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Abstract Multi-core processors and clusters of multi-core processors are ubiquitous.
They provide scalable performance yet introducing complex and low-level program-
ming models for shared and distributed memory programming. Thus, fully exploiting
the potential of shared and distributed memory parallelization can be a tedious and
error-prone task: programmers must take care of low-level threading and communi-
cation (e.g. message passing) details. In order to assist programmers in developing
performant and reliable parallel applications Algorithmic Skeletons have been pro-
posed. They encapsulate well-defined, frequently recurring parallel and distributed
programming patterns, thus shielding programmers from low-level aspects of parallel
and distributed programming. In this paper we take on the design and implementa-
tion of the well-known Farm skeleton. In order to address the hybrid architecture
of multi-core clusters we present a two-tier implementation built on top of MPI and
OpenMP. On the basis of three benchmark applications, including a simple ray tracer,
an interacting particles system, and an application for calculating the Mandelbrot set,
we illustrate the advantages of both skeletal programming in general and this two-tier
approach in particular.
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1 Introduction

Today, not only in the field of High Performance Computing (HPC) multi-core proces-
sors and clusters of multi-core processors are ubiquitous. Even in the consumer seg-
ment both the growing complexity of applications and the growing amount of data lead
to a high demand for high performance. In order to fully exploit the resources provided
by multi-core processors and computer clusters, programmers still have to deal with
low-level concepts of parallel and distributed programming. These low-level concepts
constitute a high barrier to the efficient development of parallel applications and also
make it a tedious and error-prone task. High-level concepts for parallel programming
would not only simplify programming, but could also enhance portability of parallel
applications by abstracting from the underlying hardware.

With algorithmic skeletons (AS) [1,2] Cole has proposed an approach to address
these issues. AS can be considered as high-level tools that encapsulate well-defined,
frequently recurring parallel and distributed programming patterns, thus hiding the
low-level details of parallel and distributed programming. One of these high-level
tools is the Farm skeleton. It is a master–slave system, where conceptually a farmer
accepts a sequence of tasks and propagates them among the workers. Workers solve
their allocated tasks and deliver the corresponding results back to the farmer, who
collects all the results and propagates the sequence of results to the subsequent stages
within a larger process topology.

The main contributions of this paper are both a two-tier concept for the implemen-
tation of the Farm skeleton as well as an empirical analysis based on three benchmark
applications. This two-tier concept makes use of both inter-node parallelization via
message passing as well as intra-node parallelization via multi-threading. Thus, it
depicts the hardware configuration of most modern computer clusters, where usually
vast numbers of multi-core processors are connected with high-speed network inter-
connects such as Infiniband. We believe that such a two-tier parallelization becomes
more and more important, considering that the amount of cores per single comput-
ing node will further increase in the next years. Additionally, taken into account the
progress that is made on hardware accelerators such as GPUs and the Intel MIC
Compute Accelerator, such multi-tier concepts can be considered vital. Regarding
this evolution in HPC hardware, writing efficient and reliable parallel programs may
become even more difficult and error-prone, hence more time-consuming. That under-
lines the necessity for high-level tools that address the multi-tier structure of today’s
computer clusters.

The remainder of this paper is structured as follows: Sect. 2 introduces the Muenster
Skeleton Library (Muesli), pointing out its concepts and benefits. In Sect. 3 we consider
different strategies for implementing the Farm skeleton (with respect to its topology)
and also describe its implementation in detail. Benchmark applications based on the
Farm skeleton as well as experimental results are presented in Sect. 4. Section 5
discusses some related work and finally, Sect. 6 concludes the paper and gives a brief
outlook to future work.
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2 The Muenster Skeleton Library

There are various approaches towards skeletal parallel programming. Because of its
roots in functional programming, the first skeletons were implemented in functional
languages [1]. Nowadays, the majority of skeleton frameworks are programmed in
imperative and object-oriented languages, for instance, C/C++ or Java [3–6]. There
are several reasons for this trend. The most striking one, of course, is performance. But
imperative and object-oriented languages are also more prevalent, especially among
HPC developers. Moreover, emerging programming models for many-core architec-
tures as introduced by frameworks such as CUDA [7] and OpenCL [8] gained high
popularity in the last years. These frameworks usually integrate seamlessly into imper-
ative languages, such as C/C++.

Our approach to enabling skeletal programming is called Muesli [3]. Muesli is
a C++ skeleton library that provides various algorithmic skeletons and distributed
data structures for shared and distributed memory parallel programming. For efficient
support of multi- and many-core computer architectures as well as clusters of both,
it is built on top of MPI [9] and OpenMP [10]. Recently, some efforts were made
to also provide some of Muesli’s skeletons with support for GPU processing using
CUDA [11]. Muesli is intended to relieve programmers from low-level, thus error-
prone peculiarities of parallel programming. Because not only task parallel skeletons
but also distributed data structures on which data parallel skeletons operate are pro-
vided, programmers of parallel applications may draw on a variety of parallel and
distributed programming patterns and choose those that suit their applications in a
natural way.

Conceptually, we distinguish between task parallel and data parallel skeletons. Task
parallel skeletons represent well-defined process topologies such as Farm, Divide and
Conquer (D&C) [12], Pipeline (Pipe), and Branch and Bound (B&B) [13]. They can
be arbitrarily nested to create process topologies that define the overall structure of
parallel applications. Their algorithm-specific behavior is defined by user functions
that describe the algorithm-specific details. Processes within a topology communicate
via streams of input and output data. Parallel applications that include irregular data
distributions and/or input dependent communication can greatly benefit from such
process topologies. For example, consider a B&B algorithm for solving optimiza-
tion problems. It is defined by both a branching (i.e. splitting) procedure that splits
a problem into two or more subproblems, and a bounding procedure that discards
subproblems by computing upper and lower bounds for the solution. In this case,
the programmer typically chooses the B&B skeleton as the overall structure of his
or her application, and provides this skeleton with the algorithm-specific details, i.e.
the problem definition as well as the branching and the bounding procedures. The
skeleton implementation ensures that the solution to that specific B&B algorithm is
computed in parallel. The programmer is totally relieved from any low-level threading
and communication details that a manual parallel implementation of the considered
B&B algorithm “by hand” would entail.

However, especially in the field of HPC there are many applications that include
massive data parallel computations that greatly benefit from efficient data structures
and caching effects. For that reason, our data parallel skeletons, e.g., Map, Zip, and
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Fold, are provided as member functions of distributed data structures (DDS), including
a one-dimensional array, a two-dimensional matrix [14], and a two-dimensional sparse
matrix [15]. These DDS are divided into local partitions that are each stored and
processed by a single process. Data parallel skeletons operate on the DDSs’ elements
and can also manipulate entire DDSs. By providing a skeleton with a specific user
function, programmers define the specific behavior of this skeleton, thus the way the
entire data structure or its elements are manipulated. In addition to the data parallel
skeletons, the DDSs also include communication skeletons that, for example, are used
to exchange local partitions of a DDS in order to redistribute the local partitions.
When using a DDS and its skeletons, the programmer must of course be aware of the
decomposition into local partitions but the low-level threading and communication
details are taken care of the DDS’s and the skeleton’s implementation.

In Muesli, not only task parallel skeletons can be arbitrarily nested: in order to
define sophisticated process topologies for highly complex algorithms, task parallel
and data parallel skeletons can be nested as well.

As already stated, skeletons take so-called user functions as arguments that define
their algorithm-specific behavior. In Muesli, these user functions can be sequential
C++ functions as well as functors, i.e. classes that overwrite the function call operator
(in a sequential manner).1 As a key feature of Muesli, the well-known concept of
Currying is used to enable partial application of user functions [16]: a user function
that depends on more arguments than provided by a particular skeleton can be partially
applied to a given number of arguments, thereby yielding a “curried” function of
smaller arity, which can be passed to the desired skeleton.

3 Farm Skeleton

As pointed out in the previous section, in Muesli, task parallel skeletons are nested to
create a process topology that suits the structure of a particular application in a natural
way. Processes within a topology communicate via streams of data. The outermost
nesting level typically consists of the Pipe skeleton. A Pipe in turn consists of two
or more stages that consume input values and transform them into output values.
Each stage’s exit point is connected to its succeeding stage’s entry point. The very
first and the very last stage form an exception as the former does not consume input
values and the latter does not produce output values, respectively. This functionality
is provided by the Initial and Final skeletons, which always represent the main entry
and exit point of a topology, respectively. Note that a nested pipeline does not have
to meet this requirement, as its first and last stage stage do not necessarily represent
the main entry and exit points of a topology. At the innermost nesting level, the
programmer has to define how input values (taken from the input stream of a particular
skeleton) are transformed into output values. Muesli therefore provides the Atomic
skeleton that, similar to the Initial and Final skeletons, represents an atomic task
parallel computation. An argument function defines how input values are transformed
into output values.

1 Due to memory restrictions, GPU-enabled skeletons must be provided with functors as arguments.
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Fig. 1 The Farm skeleton

The Farm skeleton defines a well-known process topology (depicted in Fig. 1),
where a farmer takes input values from a stream and propagates them to its workers.
When a worker is served with an input value, it calculates the corresponding output
value and redirects it to the farmer in order to receive the next input value. All workers
apply the same operation defined by the given user function. The farmer puts the
output values produced by its workers back to the output stream as soon as they are
available. According to the task parallel skeletons’ nesting abilities, a worker can
either be represented by an atomic skeleton or be represented by another task parallel
skeleton. However, workers of the same farm must be identical and must also provide
at least one entry as well as one exit point.

In [17], Poldner and Kuchen consider several approaches to implement the Farm
skeleton with respect to various topologies. They show that, given the topology
depicted in Fig. 1, the farmer might constitute a bottleneck, especially when it has
to serve a large number of worker processes. In order to alleviate this bottleneck to
a certain degree, they propose a process topology that simply drops the farmer and
shifts its functionality to the workers and the preceding stage in the pipeline. Instead
of requesting for new input data from a farmer, workers are directly assigned to input
data by the preceding stage of the pipeline in a random or round-robin order. Calcu-
lated output values are then forwarded to the succeeding stage analogously. Thus, a
farm has no single entry and exit point but each of its workers acts as a single entry
and exit point itself. This topology is depicted in Fig. 2, where two farms are nested
in a pipeline. Representing the first stage of the pipeline, the Initial skeleton directly
distributes its generated output data among the workers of the first farm (representing
the pipeline’s second stage). Each worker of the first farm in turn directly distributes
its output data among the second farm’s workers, which finally forward their output
data to the final stage represented by the Final skeleton.

Listing 1 displays the implementation of a task parallel example application, that
uses the Farm skeleton to multiply integer values by two and to print out the result.
While this example is somewhat trivial, it is made to illustrate the creation of process
topologies within Muesli rather than to constitute a sophisticated parallel algorithm
implementation. Here, a pipeline of three stages is constructed. Note that there is a
class template for every task parallel skeleton. The first and the last stage (p1 and p4)
of the pipeline are represented by the atomic skeletons Initial and Final. They both are
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Fig. 2 Pipeline of two optimized farms

instantiated with a specific user function (init and fin, respectively) as argument.
The Farm skeleton constitutes the pipeline’s middle stage (p3). Its constructor expects
both an instance of the desired type of workers as well as the number of workers to
be employed. In this case, there are three atomic workers represented by the Atomic
skeleton (p2). Their behavior is defined by the given function multByTwo. Finally,
the task parallel computation is started at the outermost nesting level, i.e. the pipeline
process. Also note that, in order to be arbitrarily nested, all class templates representing
task parallel skeletons must inherit from the same abstract base class, i.e. the class
Process.

The example in Listing 1 also illustrates another important aspect of the task parallel
skeletons provided by Muesli: the argument function of the Initial skeleton returns
pointers instead of values. By returning a null pointer, the function indicates that
there is no input data left. The process topology may then be terminated to ensure that
no user data is lost, and a possible subsequent task parallel skeleton computation with
a potentially different topology can be started smoothly.

3.1 Implementation Aspects

The Farm skeleton with its topology described above is designed to scale on dis-
tributed memory machines such as clusters of single-core computers. With a single
process of the topology being mapped onto a single MPI process, the Farm skele-
ton additionally inherits support for shared memory computers from MPI. However,
with the emergence of hybrid computer architectures including combined shared and
distributed memory such as clusters of multi-core computers, it is important for the
skeleton topology to reflect this hybrid architecture in some natural way. Creating as
many workers as there are cores in total rapidly leads to long idle times for the workers
because a single process that generates input data would have to serve all the workers
with input data, thus constituting a bottleneck in communication. That is why we have
decided to implement a hybrid variant of the Farm skeleton. Its implementation details
will be described in detail in the following.

As basis for the implementation of the two-tier Farm skeleton, we have adopted
the above described topology proposed by Poldner and Kuchen. In order to on the
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int current = 0;
int nWorkers = 3;

int* init() {
(current ++ < 10) ? return new int(current) : return 0;

}

int multByTwo(int value) {return value *2;}

void fin(int value) {printf("result: %d", value);}

int main(int argc , char** argv) {
initSkeletons(argc , argv);

// Create a process topology using C++ constructors.
Initial <int > p1(init);
Atomic <int ,int > p2(multByTwo);
Farm <int ,int > p3(p2 , nWorkers);
Final <int > p4(fin);
Pipe p5(p1 , p3 , p4);

// Start the task parallel calculation.
p5.start();

terminateSkeletons ();
}

Listing 1 Task parallel example application using the Farm skeleton.

one hand reflect the hybrid (shared and distributed memory) architecture of modern
cluster computers, we had to make major changes to the task parallel skeletons in
general and to the Farm skeleton in particular. On the other hand, in order to not raise
the complexity, we wanted to make as few changes to the overall structure and the
interface as possible.

Multi-threaded workers The most important modification to the internal structure of
the Farm skeleton is that atomic workers of a farm are extended to so-called multi-
threaded workers that make use of shared memory parallelization. Instead of sequen-
tially calculating a single output value from a single input value at a certain time,
multi-threaded workers now calculate multiple output values from the same number
of input values in parallel. By adding this additional parallelization level, each thread
of a multi-threaded worker now becomes an atomic worker itself. Hence, a multi-
threaded worker is more or less an intermediary for shared memory parallelization.
Note that this modification is fully transparent to the programmer: to not shift the
responsibility for shared memory parallelization to the programmer, a multi-threaded
worker’s specific behavior is still defined by the Atomic skeleton. Hence, it requires
as argument a sequential user function that calculates a single output value from a
single input value, i.e. representing an atomic task parallel computation. The multi-
threaded worker’s implementation ensures the parallel application of the given user
function. Listing 2 briefly describes the multi-threaded worker’s functionality.
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void mtWorker () {
omp_set_nested (1);
#pragma omp parallel
{

#pragma omp single nowait
{

while (! finished || !SendPool.empty ()) {
if (checkIncomingMessage ()) {

receive(input);
if (input == STOP)

finished = 1;
else

putToWorkPool(input);
}

if (! SendPool.empty()) {
takeFromSendPool(output);
send(output);

}
}

}

#pragma omp single
{

while (! finished || !WorkPool.empty ()) {
if (! WorkPool.empty()) {

takeFromWorkPool(input);
#pragma omp parallel for
for (int i = 0; i < chunkSize; i++) {

output[i] = atomicUserFunction(input[i]);
}
putToSendPool(output);

}
}

}
}

}

Listing 2 Simplified functionality of a multi-threaded worker.

In order to overlap communication and computation, there are two code sections
executed in parallel: the first section is responsible for receiving input data from the
predecessors and sending output data to the successors within the topology. When
receiving input data, data is put to a local work pool. Output data, in turn, is taken
from the so-called send pool and is then sent to a successor. Within each step of
the while loop one message may be received and one message may be sent. If
there are no messages to receive, only messages are sent and vice versa. The second
section is responsible for taking sets of input values from the work pool, calculating
corresponding sets of output values in parallel, and finally putting these sets of output
values into the send pool. The parallel calculation is represented by a parallelfor loop,
where each thread applies the atomicUserFunction to a single input value at a
time. It is important to note that for this kind of parallelization we make use of nested
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parallelism provided by OpenMP: the nested parallel for pragma may employ
all threads of the initial thread team instead of just the single one employed by the
preceding single pragma. Thus, with the two sections executed in parallel, both the
work and the send pool have a single producer and a single consumer and are therefore
implemented as a wrapper class for a double-ended queue (std::deque < T >)
that synchronizes calls to the underlying data structure. Note that also the atomic
skeletons Initial and Final provide the above described functionality of overlapping
communication and computation. There is also an obvious alternative implementation
for a multi-threaded worker without a work and a send pool. In this case the multi-
threaded worker receives a set of input values, calculates in parallel the corresponding
set of output values and sends it to one of its successors. As this implementation does
not overlap communication and computation, for some applications it might have
adverse effects on scalability.

Because a multi-threaded worker needs to have multiple input values at hand in
order to calculate multiple output values in parallel (remember that an original farm
worker consumes a single input value to produce a single output value), data has to be
aggregated at some point: either a sending process must aggregate output data before
sending or a receiving process must aggregate input data before calculating new output
data in parallel. In order to reduce the number of independent network transfers and
work pool accesses, we have decided to aggregate output data at the sending side.
Thus, work and send pools store sets of values instead of single values.

Aggregation of output That leads to another major modification to the implementation
of the task parallel skeletons: the Initial skeleton, always representing the initial stage
of a pipeline, aggregates its output values to sets of a given size. Thus, it does not send
single values to its successors but sets of values. Internally, these sets are represented
by std::vector objects provided by the C++ standard library, because a vector’s
size can be dynamically adjusted and the underlying data structure (ordinary array)
provides very efficient data access. The size of these sets may be set at compile time
or be calculated at runtime. The succeeding stage takes these sets of values as input
and calculates the corresponding output sets to be forwarded to its succeeding stage.
In conclusion, processes within a topology created by (nested) task parallel skeletons
communicate via streams of sets instead of streams of single values. However, this
modification is completely transparent to the user as it has no effect on any of the user
functions.

4 Benchmarks

In order to investigate how the described Farm skeleton performs on hybrid com-
puter architectures with shared and distributed memory, we have implemented three
benchmark applications: a simple ray tracer, an interacting particles system, and an
application for calculating the Mandelbrot set. All three benchmark applications are
based on the process topology depicted in Fig. 3, where a single farm with n multi-
threaded workers is nested into a pipeline of three stages.
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Fig. 3 General process topology for the three benchmark applications

The underlying platform for the benchmarks is called PALMA: a multi-node, multi-
core computer cluster. The compute nodes, running CentOS 5.9, provide a six-core
dual-socket Intel Xeon Westmere processor with a total of 12 cores and 24 Gb main
memory. They are connected through Infiniband.

All benchmark applications were run with varying numbers of workers, ranging
from a single worker to 64 workers. Each worker is mapped to a single MPI process
occupying a single node of the cluster. For each number of workers, the applications
were run with 1, 4, 8, and 12 threads, respectively.

4.1 Ray Tracing

Ray tracing [18] is a well-known rendering technique in computer graphics. It can be
used for generating high quality or even photo-realistic 2D images of 3D scenes by
calculating the paths of rays of light entering the viewer’s eye or the camera. Paths are
traced backwards from the viewpoint, through a pixel in the image plane until they
intersect with some object in the scene. That is why this technique is also often referred
to as backwards ray tracing. Depending on the surfaces of the intersected objects, the
corresponding pixel will be colored. This way, a variety of optical phenomena, for
instance, reflections, shadows, and dispersion can be simulated, certainly at a high
computational cost. Techniques such as spatial anti-aliasing can even further increase
the computational complexity of ray tracing. Both the computational complexity and
the computational independence make ray tracing amenable to parallel programming.

Implementation Exemplary for all benchmarks, we briefly consider the details of the
task parallel skeleton implementation of a simple ray tracer. It is presented in Listing 3.

First of all, a call to the function initSkeletons must be made in order to ini-
tialize Muesli. Then the 3D scene is created. It describes the settings of the scene, i.e.
the camera position and angle as well as the screen position, and contains a number
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of objects to be displayed. These objects contain information about their shape, their
position in the scene and the material of their surface. In the next step, the process
topology depicted in Fig. 3 is created by making use of the constructors of the respect-
ing skeleton classes. As described in Sect. 3, it requires three user functions to provide
this general process topology with the algorithm-specific details that describe each
process’s particular behavior. In this case, these user functions were derived from
a sequential ray tracing algorithm [19]. It is important to notice that only very few
changes to the sequential code were made in order to decompose the algorithm into
three separate units, namely the functions init, castRay, and fin. The init
function defines the algorithm-specific behavior of the Initial skeleton. It produces
input values for the farm’s workers. When calling this function, it yields the next pixel
of the image to be rendered. By successively calling this function, it creates all pix-
els to be included by the image in a row-wise manner. A pixel is represented by the
type Pixel. It stores the row and column indices as well as the pixel’s color. The
algorithm-specific details of ray tracing are encapsulated in the function castRay.
It defines the algorithm-specific behavior of the farm’s workers. Thus, it requires a
pixel as argument and, corresponding to the pixel’s position in the image, calculates
the color of that pixel by performing simple ray tracing. Because each pixel can be
independently processed, this can be considered an atomic operation. The function
fin defines the algorithm-specific behavior of the Final skeleton. Thus, it finally
stores the colored pixels in the resulting image. The task parallel calculation is started
by calling the start method provided by the Pipe object p5. Finally, a call to the
terminateSkeletons function shuts down Muesli and terminates the applica-
tion. Figure 4 shows an example image rendered with the above described parallel ray
tracing application. It includes an infinite plane, five colored spheres, and one sphere
light in the center.

Fig. 4 Example image rendered
with the ray tracing benchmark
application. It includes an
infinite plane, five colored
spheres, and one sphere light in
the center
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struct Pixel {
Color col;
size_t xPos , yPos;

};

Pixel* init() {return nextPixel ();}

Pixel castRay(Pixel& p) {
sequentialRayTracing (p);
return p;

}

void fin(Pixel& p) {storePixel(p);}

int main(int argc , char **argv) {
// Initialize Muesli.
initSkeletons(argc , argv);

// Create the 3D scene.
createScene ();

// Create a skeleton topology using C++ constructors.
Initial <Pixel > p1(init);
Atomic <Pixel , Pixel > p2(castRay);
Farm <Pixel , Pixel > p3(p2 ,nWorkers);
Final <Pixel > p4(fin);
Pipe p5(p1 , p3 , p4);

// Start the calculation.
p5.start();

// Terminate Muesli.
terminateSkeletons ();

}

Listing 3 Implementation of a simple ray tracer using the Farm skeleton (partly in pseudo code).

Benchmark results The 3D scene for the ray tracing benchmark includes as objects
100 simple spheres and 10 simple rectangle-shaped lights. The objects are equally
distributed among the screen. The rendered image is of size 1024 × 1024, resulting in
a total of 1,048,576 pixels to be colored in terms of ray tracing. As output format we
use the ppm format, as it is a very simple image format that is entirely sufficient for
our needs. The results of the benchmark are reported in Fig. 5 and Table 1. All in all,
the results of the ray tracing benchmark show that the hybrid Farm skeleton performs
well on hybrid computer architectures with shared and distributed memory. While the
inter-node speedups (reading the tables in a row-wise manner) are close to ideal even
for large numbers of workers processes, intra-node speedups (reading the tables in a
column-wise manner) are close to ideal only for small numbers of threads per worker
process. When shifting to larger numbers of threads the speedups slightly decrease.
This is due to both an undersized amount of work for equally employing all workers’
threads and the slight overhead introduced by the high level of abstraction.

123



980 Int J Parallel Prog (2014) 42:968–987

Worker Processes

Threads/Worker

 1

 10

 100

 1000

 10000

Run time (s)

Ray tracing

 1  2  4  8  16  32  64

1

 4

 8

 12

Fig. 5 Run times of the ray tracing benchmark

Table 1 Run times (in seconds) of the ray tracing benchmark

nt/np 1 2 4 8 16 32 64

1 3567.96 1786.83 913.92 457.03 228.41 114.48 57.56

4 969.80 489.17 245.66 122.89 61.07 31.17 15.47

8 494.98 251.48 125.70 62.64 31.44 16.14 7.97

12 412.61 211.43 104.81 52.58 26.25 13.40 6.74

np and nt denote the number of worker processes and the number of threads per worker process, respectively

4.2 Interacting Particles

The problem of interacting particles has many applications ranging from molecular
dynamics to galactic dynamics at the other end of the spectrum. A system of interact-
ing particles includes a number of charged particles and a discrete or continuous area,
in which all the particles interact with each other. For a number of time steps, each
particle in the system interacts with every other particle in the system (except of itself).
The interaction of two electrically charged particles is described by the Coulomb law.
However, we are not going to explain its details. After each time step, all particles’
positions and velocities are updated with respect to the previously calculated interac-
tions.

As previously mentioned, for the implementation of an interacting particles system
using the Farm skeleton presented in this paper, we build on the process topology
depicted in Fig. 3. In this case, the first stage of the pipeline successively yields the
particles of the system. Atomic farm workers are responsible for calculating the forces
that affect a given particle. Finally, the last stage of the pipeline gathers all particles
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Fig. 6 Run times of the Muesli implementation of the interacting particles benchmark

Table 2 Run times (in seconds) of the interacting particles benchmark (Muesli)

nt/np 1 2 4 8 16 32 64

1 4458.15 2227.72 1121.73 562.42 283.21 145.40 74.70

4 1194.19 598.76 301.18 152.74 78.44 42.30 25.15

8 726.93 366.06 185.02 94.69 50.70 28.84 17.09

12 734.76 368.58 186.89 96.11 50.74 28.90 17.11

np and nt denote the number of worker processes and the number of threads per worker process, respectively

of the system and updates their positions and velocities. In order to carry out multiple
time steps, we have enclosed the task parallel computation by a loop. Within each
step of the loop, the entire particle system is broadcasted among all processes in order
to provide every participating process with the most up to date particle data. At first
glance, this may seem very costly, but compared to the computational complexity of
calculating forces to the particles, it turns out to be a negligible overhead.

Benchmark results For this benchmark, we have implemented an interacting particle
system of charged plasma particles. For reasons of simplification, we did not take
radiation into account, because this would add enormous complexity to the algorithm.
The interactions of 100,000 particles are calculated over 20 time steps. The results are
reported in Fig. 6 and Table 2.

The overall scaling properties of the interacting particles application are similar
to the ray tracing application. The inter-node speedups are close to ideal even for
large numbers of workers. However, because the algorithm is memory bound the
intra-node speedups are close to ideal only for small numbers of threads per worker
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Fig. 7 Comparison between the Muesli and the handwritten MPI/OpenMP implementation of the inter-
acting particles benchmark

Table 3 Run times (in seconds) of the interacting particles benchmark (handwritten MPI/OpenMP)

nt/np 1 2 4 8 16 32 64

1 4402.60 2210.64 1108.45 553.62 277.89 140.00 73.13

4 1188.61 596.25 299.12 150.62 76.29 39.62 22.04

8 709.10 356.42 179.20 93.18 47.54 25.70 14.96

12 686.09 346.97 175.69 89.34 46.13 25.25 14.57

np and nt denote the number of worker processes and the number of threads per worker process, respectively

and strongly decrease when shifting to larger numbers of threads. For 12 threads
there is even a slowdown identifiable with respect to 8 threads. In Fig. 7 we draw a
comparison between the Muesli and the handwritten MPI/OpenMP implementation
of this benchmark: the handwritten version has only a very slight edge over the Muesli
version. Also the scaling properties are nearly the same for both implementations.
The results show that there is close to no overhead introduced by the high level of
abstraction. For reasons of clarity we have only included run times for 1 and 12
threads, respectively, in Fig. 7. For full details see Tables 2 and 3.

4.3 Mandelbrot Set

The Mandelbrot set is a set of points in the complex plane, whose boundary describes
a well-known fractal. It contains all points c of the complex plane for which the
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orbit of zn does not tend to infinity when iterating the quadratic recurrence equation
zn+1 = z2

n + c with z0 = 0. Thus, depending on both the iteration depth as well
as the accuracy of computation, the Mandelbrot set potentially involves infinite com-
putational complexity. With its data parallel nature it is naturally suited for parallel
programming. Note that for each point of the discrete complex plane the recurrence
equation can be independently iterated. However, parallel programmers have to take
care of heavy load imbalance because points that are not members of the Mandelbrot
set tend to introduce just a very small number of iteration steps. In contrast, for points
that are element of the the set, it is necessary to iterate the recurrence equation until
the maximum number of iterations is reached.

Similar to the other benchmarks, the task parallel process topology is already
defined. Here, the first stage of the pipeline successively yields the points of the
discrete complex plane. To address load imbalance, the points are yielded in a block-
wise manner so that each block’s elements preferably involve similar computational
complexity. The farm workers then iterate the recurrence equation for each point, and
by that determine wether a given point belongs to the set or not. Finally, in the last
stage all points of the discrete complex plane are gathered. Depending on the iteration
depth, each point is assigned a color and is stored in an image file, for instance. Unlike
the other benchmarks, in this benchmark workers do not require access to additional
input data (such as the 3D scene for the ray tracing benchmark). That raises the ques-
tion whether a purely data parallel implementation would meet the requirements in a
more adequate way than a task parallel simulation of data parallelism would do. In
order to answer this question, we have implemented a task parallel and a data parallel
variant. The data parallel variant was implemented by making use of the distributed
matrix (for representing the discrete complex plane) and its data parallel skeletons
provided by Muesli. For both applications the size of the discrete complex plane is
fixed to 8192 × 8192. The results are reported in Fig. 8 and Table 4. Figure 9 features
a comparison between the task parallel and the data parallel variant. Run times of the
data parallel application are summarized in Table 5.

Benchmark results The results of the Mandelbrot benchmark present an overall scaling
behavior similar to the other benchmarks: for small numbers of workers and threads
per worker both inter- and intra-node speedups are close to ideal. For larger numbers of
workers and threads the speedups slightly decrease. However, the overall performance
and scaling behavior is considerable. Figure 9 features a comparison between the task
parallel and the data parallel variant of the Mandelbrot application.

Due to a fixed data distribution (fixed block-wise decomposition of the matrix),
the data parallel implementation does not take care of load imbalance. This behavior
is clearly reflected in the results: considering the curve of the single-threaded data
parallel variant, it is observable that this curve flattens when shifting from 2 to 4 data
parallel workers. At this point, with respect to the structure of the Mandelbrot set, the
upper left and lower left blocks of the matrix just introduce very little computational
complexity. In contrast to the data parallel implementation, the task parallel imple-
mentation naturally takes care of load imbalance, because in this case the block sizes
do not depend on the number of participating processes and can therefore be chosen
much smaller. This leads to a more balanced distribution (in terms of complexity)
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Fig. 8 Run times of the task parallel Mandelbrot benchmark

Table 4 Run times (in seconds) of the task parallel Mandelbrot benchmark

nt/np 1 2 4 8 16 32 64

1 13707.40 6855.83 3446.18 1744.91 922.09 467.67 250.24

4 3538.90 1770.25 889.86 451.18 240.76 123.43 72.10

8 1800.76 900.79 452.86 229.66 123.52 64.03 41.13

12 1393.78 701.37 352.81 178.74 96.79 50.51 34.23

np and nt denote the number of worker processes and the number of threads per worker process, respectively

of data among the workers and their multiple threads. This in turn leads to higher
performance. Considering the 12 thread variants, the task parallel implementation has
the edge over the data parallel implementation for all numbers of workers. This is,
of course, also due to better load balancing capabilities. Moreover, calculating the
Mandelbrot set does not much benefit from cache effects or efficient data structures
as other data parallel applications do.

5 Related Work

In [3], Kuchen presents the initial implementation of the Farm skeleton within Muesli.
As described in Sect. 3, it features a farmer that takes input values and distributes them
among the workers. Workers must send their results back to the farmer in order to get
the next input value. In [17], Poldner and Kuchen present several optimized process
topologies for the Farm skeleton. These include a farm with dispatcher, a farm with
dispatcher and collector as well as a farm without dispatcher and without collector.
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Fig. 9 Comparison between the task parallel and the data parallel implementation of the Mandelbrot
benchmark

Table 5 Run times (in seconds) of the data parallel Mandelbrot benchmark

nt/np 1 2 4 8 16 32 64

1 13708.50 6855.54 5325.42 3161.26 1648.46 845.37 424.33

4 5325.12 3161.63 1648.16 845.11 424.68 212.70 106.77

8 3161.05 1648.12 845.48 424.46 212.72 106.77 53.67

12 2175.59 1116.70 566.56 285.43 143.04 73.54 37.32

np and nt denote the number of worker processes and the number of threads per worker process, respectively

Note that the latter is taken as the base topology for the hybrid farm presented in this
paper.

There are also other skeleton libraries that offer a Farm skeleton. While eSkel [4]
provides the classical Farm with a farmer, the P3L [20] Farm splits the farmer into a
dispatcher and a collector in order to tackle the bottleneck at the farmer process.

Also the Java based skeleton frameworks JaSkel [21] and Skandium [6] provide a
Farm skeleton. In JaSkel, skeletons are based on inheritance, thus they can be orthog-
onally and hierarchically composed. Farms can be combined to so-called multi-level
farms that can take advantage of modern multi-core clusters. Skandium provides algo-
rithmic skeletons for shared memory programming enabled by Java’s built-in thread-
ing capabilities. Similar to a farm with a farmer, Skandium’s Farm skeleton follows a
master–slave approach.
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To the best of our knowledge, there are no cluster (with shared and distributed mem-
ory) results reported for any of the above mentioned Farm skeleton implementations.

6 Conclusion

We have presented a pragmatic approach to implementing a scalable, two-tier Farm
skeleton. With its two-tier concept of shared and distributed memory parallelization it
addresses the architecture of modern computer clusters in a natural way. We consider
this two-tier concept to be very important, taking into account that the number of
cores per processor is expected to further increase in the future. By briefly considering
the details of a skeletal implementation of a simple ray tracing algorithm, we have
demonstrated the simplicity and handiness of this approach. Moreover, our bench-
marks show that various parallel applications can be efficiently implemented with the
Farm skeleton and also prove its scalability and performance. Comparisons between
Muesli and handwritten MPI/OpenMP code show that the overhead introduced by the
high level of abstraction is negligible.

In summary, programmers can benefit from using algorithmic skeletons in various
ways. Instead of being concerned with the underlying communication and thread-
ing details, they may concentrate on the algorithm. By simply choosing for the
appropriate process topology (by nesting the corresponding skeletons) and provid-
ing the algorithm-specific details in a sequential manner, programmers can rapidly
develop parallel applications. The separation of algorithm and communication logic
also enables portability. For example, switching the communication protocol only
requires the skeletons’ implementation to be changed instead of every single applica-
tion. Programmers can also use algorithmic skeletons for rapidly creating a prototype
of a parallel application in order to determine the appropriate overall structure, and to
investigate its scaling and performance properties.

For the future work, we plan to provide GPU support for the Farm skeleton. Due to
its scalable architecture we think that GPU support can be integrated seamlessly and
can further speed up parallel applications. In order to address heavy load imbalances,
we think of adding load balancing capabilities to the farm’s workers. Additionally,
we want to enhance other task parallel skeletons such as B&B and D&C with the
presented two-tier concept of shared and distributed memory parallelization.
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