cost
(
ypk (t)

) = wpk ypk (t), where
wpk is the price of communication. The set of application dependencies for virtual
machine vi is denoted by D (vi ). The aggregate communication traffic for physical
machine pk is expressed as:

ypk (t) =
∑

∀vi ∈V (pk )

∑

∀v j ∈D(vi )

Distance (pk, pl) × W
(
vi , v j

)× I jl
ik . (27)

From the perspective of network traffic, the total bandwidth requirement on any physi-
cal server should be less than or equal to its capacity. Therefore, the following formula
must hold:

|V |∑

i

|V |∑

j, j �=i

Wi j (t) × Iik ≤ Bandwidthk, (28)

where the Bandwidthk is the bandwidth capacity of physical machine pk . Then,
the optimization-based objective function can be given by minimizing the aggregate
communication costs among VMs deployed, which means the (P2) can be defined as
follow:
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(P2) : min
m∑

k=1

Cost
(
ypk (t)

)
(29)

Subject to

ypk (t) =
∑

∀vi ∈V (pk )

∑

∀v j ∈D(vi )

Distance (pk, pl) × W
(
vi , v j

)× I jl
ik

=
∑

∀vi ∈V (pk )

∑

∀v j ∈D(vi )

Distance (pk, pl) × Wi j (t) × I jl
ik (30)

|V |∑

i

|V |∑

j, j �=i

Wi j (t) × Iik ≤ Bandwidthk (31)

Over Wi j (t) ≥ 0, i, j = 1, . . . , n. (32)

To facilitate the subsequent description, let

xi (t) =
∑

∀v j ∈D(vi )

Distance (pk, pl) × Wi j (t) × I jl
ik . (33)

Theorem 2 The convex programming problem (P2) has unique optimal solution, that
is, if

R =
{

x
∣∣
∑

∀vi ∈V (pk )
xi (t)≤ Bandwidthk; xi (t) ≥ 0, i =1, 2, . . . , n

}
, (34)

then R∗ �= ∅. The proof of this theorem can be found in Appendix B.

Therefore, (P2) is equivalent to:

(P2)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
m∑

k=1
Cost

(
ypk (t)

)

Bandwidthk − ∑

∀vi ∈V (pk )

xi (t) ≥ 0

xi (t) ≥ 0, i = 1, 2, . . . , n

. (35)

Since the constraint functions of (P2) are linear, according to Karush-Kuhn-Tucker
(KKT) [26] conditions. Assuming that

ϕ (x,µ) =
m∑

k=1

Cost
(
ypk (t)

)

−
m∑

k=1

μk

⎛

⎝Bandwidthk −
|V |∑

i

|V |∑

j, j �=i

Wi j (t) × Iik

⎞

⎠ =
m∑

k=1

Cost
(
ypk (t)

)

−
m∑

k=1

μk

(
Bandwidthk −

∑

∀vi ∈V (pk )
xi (t)

)
. (36)
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Then, the KKT conditions are:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(x̄,µ̄)
∂xi (t)

= Costx
(
ypk (t)

)+ μ̄k ≥ 0
xi (t) ≥ 0, i, j = 1, 2, . . . , n; k, l = 1, 2, . . . , m

ϕ(x̄,µ̄)
∂μk

= −
(

Bandwidthk − ∑

∀vi ∈V (pk )

xi (t)

)

≤ 0, μ̄k ≥ 0

ϕ(x̄,µ̄)
∂xi (t)

xi (t) = (
Costx

(
ypk (t)

)+ μ̄k
)

xi (t) = 0
i, j = 1, 2, . . . , n; k, l = 1, 2, . . . , m

μ̄k
ϕ(x̄,µ̄)
∂μk

= −μ̄k

(

Bandwidthk − ∑

∀vi ∈V (pk )

xi (t)

)

= 0

. (37)

4 Performance Validation

In order to validate the performance of our virtual machine placement algorithm in
different scenarios, we consider four widely-used architectures of data center network:
Tree, VL2, Fat-Tree and BCube. By taking into account communication approaches
between two servers in different structures, the expressions are given in Appendix C.

4.1 Scenario One: Performance Comparisons in Histogram

By using the four architectures mentioned above, we compared our optimized place-
ment algorithm with random placement algorithm and bin-packing placement algo-
rithm firstly. In order to unify the target of two kinds of optimization problem, a fuzzy
mechanism is adopted. Objective value is used to show the differences: the smaller
objective value indicates the better performance. In the simulation, we generated the
Tree, VL2, Fat-Tree and BCube topologies. The number of servers is set to 16. Specific
parameter and operation settings are: traffic demands of virtual machines meet the nor-
mally distribution function with different parameters (mean and variance value); the
interdependencies among applications are varying randomly; the capacity of physical
machines exceeds the total load demands of virtual machines; the number of virtual
machines is set to 16 as well. Simulation results are illustrated with the average value
of 1000 operations.

Figure 1 shows the comparison results between random algorithm and the
optimization-based algorithm, where the horizontal axis of the figure stands for the
average traffic in virtual machine. For example, 0.4 represents that communication
traffic between virtual machines meets the normal distribution with 0.4 as mean (and
0.1 as variance for all tests in this scenario). The bars in histogram are used to display
the objective value for each algorithm in multiple data center architectures. Since the
overlap occurs, the top part of each bar indicates the potential enhancement from the
random placement model to the optimization-based placement model. A reminder is
that the objective value should be minimized. Figure 1 also shows that, comparing
with other three network architectures (Tree, VL2 and Fat-Tree), the communication
costs of the BCube benefited most by using our placement algorithm.
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Fig. 1 Optimization-based VMP versus Random VMP
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Fig. 2 Optimization-based VMP versus Bin-packing VMP

Figure 2 compares the objective values of traditional bin-packing algorithm with
our optimization-based algorithm. The results can lead us to summarize the similar
standpoint which is the communication cost of the new scheme is much lower than
that of the traditional bin-packing scheme. BCube is still the “best current practice”,
in terms of performance improvement in this scenario. Therefore in the next scenario,
we will be focusing on the other three architectures.
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Fig. 3 The comparisons of three VMP algorithms

4.2 Scenario Two: Performance Comparisons in Curve

Figure 3 shows the performance comparison results of the three optional placement
algorithms under different network architectures (Tree, VL2 and Fat-Tree) with the
number of virtual machines increasing. The simulation parameters and operation set-
tings are as follow: the traffic demands among virtual machines meet the evenly dis-
tribution in range [0.1, 0.9]; randomly set the interdependencies among applications;
the capacity of physical machines exceeds the total load demands of virtual machines;
the number of virtual machines is set to 16, 32, 64, 80, 100, 128, 142, 160, 176, 200,
224 and 256, respectively. In order to avoid randomness in selecting random values
(virtual machine load or physical capacity of the machine), the results showed here
still selected the average value of 1000 runs. The horizontal axis in Fig. 3 stands for
the number of virtual machines, and the vertical axis represents the objective value
of three placement algorithms. Compared to the bin-packing and random placement
mechanisms, communication costs of our optimization-based placement algorithm are
the lowest in all cases.

Since the optimization-based placement algorithm takes into account dependencies
of multi-level applications or communication requiring frequency, it can greatly reduce
the total traffic burden for the data center network.

4.3 Scenario Three: Performance Comparisons in Table

The comparison results for our approach, the bin-packing approach and the random
approach are shown in Table 2. In order to highlight the effect, only the reduction rates
are showed here. The (B) and (R) in sceond row are used to represent Bin-packing
and Random placement approach, respectively.
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Table 2 The reduction rate of new algorithm

No. of virtual
machines

Four different architectures

Tree (B) Tree (R) VL2 (B) VL2 (R) Fat-Tree
(B)

Fat-Tree
(R)

BCube
(B)

BCube
(R)

16 0.4989 0.6833 0.4015 0.6224 0.3408 0.5825 0.7019 0.8111

32 0.5077 0.6880 0.4096 0.6254 0.3536 0.5904 0.7099 0.8163

64 0.4850 0.6740 0.3977 0.6174 0.3301 0.5738 0.6965 0.8082

128 0.4898 0.6769 0.3926 0.6139 0.3203 0.5692 0.7001 0.8107

200 0.4833 0.6736 0.3989 0.6194 0.3265 0.5727 0.6999 0.8101

256 0.4793 0.6705 0.3739 0.6027 0.3007 0.5556 0.6931 0.8059

350 0.4669 0.6537 0.3582 0.5945 0.2961 0.5457 0.6832 0.7995

We consider the impact of different network architectures as well. For testing the
multiple cases, the number of virtual machines is set to 16, 32, 64, 128, 200, 256
and 350 respectively. Similar with previous scenarios, all shown results are still the
average value of 1000 runs. We found that: In the Tree, VL2, Fat-Tree and BCube
architectures, our optimization-based algorithm saves about 46–49, 35–40, 29–34 and
68–70 % traffic flow respectively compared with the bin-packing algorithm. However,
such numerical ranges are changed to 65–68, 59–62, 54–58 and 79–81 % when com-
paring our algorithm with the random algorithm. Quite similar with the findings in
Scenario One, system with BCube architecture can reduce 70.99 % in the best case
which is comparing with bin-packing scheme. The highest value for BCube and ran-
dom scheme combination is 81.63 %. The advantages for our algorithm in Fat-Tree
case are reflected in 35.36 % (with bin-packing scheme) and 59.04 % (with random
scheme). Although our new algorithm still wins, the performance enhancement in
Fat-Tree is the most non-obvious. The results in Tree and VL2 cases are in the mid-
dle positions: For the bin-packing scheme, the greatest reduction rates are 50.77 and
40.96 %, respectively. These values in the random scheme are 68.80 and 62.54 %.

If the number of physical hosts is fixed, with the number of virtual machines increas-
ing, reduction proportion of traffic flow gradually decreases in all cases. Especially
when 350 virtual machines are generated in this scenario, the lowest value 29.61 %
appears in Fat-Tree (B) column. Comparing with 256 VMs condition, the values in
this row roughly decline 1–2 %.

4.4 Scenario Four: Performance Comparisons in Scatter

Our optimization-based virtual machine placement scheme can not only effectively
reduce the transmission load of data center network, but also enhance the physical
machine utilization and scalability. According to the reasonable deployment of algo-
rithms, the administrator is able to adjust the number of physical machines, thereby
saving the cost and energy of network equipments.
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Fig. 4 Physical machines usage in three VMP algorithms

The result shows that: comparing with the traditional random placement scheme
and first-fit bin-packing placement scheme (virtual machines tend to be deployed in the
first physical machine that meets its load demands), our optimization-based placement
scheme occupies the least number of physical machines and has the highest utilization.
In the experiment process of this scenario, we still assume that the total capacity of
all physical hosts is greater than the sum of load demands of all virtual machines.
The optimization-based placement algorithm will assign virtual machines to the most
suitable physical hosts based on the virtual machines’ workload requirement (such as
CPU, memory, storage space, etc.) in the VM mapping phase, which makes the final
cost of the physical machines reach the global minimum.

In Fig. 4, the increase trend is basically following linear pattern. In the macroscopic
perspective, random scheme take up more physical machines in most cases, and the
scatter for first-fit bin-packing scheme and our scheme are rising together. The more
virtual machine is generated, the more superiority of optimization-based scheme shows
up. When the number of virtual machines is varying from 200 to 400, the value of
physical machine is changed from 150 to 320 in random scheme. However, for our
scheme, the value just roughly fluctuates in the range of 110–210. If first-fit bin-packing
scheme is adopted, more physical machines are needed.

5 Conclusions and Future work

Based on the powerful convex optimization theory, we proposed an optimization-based
algorithm to solve the virtual machine placement problem in large scale. Different with
current existing mechanisms which only focus on one perspective (such as applica-
tion awareness, server constraints, etc.), our algorithm reasonably transfer the practi-
cal problem into multiple optimization formulas. The detailed derivation procedures
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together with two theorems are also given. The idea discussed in this paper is quite
significant in solving similar issues in virtual machine placement area.

In order to evaluate our algorithm, four widely-used data center architectures (Tree,
VL2, Fat-Tree and BCube) are selected. Four different scenarios are set up in perfor-
mance validation: Firstly, by using fuzzy theory, targets are unified and objective value
is employed to show the advantages of optimization-based scheme. Although other
architectures also obviously reduce the communication costs by using our scheme,
the BCube is benefited most. Secondly, the effect in Tree, VL2 and Fat-Tree struc-
tures are deeply analyzed. From 16 to 256, multiple virtual machines are generated
to calculate the objective values. Performance superiority of our scheme is illustrated
clearly in this scenario. Thirdly, a table is produced to demonstrate the reduction rate.
For getting a comprehensive investigation, totally 350 virtual machines are employed.
In four architectures, our algorithm saves about 46–49, 35–40, 29–34 and 68–70 %
traffic flow respectively compared with the bin-packing algorithm. For random algo-
rithm, our scheme wins more. Fourthly, the physical machine utilization enhancement
is tested. 500 virtual machines are used to evaluate three virtual machines place-
ment algorithms. When the number of virtual machines is varying from 200 to 400,
the number of required physical machine is changed from 150 to 320 in random
scheme. However, this value just roughly fluctuates in the range of 110–210 with our
scheme.

For the future work, we are planning to implement our algorithms on actual exper-
imental environments. And it is also very important to improve the algorithm after
evaluating the system performance.
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6 Appendix

6.1 Appendix A: Proof of Theorem 1

Proof The constraints of (P1) are linear and the constraint domain is convex set. In
addition,

∂2Up

∂x2
pv (t)

< 0 and
∂2Up

∂x pv (t) ∂x pw (t)
< 0 (38)

are satisfied. Thus, the Hesse matrix of the objective function is negative definition.
That means the objection function is concave but not strictly concave with respect to

x (t) = (
x pv (t) , p ∈ P, v ∈ V

)
. (39)

According to [27], (P1) is a convex programming problem, it is easy to conclude that
the optimal solution exists but not unique. Assuming that y1 (t) and y2 (t) are two
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different solutions for the total load requirements. Let α be any real number which
ranges from 0 to 1. Then, since Up

(
yp (t)

) = wp log yp (t) is the objective function,
when y1 (t) �= y2 (t), clearly:

Up (αy1 (t) + (1 − α) y2 (t)) > αUp (y1 (t)) + (1 − α) Up (y2 (t)) . (40)

The objection function is strictly concave with respect to y = (
yp (t) , p ∈ P

)
, the

unique optimal solution exists for total load requirements. 	


6.2 Appendix B: Proof of Theorem 2

Proof Based on the fact that 0 ∈ R, R �= ∅. Assuming xi (t) ≥ 0, i = 1, 2, . . . , n, R
is not empty bounded set. Due to the constraints of (P2) are linear, it is ensured that R
is a closed set. For the case that the objective function given by Eq. (29) is linear and
continuous function, (P2) is equivalent to seek the maximum values problem upon the
non-empty, bounded closed set. Therefore, the unique optimal solution exists, namely
R∗ �= ∅. 	


6.3 Appendix C: The Expressions of Communication Distance for Different
Topologies

In traditional Tree topologies, we assign n0 as the output number of the access switch,
and n1 as the output number of the aggregation switch, then

DistanceT ree
kl =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if k = l

1 if
⌊

k−1
n0

⌋
=
⌊

l−1
n0

⌋

3 if
⌊

k−1
n0

⌋
�=
⌊

l−1
n0

⌋
∧
⌊

k−1
n0n1

⌋
=
⌊

l−1
n0n1

⌋

5 if
⌊

k−1
n0n1

⌋
�=
⌊

l−1
n0n1

⌋

. (41)

For the VL2 topologies, in order to achieve variable load balancing, assume that all
traffic from the access switch will go out through the core switch for further forwarding,
setting n0 as the output number of the access switch, then

DistanceV L2
kl =

⎧
⎪⎪⎨

⎪⎪⎩

0 if k = l

1 if
⌊

k−1
n0

⌋
=
⌊

l−1
n0

⌋

5 if
⌊

k−1
n0n1

⌋
�=
⌊

l−1
n0n1

⌋ . (42)

In Fat-Tree architecture, communication distance is the function of n port , the total
number of ports per switch, then:
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DistanceFat−T ree
kl =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 if k = l

1 if
⌊

2(k−1)
n port

⌋
=
⌊

2(l−1)
n port

⌋

3 if
⌊

2(k−1)
n port

⌋
�=
⌊

2(l−1)
n port

⌋
∧
⌊

4(k−1)

n2
port

⌋
=
⌊

4(l−1)

n2
port

⌋

5 if

⌊
4(k−1)

n2
port

⌋
�=
⌊

4(l−1)

n2
port

⌋
. (43)

In BCube framework, communication distance is the Hamming distance function of
server address, then:

DistanceBCube
kl =

{
0 if k = l
2 hamming (addr (k) , addr (l)) − 1 if k �= l

. (44)
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