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Abstract S-Net is a declarative coordination language and component technology
aimed at radically facilitating software engineering for modern parallel compute sys-
tems by near-complete separation of concerns between application (component) engi-
neering and concurrency orchestration. S-Net builds on the concept of stream process-
ing to structure networks of communicating asynchronous components implemented
in a conventional (sequential) language. In this paper we present the design, implemen-
tation and evaluation of a new and innovative runtime system for S-Net streaming
networks. The Front runtime system outperforms the existing implementations of
S-Net by orders of magnitude for stress-test benchmarks, significantly reduces run-
times of fully-fledged parallel applications with compute-intensive components and
achieves good scalability on our 48-core test system.

Keywords High-level programming models · Declarative parallel programming
languages and libraries: semantics and implementation

1 Introduction

The multi-core revolution has brought parallel programming from the niche of high
performance computing right into the main stream. As a consequence, programmers
who had never thought about parallel processing in their application domains and who
received no particular training in these issues are suddenly and rather unexpectedly
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exposed to the pitfalls of parallel processing. Conventional parallel programming is
considered notoriously difficult. One reason for this is that it intertwines two different
aspects of program execution: algorithmic behaviour, i.e. what is to be computed, and
organization of concurrent execution, i.e. how a computation is performed on multiple
execution units, including the necessary problem decomposition, communication and
synchronization requirements.

S-Net [8,15] is a declarative coordination language whose design thoroughly
avoids the intertwining of computational and organizational aspects. S-Net achieves
a near complete separation of the concern of writing sequential application building
blocks (i.e. application engineering) from the concern of composing these building
blocks to form a parallel application (i.e. concurrency engineering). S-Net defines the
coordination behaviour of networks of asynchronous, stateless components and their
orderly interconnection via typed streams. We deliberately restrict S-Net to coordina-
tion aspects and leave the specification of the concrete operational behaviour of basic
components, named boxes, to conventional programming languages.

An S-Net box is connected to the outside world by two typed streams, a single input
stream and a single output stream. The operational behaviour of a box is characterized
by a stream transformer function that maps a single data item from the input stream
to a (possibly empty) stream of data items on the output stream. In order to facilitate
dynamic reconfiguration of networks, a box has no internal state, and any access
to external state (e.g. file system, environment variables, etc.) is confined to using
the streaming network. This allows us to cheaply migrate boxes between computing
resources and even having individual boxes process multiple records concurrently.
Boxes execute fully asynchronously: as soon as data is available on the input stream, a
box may start computing and producing data on the output stream. S-Net effectively
implements a macro data flow model, macro because boxes do not normally represent
basic operations but rather individually non-trivial computations.

Although we do not target high performance computing applications with S-Net
in particular, any user expects that S-Net programs run reasonably efficiently on
parallel commodity hardware. In this paper we propose a highly efficient and scalable
runtime system for S-Net, named Front. Front implements dynamically evolving
S-Net streaming networks on multi-core multi-processor systems. Whereas previous
S-Net runtime systems [7] merely served as proofs of concept for the macro data
flow approach as such, with Front we combine all our experience gathered in the
mean time to design and implement a low-overhead, high-performance runtime system
that can achieve performance levels competitive with more machine-oriented parallel
programming alternatives.

We show that for micro-benchmarks, that act as stress tests for the runtime system,
Front outperforms the existing S-Net implementations by orders of magnitude. With
heavier computations inside each box, which we deem representative for real-world S-
Net applications, performance improvements are more modest but nonetheless quite
significant. This makes Front an important step forward to make high-level parallel
programming with S-Net attractive.

The remainder of the paper is organized as follows. Section 2 introduces S-Net in
more detail while Sect. 3 sketches out previous implementations. Section 4 explains
the design of the novel Front runtime system, and Sect. 5 discusses our experimental
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evaluation of Front. We discuss some related work in Sect. 6 and draw conclusions
in Sect. 7.

2 S-NET in a Nutshell

S-Net is a high-level, declarative coordination language based on the concept of
stream processing. As such S-Net promotes functions implemented in a standard
programming language into asynchronously executed stream-processing components,
coined boxes. Both imperative and declarative programming languages qualify as box
implementation languages for S-Net, but we require any box implementation to be
free of state on the coordination level. More precisely, a box must not carry over any
information between two consecutive activations on the streaming layer.

2.1 Boxes

Each box is connected to the rest of the network by two typed streams: one for input
and one for output. Messages on these typed streams are organized as non-recursive
records, i.e. sets of label-value pairs. The labels are subdivided into fields and tags.
The fields are associated with values from the box language domain; they are entirely
opaque to S-Net. Tags are associated with integer numbers, which are accessible both
on the coordination and on the box level. Tag labels are distinguished from field labels
by angular brackets.

Operationally, a box is triggered by receiving a record on its input stream. As soon
as that happens, the box applies its box function to the record. In the course of function
execution the box may communicate records on its output stream. Once the execution
of the box function has terminated, the box is ready to receive and to process the
next record on the input stream. On the S-Net level a box is characterized by a box
signature: a mapping from an input type to a disjunction of output types. For example,

box foo ((a,<b>) -> (c) | (c,d,<e>));

declares a box foo that expects records with a field labelled a and a tag labelled b.
The box responds with an unspecified number of records that either have just field c,
or else fields c and d as well as tag e. The associated box function foo is supposed
to be of arity two: the first argument is of type void* to qualify for any opaque data;
the second argument is of type int as the joint interpretation of tag values by the
coordination and the component layer.

2.2 Type System

The box signature naturally induces a type signature. Whereas a concrete sequence of
fields and tags is essential for the proper specification of the box interface, we drop
the ordering when reasoning about boxes on the type level. This step turns tuples of
labels into sets of labels; hence, the type signature of

box foo is {a,<b>} -> {c} | {c,d,<e>}.
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We call the left hand side of this type mapping the input type and the right hand side
the output type. We use curly brackets instead of round brackets to emphasize the set
nature of types.

To be precise, this type signature makes foo accept any input record that has at
least field a and tag <b>, but may well contain further fields and tags. The formal
foundation of this behaviour is structural subtyping on records: Any record type t1 is
a subtype of t2 iff t2 ⊆ t1. This subtyping relationship extends to multi-variant types,
e.g. the output type of box foo: A multi-variant type x is a subtype of y if every
variant v ∈ x is a subtype of some variant w ∈ y.

Subtyping on input types of boxes raises the question what happens to excess
fields. S-Net implements the concept of flow inheritance: excess fields and tags from
incoming records are attached to any outgoing record produced by a network entity
in response to that record. Subtyping and flow inheritance are indispensable when it
comes to making boxes, which were designed in isolation, collaborate in a streaming
network.

2.3 Specification of Streaming Networks

It is a distinguishing feature of S-Net that it neither introduces streams as explicit
objects nor that it defines network connectivity through explicit wiring. Instead, it
uses algebraic formulae to describe streaming networks. The restriction of boxes to
a single input and a single output stream (SISO) is essential for this. S-Net provides
five network combinators. Any combinator preserves the SISO property: any network,
regardless of its complexity, is a SISO entity in its own right.

Let A and B denote two S-Net networks or boxes. Serial composition (A..B)
constructs a new network where the output stream of A becomes the input stream of
B, and the input stream of A and the output stream of B become the input and output
streams of the combined network, respectively. Thus, A and B operate in a pipeline.
Figure 1 illustrates this and the other four network combinators explained below.

Parallel composition (A|B) constructs a network where incoming records, depend-
ing on their type, are either sent to A or to B, and their output streams are merged to
form the composed network’s output stream. In S-Net, the type system controls the
flow of records. Each operand network is associated with a type signature inferred by
the compiler. Any incoming record is directed towards the operand network whose
input type is better matched by the type of the record. If both operand network’s input
types are matched equally well, one alternative is selected non-deterministically. Par-
allel composition can be used to route different kinds of records through different
branches of the network (like branches in imperative languages) or, in the presence of

Fig. 1 Illustration of the five S-Net network combinators, which are from left to right: serial composition,
parallel composition, serial replication, parallel replication and feedback
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subtyping, to create generic and specific alternatives triggered by the presence or the
absence of certain fields or tags.

The parallel and serial composition combinators have their infinite counterparts:
serial and parallel replication combinators for a single operand network. The serial
replication combinator A*type constructs an infinite chain of replicas of A connected
by serial combinators. The chain is tapped before every replica to extract records that
match the type specified as the second operand. More precisely, the type acts as a
so-called type pattern; pattern matching is defined via the same subtype relationship
as defined above. Hence, a record leaves a serial replication context as soon as its
type is a subtype of the type specified in the type pattern. The parallel replication
combinator A!< tag > also replicates network A infinitely, but this time the replicas
are connected in parallel. All incoming records must carry the tag <tag>. This tag’s
value determines the network replica to which a record is sent.

In addition to serial replication S-Net also features a more conventional feedback
combinator A \type. Here, records always enter subnetwork A. If an outgoing record
matches the given type pattern, it is sent back to the entry point of A; otherwise, it
leaves the compound network.

2.4 Filters as Housekeeping Components

In practice, we often see boxes that mostly or entirely serve housekeeping purposes,
such as renaming, duplication or elimination of fields and tags or simple arithmetic
operations on tag values. While all this can be easily accomplished using a user-
implemented box, it is often more convenient to do this housekeeping on the S-Net
level as it directly affects network construction. The construct we introduce for these
purposes is called a filter and it looks as follows:

[pattern → record1; record2; . . . recordn] .

The type pattern on the left is a set of labels while each of the record specifiers on the
right defines the output. For example, the filter

[{a, b, <c>} -> {a, z=a, <t>}; {b, a=b, <c=c+1>}]

consumes a record with fields a,b and the tag c and creates two new records: The first
record has field a with the original value, field z with the same value and a tag <t>

set to zero. The second record has fields b with the original value, a with the same
value as b and the tag <c>, whose value is incremented by 1.

2.5 Synchro-Cells—The Essence of Synchronization

While any box can split a record into parts, we also require a means to merge two
records into one. For this quintessential synchronization task S-Net features dedicated
synchro-cells, denoted as [|type,type|]. Similar to serial replication the types act
as patterns for incoming records. A record that matches one of the patterns is kept in
the synchro-cell. As soon as a record that matches the other pattern arrives, the two
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records are merged into one, which is sent to the output stream. Incoming records that
only match previously matched patterns are immediately forwarded. This bare metal
semantics of synchro-cells captures the essential notion of synchronization in the con-
text of streaming networks. More complex synchronization behaviour, e.g. continuous
synchronization of matching pairs in the input stream, can easily be expressed using
synchro-cells and network combinators; details can be found in [5].

2.6 Example

Figure 2 shows a simple, yet non-trivial example S-Net coordination program that
implements a dynamic graphics filter pipeline; a graphical illustration of the same
program is sketched out in Fig. 3.

The top-level pipeline consists of a preprocessing step (Pre) transforming an
abstract image into its red, green and blue colour components, a dynamic filter pipeline
(Pipe) and a postprocessing step (Post) that turns processed RGB image compo-
nents back into the original image representation.

The dynamically replicated filter pipeline, implemented with a star-combinator in
Fig. 2 and shown in the central compound box in Fig. 3, consists of a splitter that
divides an RGB-image (record) into three independent records carrying on the red,
green and blue colour information, respectively. These records are routed to three
custom filters by means of parallel composition. After the individual processing of
colour components, separate red, green and blue records are captured and combined
into a single record in the subsequent synchro-cell.

Since we assume a stream of images to be processed by our filter (pipeline) and
a synchro-cell only synchronizes a single set of incoming records (see above), we
embed the synchro-cell in another serial replication combinator. Consequently, the
Sync network synchronizes and combines the first red value with the first green and

Fig. 2 Example S-Net implementing a dynamic graphics filter pipeline
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Fig. 3 Illustration of the S-Net streaming network defined in Fig. 2

the first blue value on the inbound stream, the second red with the second green and
blue value, and so on. On the combined RGB-image we run a simple test whether to
continue filtering or to output the image. The decision is signalled by the presence
or absence of the tag <done>, which is inspected by the star combinator and later
removed in the postprocessing step.

2.7 Summary and Further Reading

To summarize, S-Net is an abstract notation to express concurrency in application
programs in an abstract and intuitive way. It avoids the typical annoyances of machine-
level concurrent programming. Instead, S-Net borrows the idea of streaming networks
of asynchronous, stateless components, which segregates applications into their natural
building blocks and exposes the data flow between them. However, S-Net is in no
way confined to the area of streaming applications as several case studies successfully
demonstrate [9,14,17].

In particular, the concept of asynchronous components connected by streams must
not be mistaken for message passing in cluster environments. S-Net as such is
architecture-agnostic and both shared and distributed memory implementations have
been devised [6]. However, even in a distributed memory scenario today’s nodes are
highly parallel inside inevitably leading to a 2-level hybrid architecture. Consequently,
streams between components in most cases remain within the same memory domain
and, thus, do not inflict any overhead with respect to marshalling/unmarshalling of
data structures or network transfers.

In essence, S-Net exploits the concept of streaming networks of sequential
processes as an intuitive mental model to express concurrency and dependencies while
implementations are free to deviate from the model within the limits of the streaming
semantics to achieve high performance. As will become clear in the remainder of this
paper, the Front runtime system aggressively exploits this freedom.

3 Implementing S-NET

Figure 4 illustrates the implementation architecture of S-Net. Going top to bottom,
the S-Net compiler takes an S-Net coordination program and compiles it to the
S-Net Common Runtime Interface (CRI). This is a well-defined interface that exposes
the structure of an S-Net streaming network as an application-specific call tree of
application-agnostic library functions instantiated with again application-specific data
structures. The library functions of the common runtime interface can be instantiated
with alternative implementations and thus allow for entirely different technical real-
izations of S-Net, as for instance Front.
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Fig. 4 S-Net implementation architecture

3.1 The Existing S-Net Runtime System

The original runtime system [7] for (shared memory) parallel systems, let us call it
S-RTS, sticks closely to the intuition and the operational semantics of S-Net[16]. It
sets up a system of communicating sequential processes (CSP). Each S-Net compo-
nent is instantiated as a sequential process, which executes an event loop that reads a
record from the input stream (potentially blocking on an empty stream) and processes
that record. In the case of user boxes this usually involves calling an external function
implemented in a component language and compiled to binary code by the corre-
sponding component compiler.

During component execution, one or more records may be emitted on the output
stream. Termination of the box function completes the event loop and the component is
ready to receive and process the next record on the input stream. The process continues
until a special input record signals the component to terminate due to global network
shutdown or partial network garbage collection. It is noteworthy that records are never
copied when moving from one component to another, but we use a reference counting
scheme for automatic memory reclamation.

On the S-Net language level stream split and merge points are implicitly represented
in the semantics of the parallel composition combinator as well as both replication
combinators. In the runtime system explicit dispatch and collect components take
over these routing tasks. Unlike box components, a dispatcher has a single input and
multiple output streams while a collector has multiple input streams and a single output
stream. Both dispatchers and collectors are implemented by a similar event loop as
box components.
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Fig. 5 Illustration of the S-Net runtime system executing the streaming network defined in Fig. 2 and
sketched out in Fig. 3; replication combinators are instantiated exactly once; clouds depict potential further
instantiations

Both serial and parallel replication combinators describe conceptually unbounded
streaming networks. The S-Net runtime system implements them through demand-
driven dynamic replication of networks; in Fig. 5 we illustrate this by a single level of
instantiation and cloud symbols to represent future re-instantiations. It is the task of
the dispatchers implementing serial and parallel replication combinators to identify
the need for re-instantiation of subnetworks.

Assuming an unbounded (or at least fairly large) number of input records awaiting
processing by an S-Net streaming network, we face the problem that choosing S-
Net runtime components with non-empty input streams for execution without any
further strategy may easily lead to a situation where many input records are loaded
into the network, but very little progress is made towards completing the processing of
individual records and emitting them on the overall output stream. Simultaneous in-
memory representation of many records may exhaust the available memory. In order
to ensure that an S-Net streaming network makes some progress towards completing
records we use (fairly small) bounded buffers to implement streams. Accordingly,
components may also block on full output buffers. This creates a form of back pressure
that ensures sufficient progress in practice.

3.2 Mapping Components to Execution Resources

The S-Net runtime system itself is resource-agnostic. There are two alternative sce-
narios to map S-Net components to the underlying hardware for execution. One maps
components one-to-one to kernel threads and leaves their scheduling to the operating
system. We refer to this as S- RTS/Pth. The other scenario makes use of the custom-
developed Light-weight Parallel Execution Layer (LPEL) [18] to explicitly map the
dynamic number of S-Net components to a fixed, given number of kernel worker
threads. LPEL serves several related purposes. It avoids the creation of a potentially
large (since application-driven) number of kernel threads, which is inefficient and
may even reach hard limits, and it implements more efficient cooperative scheduling
techniques instead of the operating system’s preemptive techniques and thus can use
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more efficient techniques for synchronization. In the sequel we refer to this variant as
S-RTS/LPEL.

4 The FRONT Work Stealing Runtime System for S-NET

Over the past years the existing runtime system of S-Net (S-RTS) has enabled us,
and other research groups, to gain extensive and valuable experience with developing
a range of different applications using S-Net as a coordination language. This also
led to the identification of reasons for observed performance limitations, which we
describe here. We formulate new requirements for an improved S-Net runtime system
design, which we realize with Front.

4.1 Consequences of the Previous Design

To understand the consequences of the design of S-RTS we recall that an executing
S-Net program is often highly dynamic due to the presence of serial and parallel
network replication (“*” and “!” combinators). As a consequence, record processing
frequently cannot progress because required parts of the processing network still await
instantiation. We can observe this in Fig. 5 where initially only entities Pre, DispA1 ,
CollA and Post exist. The subnetwork which starts from DispA1 via Split to
DispA2 and ends at CollA, is only instantiated upon arrival of the first record which
does not carry tag <done>. The thread which executes the star dispatcher entity
DispA1 then sequentially creates the entities Split, DispB, fR, fG, fB, CollB,
DispC1 , CollC, Test and DispA2 . This requires a significant amount of work.
Creating one entity involves:

1. Create a new stream to connect an existing entity with the new entity. Because of
blocking semantics, this includes allocating mutex locks and condition variables.

2. Invoke a compiler generated application-specific entity creation function. This
creates lists with type configuration and function pointers to subsequent entities.

3. Invoke an entity type specific function to initialize a structure with the received
type configuration, create an outgoing stream, and create a thread of execution.

4. The newly created thread blocks when reading from the empty input stream.

For entity DispA1 the instantiation of the subnetwork results in two streams: one
stream connects DispA1 with entity Split and one is to connect DispA2 with the
collector entity CollA. At this point in time the latter stream is still unknown to
CollA. The single reason why DispA1 is constructing the entire subnetwork in one
go, is that it is now able to communicate this last stream to CollA, by means of a
control message, over the stream which directly connects DispA1 with CollA. Upon
reception of this message, CollA extracts the stream and adds it to its set of incoming
streams.

Finally, DispA1 transmits the record which triggered the subnetwork instantiation,
to the input stream of the Split entity. We conclude by noting that the construction
of the subnetwork is done by a single thread: the thread which executes the DispA1
entity. Hence, this is serial code which reduces speedup for S-Net applications.
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The design of S-RTS follows the process model, where each entity is executed by
a dedicated thread of execution. Because S-Net computations unfold in a pipelined
fashion, records traverse a succession of entities. This affects performance twofold:

– Potentially at each entity the local thread may have to be woken up and scheduled
to a processor core. Context switches of threads are therefore frequent.

– Threads of successive entities likely run on different cores. Therefore, a record
may visit many different cores while it traverses the network: data locality is lost.

All this overhead may be acceptable for those S-Net applications where box com-
ponents require a substantial amount of time to process a single record, but this does
not hold for all applications. A new runtime system has to be developed to make S-Net
interesting and relevant for applications which require many more entities, or which
instantiate entities at a much higher rate.

4.2 New Requirements for Improved Runtime Performance

Based on the above observations, we formulate new requirements for an S-Net runtime
system with much improved performance characteristics:

(a) Entity creation must proceed concurrently with record processing as much as
possible. Avoid delays which arise due to creating several entities at once. Only
create a new entity when it is first needed to process an incoming record.

(b) Creation of one new entity must be cheap and fast. Specifically, to accomplish
this avoid creating a new thread of execution for each entity.

(c) Reduce the migration of records over cores when they traverse the network of
entities. In order to improve data locality allow for a single thread to continue
processing the same records, while they traverse the network.

(d) Evaluate each of the compiler generated application-specific entity creation func-
tions just once. The entity parameters remain unmodified anyway. They can
therefore be shared by different instantiations of the same entity. This reduces
the memory footprint and enables the reuse of data which is already present in
processor caches. This makes entity creation much cheaper and faster.

4.3 Making Entities Small in Size and Fast to Create

Addressing requirement (d) one of the key design ideas behind the Front runtime
system is to replace the dynamically evolving graph of communicating sequential
processes characteristic for the original S-RTS runtime system by two complementary
graphs: the static property graph and the dynamically evolving entity graph.

At program startup execution of the compiler-generated function call graph (see
Sect. 3) creates the static property graph. In Fig. 6 we show the property graph for our
running example. It merely contains placeholders for the replication combinators. The
property graph contains all information required for running the network, e.g. types
for routing decisions, and serves as a template for evolving the entity graph.

The entity graph facilitates implementation of requirement (a). Initially, Front
creates just the first entity, in our example this isPre. Even the creation of the outgoing
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Fig. 6 The static directed graph with node and stream templates, as created by Front for the running
example introduced in Fig. 2. It serves as a template for instantiating the networks in Fig. 5

stream is postponed. The first record to leave Pre will detect the absence of an
outgoing stream. The Pre entity structure contains a pointer to the Pre node in the
static node graph of Fig. 6. This suffices to give the outgoing edge, which in turn
gives the destination node. From the destination node the entity type is available (in
this case a star dispatcher) together with application-specific type parameters (e.g. the
termination pattern is <done>).

In this case the destination is a dispatcher for a star combinator: DispA1 . This
requires special handling, because it has two outgoing connections which ultimately
both need to end up at the same collector CollA. In order to be able to only allocate a
stream when it is first needed to output a record, but still guarantee that all incoming
streams to a collector use the same destination entity, each entity carries with it a
stack of pointers to future collectors. When DispA1 is created, the collector CollA is
created as well and pushed onto the stack. Each new entity receives a copy of the stack
from its predecessor. When the streams layer detects (according to the static property
graph) that it is opening a stream to a collector, then it will take the collector from the
top of the stack. We illustrate this with the (simplified) C code in Fig. 7.

4.4 Worker Threads and Work Organization

Requirement (b) says to do away with the process-oriented design of one-thread-per-
entity, may it be preemptive kernel threads as in S- RTS/Pth or cooperative logical
threads as in S-RTS/LPEL. This implies that a single worker thread should operate
multiple, or potentially all, entities. This has serious consequences for the design of
the runtime system. A thread can no longer block when the entity is writing to a full
stream buffer, because the executing thread is also needed to process records at other
entities. Because a box component is free to write an unspecified number of records
to its output stream, the consequence is that output streams of box components (and
thus all streams) must be unbounded.

At program startup we create a fixed set of worker threads using POSIX thread-
ing facilities: one worker per processor core. An invocation is the processing of one
incoming record at an entity by a worker. To preserve the sequential ordering between
records and to guarantee the integrity of an entity, workers must obtain exclusive
ownership of an entity before invoking it. This is accomplished by setting a flag in
the entity data structure with a compare-and-swap (CAS) instruction, as efficiently
supported in hardware by all modern computing machinery.
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Fig. 7 Opening a stream also creates a new destination entity, except for collectors which were created
together with their (first) dispatcher. The second function parameter is a pointer to an existing open stream
that ends at the currently executing entity. Both functions use templates from Fig. 6

Now, the question is how do workers find entities with non-empty input streams.
Simply roaming the entity graph searching for activated entities would clearly be inef-
ficient. In particular, collector entities would have to keep track of incoming streams
and those have to be examined for non-emptiness. Therefore, to avoid this, the unit of
work scheduling for Front is the non-empty stream itself. Whenever a worker writes
to a stream, it remembers this as a license to read one record from that stream for a
future invocation at the destination entity. It stores this knowledge in a stream refer-
ence structure, which contains a pointer to the corresponding stream and a counter
for the number of read-licenses it has for that stream. When new read-licenses arrive,
the worker looks up the stream reference structure in a hash table which is indexed
by a pointer to the stream. To exercise a read-license, the worker first attempts to lock
the destination entity. If this succeeds, it decrements the number of read-licenses by
one, reads one record from the stream and then invokes the entity. If this was the last
read-license, it destroys the stream reference structure and its hash table entry.

The way workers organize their collection of stream references determines the order
in which they are processed. Therefore, we must first decide upon an appropriate
processing order before we design the appropriate data structure. An entity graph
can be regarded as a dynamic pipeline with parallel branches, which evolves from
an input entity to an output entity. The edges in this graph are the streams which
transport the records. In this picture we wish to preferably schedule those non-empty
streams, which have the highest probability of quickly producing output. Each output
record reduces the memory footprint and also provides the user with results. Another
important motivation is to keep the number of non-empty streams as high as possible
in order to increase the concurrency which is exposed to all workers. This is best
achieved by elongating and widening the entity graph as much as possible.
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To achieve these goals, the workers organize their set of stream references in a singly
linked list where the tail of the list is closer to the input entity and the head closer
to the output entity. When a worker searches for a schedulable stream, it traverses
this list starting at the head looking for a stream with a currently unused destination
entity. When found, the worker locks the destination entity of the stream, reads one
record from the stream and invokes the entity. If the invocation generates new output
records which result in a new stream reference structure then these are inserted before
the current position in the list. This achieves that streams closer to the output entity
are closer to the head of the list of stream references and, therefore, are preferably
scheduled.

4.5 Improved Data Locality

To implement requirement (c) and improve data locality we add a specific optimiza-
tion. We extend write operations to streams with an extra Boolean flag which is true
only if the write operation is guaranteed to be the last write operation for the current
invocation. Each entity implementation can detect whether or not this is the case for
each write operation. If the Boolean flag is set and the destination entity of the stream
written to is currently not in use then the worker locks the destination entity and imme-
diately continues processing that entity when finishing the current one. One additional
efficiency advantage is that the worker does not have to store and retrieve read-licenses
to and from stream reference structures. Because most invocations generate precisely
one output record, hash table lookup and creation of new stream reference structures
is diminished. In other words, the worker thread follows (or “walks”) the record(s)
through the entity graph. This strategy also improves data locality as the same worker
continues to work on the same data.

4.6 Input Control and Work Stealing

When the list of stream reference structures is empty and the worker has not previously
encountered the end-of-file condition on the input entity, it tries to obtain exclusive
access to the input entity in order to retrieve records from the input parser. This
strategy replaces the concept of back pressure through bounded streams in S-RTS to
avoid overloading a streaming network with too many incoming records, potentially
exhausting the memory capacity of the computing resource. Instead, new work is only
admitted to the streaming network if workers are still idle.

Front further allows the user to explicitly constrain the number of records input
by the number of records already output. For example, the (optional) specification
“input<= 8 + 2 * output” says that initially up to 8 records can be input, and for
every record output another two records may be input. This hypothetical application
apparently consumes two input records to produce one output record, and it can work
on the production of 4 output records in parallel. The specification then guarantees
that memory is always restricted to the working set which is required to operate on
at most 8 input records at a time, regardless of how many records have been input or
output before.
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As a last resort in case that either there is no input on the global input stream or
another worker has already locked the input entity, idle workers (thieves) turn into
thieve mode and examine the list of stream references of other workers (victims) for
schedulable streams. We store pointers to workers in a global array. Thieves iterate
over this array when searching for work. They remember the previously visited victim
and continue with the next worker (round-robin). To reduce contention with victims
over their stream reference lists at most one thief at a time may visit a victim.

For the same three motivations given previously thieves preferable steal read-
licenses for schedulable streams which are likely closest to the output. When they
find a stream with a lockable entity, they steal half of the number of read-licenses
from the victim’s stream reference structure. Then they retract from the victim’s list
and continue with invoking the destination entity for the stolen stream read-licenses.
Victims and thieves must exclusively lock a stream reference structure with a CAS
(compare-and-swap) instruction before dereferencing a stream pointer or modifying
its contents.

It is noteworthy that our variant of work stealing deviates from the standard approach
found in most implementations elsewhere. Normally, work lists are doubly linked, and
the owner reads from one end while the thieves read from the other end. This model
avoids access conflicts between owners (or victims) and thieves as long as there is
more than one work item in the list. In the Front runtime system we make use of
a single-linked list and both victims and thieves read from the head of the work list.
This is necessary to ensure that the S-Net network as a whole makes progress towards
producing completed records at the global output. In other words, even in the presence
of work stealing the Front runtime systems aims at computing tasks at the “front” of
the streaming network.

Where a worker looks first for more work when its own work list becomes empty is
an important design decision. We choose workers to first check global input for more
work before trying to steal work from other workers. This choice reduces the overhead
created by many workers simultaneously aiming at stealing work that simply does not
exist. Moreover, it helps to accelerate the initial ramp up phase of any S-Net network
when the number of records in the system is still small and effectively no work exists
that could be stolen. As only one worker at a time can lock and thus operate the input
entity, new records may enter the streaming network while at the same time other
workers aim at stealing work from their peers.

4.7 Concurrent Invocations of Box Components

The S-Net language specifies box functions to be stateless and functional. As in the
Front runtime system box components are not associated with an individual thread
of control, we can exploit this requirement to significantly increase concurrency of
box components by allowing multiple workers to invoke a box entity concurrently
as soon as multiple input records are waiting in the input stream. For the purpose of
experimentation, a per-box concurrency limit can be specified on program startup. We
allocate for a box entity an equivalent number of box contexts. Each box context has
its dedicated outgoing stream, which ends at a shared per-box collector. The collector
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merges the incoming streams into one outgoing stream. When a worker invokes a box,
it finds an unused box context, locks it and if the number of concurrent invocations is
below the limit, it immediately unlocks the box entity, to allow for more concurrent
invocations by other workers. The current box concurrency level is maintained in an
atomic counter. The following figure illustrates a box with the concurrency level set
to 4:

Collector

context
context
context
context

Box
input output

The collector entity ensures that despite concurrent box invocations the stream
order semantics of S-Net are preserved, i.e. records cannot coincidentally overtake
other records.

The ability of the Front runtime system to invoke the same box instance multiple
times concurrently if multiple input records are waiting to be processed is an important
step to fully exploit the concurrency contained in an S-Net specification. Following the
macro data flow approach, the unit of computation in S-Net is the record, not the box
component that waits for records. Conversely, in a communicating sequential process
implementation model, as the original S-Net runtime system does, opportunities for
concurrent computations are regularly left out whenever multiple records start queuing
in the input stream of a busy box component.

5 Performance Evaluation

We evaluate Front by comparing its performance with that achieved by S-RTS for
a variety of applications. More precisely, we compare the following S-Net runtime
system configurations:

– S- RTS/Pth: the original runtime system with the Pthread threading layer,
– S-RTS/LPEL: the original runtime system with the LPEL threading layer,
– Front: the novel runtime system introduced in this paper.

Our experimental system is a 48-core SMP machine with 4 AMD Opteron 6172
“Magny-Cours” processors running at 2.1 GHz and 128 GB of DRAM. Each processor
core has 64 KB of L1 cache for instructions, 64 KB of L1 cache for data, and 512
KB of L2 cache. Each group of 6 cores shares one L3 cache of 6 MB. The system
runs Linux kernel 2.6.18 with Glibc 2.5. We used GCC version 4.4.6 with the -O3
optimization option to compile all C sources.

We first focus on fairly small benchmarks that deliberately stress test the runtime
system design and implementation through large numbers of records, frequent expan-
sion of dynamically replicated subnetworks and negligible computations within com-
ponents. Towards the end of the section we present our findings for two non-trivial (and
more representative) S-Net applications. Most S-Net sources are available online as
part of the open source S-Net distribution [21]. A plethora of further experimental
data can be found in [4].
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Fig. 8 Performance on the Fibonacci benchmark: a execution time, b record processing rate

5.1 The Fibonacci Benchmark

In the Fibonacci benchmark1 we compare the performance of the runtime systems in
creating and destroying entities and streams as well as the speed at which records are
pushed through the entity graph. Because we omit box components and perform all
computations in the coordination language, performance differences by the runtimes
are accentuated. We minimize the influence of input parsing and output formatting
by accepting only one input parameter and emitting only one output result. The input
parameter is the Fibonacci Number which needs to be computed and the single output is
its value. We compute the result in a purposely inefficient divide-and-conquer manner
such that all S-Net language constructs are used intensively. The number of created
records is proportional to the value of the computed Fibonacci Number.

Figure 8a shows that Front is about 50 times faster than S-RTS on this bench-
mark. Figure 8b uses the same data to show the rate at which records are created
and destroyed. For Front this rate increases strongly up to Fib(12) after which it
increases weakly, while for S-RTS it diminishes between Fib(11) and Fib(15).

5.2 The PowerOfTwo Benchmark

In S-RTS a collector entity faces the difficult problem of finding among the set of
incoming stream connections those streams which are non-empty. This problem is
absent in Front because workers only store references to non-empty streams. We
demonstrate this with the PowerOfTwo benchmark,2 which emulates the recursive
expansion in S-Net of: Po2(n){ return (n > 0) ? Po2(n-1) + Po2(n-1) : 1; }.

We use an index split combinator to create a large number of incoming connections
to a collector entity. The maximum number of incoming connections is equal to half
the value of the power of two of the input parameter. When we stepwise increase the

1 Available at https://github.com/snetdev/snet-rts/blob/master/examples/fibonacci/fibonacci3.snet.
2 Available at https://github.com/snetdev/snet-rts/blob/master/examples/poweroftwo/poweroftwo2.snet.
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Fig. 9 Performance on the PowerOfTwo benchmark: a execution time, b record processing rate

Fig. 10 Two variants of state modelling networks in S-Net

input parameter we reach a point where the collector entity dominates performance
negatively for S-RTS.

Figure 9a shows execution times obtained by this benchmark while Fig. 9b shows
the corresponding record processing rates. Performance drops significantly for S-
RTS when the number of incoming connections increases beyond 1,000. Front is
unaffected because a worker thread only handles references to non-empty streams.

5.3 State Modeling in the Sieve of Eratosthenes

The Sieve of Eratosthenes is a classic example of a process network [10]. We use it to
compare the performance on state modeling in S-Net [5]. Two state modeling design
patterns can be expressed in S-Net, as shown in Fig. 10. The first one uses a star
combinator over a parallel choice. This network expects one state record as input
plus a sequence of inval records. The box function Compute is repeatedly called
with two parameters: the current state and a new input value. It is free to decide whether
to output an outval record, which is the only type of record to leave the network.
To continue with evolving the state it must output precisely one state record for the
next iteration.
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Fig. 11 Performance on State Modeling: a star version, b feedback version

The second version uses a feedback combinator and avoids the parallel choice.
This version uses the common combination of a synchro-cell as operand to a star
combinator. Due to the feedback combinator the box Compute is instantiated only
once. Front implements repeated synchronization as a single entity, which allows for
considerable efficiency improvements.

We use both design patterns to implement the Sieve of Eratosthenes in S-Net where
the found primes are the state records and the inval records are positive numbers to be
tested for being prime numbers.3 Figure 11a, b compare the execution times where the
horizontal axis gives the maximum positive number which is tested for primality. The
benchmark creates a long pipeline of stateful primality filters. A worker in Front may
preserve an association with a single record while traversing a number of primality
filters and thus avoids the many context switches which occur in S-RTS.

S- RTS/Pth also benefits from the second state modeling design pattern. The reason
is that the feedback combinator instantiates its operand at most once. Compared to the
first version this significantly reduces the number of created Pthreads.

5.4 The MTI-STAP Signal Processing Application

MTI-STAP is a signal processing application: Moving Target Indication using Space
Time Adaptive Processing [11,17]. Its purpose is to detect slow moving objects on the
ground using an airborne radar antenna. The application consists of a long pipeline with
29 different box functions. Some are executed in parallel. We evaluate the performance
of this application to see whether the addition of concurrent box invocations to the
runtime system can improve performance for existing S-Net applications.

Figure 12a shows execution times for S- RTS/Pth, S-RTS/LPEL and Front. Here
Front runs with the box concurrency limit set to numbers between 1 and 9 as indicated
by the suffix: The label Front-1 denotes the default configuration, i.e. no concurrent
box invocations, while Front-9 denotes the configuration when up to nine workers
may invoke a single box landing concurrently.

3 Available at https://github.com/snetdev/snet-rts/blob/master/examples/sieve/sieve.snet.
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Fig. 12 Performance on MTI-STAP: a execution time, b speedup for Concurrent Box Invocations

Figure 12b shows the speedup for increasing box concurrency limits relative to
the execution time of S- RTS/Pth. This more clearly shows the performance gains
by the concurrent box invocations. Of course performance gains by concurrent box
invocations are highly application specific. Our implementation merely provides a
mechanism for users to increase the exposed concurrency in their applications.

5.5 Speedup on the Cholesky Decomposition Application

Cholesky decomposition is a problem from linear algebra: given a Hermitian positive-
definite matrix A, find a lower triangular matrix L , such that L LT = A, where LT is
the transpose of L . We use an implementation4 by Pāvels Zaičenkovs from University
of Hertfordshire, based on the tiled algorithm proposed by Buttari et al [3]. After an
initial setup the algorithm repeatedly executes the following seven phases: fan-out,
data-parallel computations, fan-in, fan-out, data-parallel computations, fan-in, and
sequential consolidation of intermediate results.

We use this application to measure scalability. We stepwise increase the number
of processor cores which are available to the runtime system. For this we use the
taskset program, which permits detailed control of processor core affinity. We
incrementally add cores such that they share L3 caches and are part of the same
processors and sockets as much as possible. At each measurement step we configure
Front and S-RTS/LPEL to use a number of worker threads which is equal to the
available number of processor cores.

Figure 13a shows measurements where both matrix dimensions are equal to 4,096
and a tile consists of 64 by 64 numbers in 8-byte double precision floating point format.
This amounts to 32 KB per tile. Therefore, two tiles fit into the L1 cache of 64 KB. The
Front runtime system shows a good speedup for 6 cores, diminishing speedup up to
24 cores and no speedup beyond that. The S-RTS runtime shows just a little speedup
up to 6 cores, but this disappears when adding more cores, i.e. when more than one
L3 cache is involved. Our interpretation of this figure is that the cost to communicate
a task to a different core is relatively high compared to the effort required to complete

4 Available at https://github.com/snetdev/snet-rts/blob/master/examples/cholesky/cholesky.snet.
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Fig. 13 Speedup on Cholesky decomposition for two parameter sets: a matrix size: 4,096 by 4,096, tile
size: 64 by 64, b matrix size: 8,192 by 8,192, tile size: 128 by 128

the task. S-RTS suffers from the high overhead to construct threads to execute a task,
which involves longer sections of serial code and context switches between different
threads of execution. In Front no new threads need to be created to execute a new task.
The construction of entities which facilitate the concurrent execution of a new task
only requires some memory allocation, which therefore is much cheaper. Distribution
of a task does not require context switches, but at most one work stealing event.

In Fig. 13b we increase the amount of data per tile by four, while keeping the
total number of tiles identical. The number of entities which are constructed by the
runtime system is the same as well. Only the time spent executing code in the box
components increases. Now, S- RTS/Pth also shows reasonable speedup, but less
so S-RTS/LPEL. Front shows excellent speedup even for 48 cores. Increasing the
number of cores from 36 to 48 still improves the performance by 21 %, which we
deem satisfactory considering that the algorithm also contains sequential sections.

6 Related Work

Stream processing has a long history and many different interpretations of streams
have been used. A survey of stream processing is given by Stephens [20]. A multi-
threaded runtime system for the execution of streaming networks can be found for the
StreamIt language [22]. Compared to S-Net StreamIt uses synchronous scheduling,
while streams and entities in S-Net are scheduled asynchronously.

Work stealing can be traced back to Burton and Sleep who used it to speed up the
execution of functional programming languages in a SMP system [2]. Blumofe et al.
give a detailed analysis of the time and space complexity for work stealing of tasks
with dependencies [1].

Neill and Wierman develop a queueing model of a NUMA system to study work
stealing and take into account task affinity. Through simulation of several work stealing
and work sharing algorithms under different workloads they find that work stealing
insulates from negative effects of affinity and imbalanced load distribution [13].

Mattheis et al. analyze work stealing for streaming applications in soft real-time
systems [12]. Here the latency of a task must be kept within bounds. Their model uses
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data flow process networks with unidirectional channels. Processes are scheduled
when all their input channels are non-empty. Their model supports determinism and
multiple concurrent invocations of a single process where input ordering is preserved
on output. They compare LIFO and FIFO queueing policies, local queues without or
with a shared global queue and two different stealing strategies when a global queue
is present. Their model gives bounds on the maximum latency for certain strategies.
The best result is found when a global queue is also present which is examined first
for stealing before going to local queues of victims.

Sanchez et al. show a scheduler for pipeline-parallel programs which performs fine-
grain dynamic load balancing in a runtime system for the GRAMPS programming
model [19]. It supports irregular pipeline and data-parallel applications. Their task-
stealing uses per-stage queues and queueing policies. Together with back pressure this
gives strict bounds on memory usage. Like Front, their scheduler also prefers queues
which are closer to the output to limit the memory footprint. They do not enforce back
pressure on backward queues. Their reasoning is: if the programmer introduces cycles
with uncontrolled loops, i.e. loops which produce more data than they consume, then
this is incorrect programming, similar to infinite recursion.

7 Conclusions and Future Work

We have presented a novel runtime system for the macro data flow coordination lan-
guage S-Net, named Front. Aiming at highly efficient and scalable parallel execution
of S-Net streaming networks, Front dispenses with the, at least at first glance, more
intuitive interpretation of macro data flow coordination as a growing and shrinking
system of communicating sequential (though stateless) components (or processes).
Instead, Front uses a static property graph to represent network characteristics and a
dynamically evolving but information-wise very lean entity graph to trace the dynamic
behaviour of a streaming network. The latter is required to ensure the various stream
ordering constraints demanded by the S-Net semantics.

A fixed number of worker threads, reflecting properties of the execution resource
such as number of cores or hardware threads, roam the entity graph for computational
tasks, i.e. components with a non-empty input stream. Upon a match a worker thread
executes the task, thus typically creating further tasks. Each worker firstly executes its
self-produced tasks to capitalize on data locality in cache-based systems. Only in the
absence of further own work does a worker check for new work on the global input
stream of the streaming network or try to steal work from other workers. Together
with a preference for own tasks that apparently are closer to the global output stream,
and thus likely to release (memory) resources soon, these measures successfully avoid
overloading of computing resources in streaming scenarios with unbounded data avail-
able on the global input stream.

Last not least, Front capitalizes on the semantically guaranteed absence of state
in S-Net components and runs multiple instances of the same component in parallel
if multiple records are available on its input stream. This allows Front to harness the
full concurrency potential of macro data flow, whereas any solution on the basis of
communicating sequential processes would process incoming records in order.
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Our experimental evaluation shows that the Front runtime system outperforms the
existing S-Net implementations by orders of magnitude on benchmarks that stress
test the runtime system with components that only perform negligible computations.
However, even for real-world applications with compute-intensive box components
we can observe considerably improved efficiency, resource utilization, throughput
and scalability. Beyond benefitting existing S-Net applications the Front runtime
system significantly lowers the granularity at which applications can be coordinated
efficiently.

Future work includes further evaluation of Front on a wider variety of computing
architectures and S-Net application programs. Furthermore, we aim at experimenting
with implementation variants of Front such as different work stealing schemes. For
example, we may take the memory hierarchy into account and first attempt to steal
work from peers within a L3 cache group. With large numbers of worker threads it is
important to avoid having them all trying to steal work simultaneously. For instance,
we could allow at most one worker thread per L3 cache group to steal from non-local
workers/cores. Another area of future work is in automatically choosing beneficial
box concurrency levels (see Sect. 4.7) depending on both application and machine
characteristics.
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