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Abstract The parallelization of irregular algorithms has not been as widely studied
as the one of regular codes. In particular, while there are many proposals of parallel
skeletons and libraries very well suited to regular algorithms, this is not the case for
irregular ones. This is probably due to the complexity of finding common patterns,
behaviors and semantics in these algorithms. This is unfortunate, as the parallelization
of irregular algorithms would benefit even more than that of regular codes from the
higher degree of abstraction provided by skeletons. This work proposes to exploit the
concept of domain defined on some property of the elements to process in order to
enable the simple and effective parallelization of irregular applications. Namely, we
propose to use such domains both to decompose the computations in parallel tasks
and to detect and avoid conflicts between these tasks. A generic C++ library providing
a skeleton for multicore systems built on this idea is described and evaluated. Our
experimental results show that this library is a very practical tool for the parallelization
of irregular algorithms with little programming effort.

Keywords Parallel skeletons · Amorphous parallelism · Libraries

1 Introduction

During the past years, extensive research has been carried out on the best ways to
express parallelism. This has led to an evolution from low level tools [4] to a variety of
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new higher level approaches. The large majority of these tools [2,6,8,10–14,20,33]
are well suited to parallelize regular algorithms, whose computations are relatively
easy to distribute among different cores. Opposed to this regular parallelism, there is
the amorphous data-parallelism [22], found in many irregular applications, i.e., those
characterized by handling pointer-based data structures such as graphs or lists. These
applications require a different approach, as it is more complex, and sometimes even
impossible to find an a priori distribution of work in them that avoids conflicts among
the parallel threads of execution and balances their workload. Tracking these conflicts
is also complicated by the lack of regularity and the dynamic changes in the relations
among the data items that participate in a computation, synchronization mechanisms
being usually required before accessing each element to process.

As a result of this situation, the parallelization of irregular algorithms typically
requires much more work from the programmer. One of the best options to hide the
complexity of the parallelization of irregular applications is the use of skeletons [9].
Built on parallel design patterns, skeletons provide a clean specification of the flow of
execution, parallelism, synchronization and data communications of typical strategies
for the parallel resolution of problems. Unfortunately, most skeleton libraries [2,8,10,
12,13,15,33] focus on regular problems. Parallel libraries that can support specific
kinds of irregular algorithms exist [1,3], but there are only a few general-purpose
developments based on broad abstractions.

This work presents a parallelization strategy for irregular algorithms based on a
domain defined in terms of some property of the elements of the data structure. This
domain is used both to partition the computation, by assigning the elements of different
subdomains to different parallel tasks, and to avoid conflicts between these tasks, by
checking whether the accessed elements are owned by the subdomain assigned to the
task. Our proposal applies a novel recursive scheduling strategy that avoids locking
the partitions generated, instead delaying work that might span partitions until later
in the computation. Among other benefits, this approach promotes the locality in the
parallel tasks, avoids the usage of locks, and thus the contention and busy waiting
situations often related to them, and provides guarantees on the maximal number of
abortions due to conflicts between parallel tasks during the execution of an irregular
algorithm. An implementation as a C++ library is also described and evaluated.

The rest of this paper is structured as follows. Section 2 introduces the concepts
behind our domain-based computing proposal, while in Sect. 3 our library is described.
Section 4 describes the algorithms used in its programmability and performance eval-
uation, performed in Sect. 5. Section 6 deals with related work. Finally, Sect. 7 is
devoted to conclusions and future work.

2 Domain-Based Parallel Irregular Algorithms

Many irregular algorithms have a workflow based on the processing of a series
of elements belonging to an irregular structure, called workitems. The elements to
process are stored in a generic worklist, which is updated when new workitems are
found. Figure 1 shows the general workflow of these algorithms. Line 1 fills the initial
worklist with elements of the irregular structure. Any irregular structure could fit our
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Fig. 1 Common pseudocode for an algorithm that uses irregular data structures

generic description of the pseudocode and our subsequent discussion. In what follows
we will use the term graph, as it is a very generic irregular data structure and many
others can be represented as graphs too. Some algorithms start with just one root
element, while others have an initial subset of the elements or even the full graph. The
loop in Lines 2–6 processes each element of this worklist. Line 3 represents the main
body of the algorithm being implemented. If this processing results in new work being
needed, as checked in Line 4, it is added to the worklist in Line 5. This is repeated
until the worklist is empty.

An important characteristic of these algorithms is whether the workitems must be
processed in some specific order. Since non-ordered versions of irregular algorithms
present more parallelism and scale better than the ordered versions [17], our subsequent
discussion focuses on unordered algorithms. These algorithms can be parallelized by
having different threads operating on different elements of the worklist, provided that
no conflicts appear during the simultaneous processing of any two workitems.

The workitems found in irregular algorithms usually have properties (in the fol-
lowing, property refers to a data item, such as for example a data member in a class)
defined on domains, such as names, coordinates or colors. Therefore a sensible way
to partition the work in an irregular algorithm is to choose a property of this kind, and
classify the workitems according to it. Specifically, the domain of the property would
be divided in subdomains and a parallel task would process the workitems of each
subdomain. The property used should fulfill a few characteristics in order to attain
good performance. If no intrinsic property of the problem meets them, an additional
property satisfying them should be defined in the workitems for the sake of a good
parallelization following this scheme.

The first characteristic is that the property domain should be divisible in as many
subdomains as hardware threads are available, the subdomains being as balanced as
possible in terms of workitems associated. In fact, it would be desirable to gener-
ate more subdomains than threads in order to provide load balancing by assigning
new subdomain tasks to threads as they finish their previous task. Second, if the
processing of a workitem generates new workitems, it is desirable that the generated
workitems belong to the same subdomain as their parent. We call this characteristic,
which depends also on the nature of the operation to apply on the workitems, affinity
of children to parents. If this were not the case, either the rule of ownership of the
workitems by tasks depending on the subdomain they belong to would be broken, or
intertask communication would be required to reassign these workitems to the task
that owns their subdomain. Third and last, there is the proximity characteristic; that
is, that the larger the similarity in the values of the chosen property, the shorter the
distance between the associated workitems in the graph. Very often the processing of a
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workitem requires accessing part of its neighborhood in the graph. If some element(s)
in this neighborhood belong to other tasks the processing is endangered by poten-
tial parallel modifications by other threads. Nevertheless, if all the elements required
belong to the subdomain of the workitem that started the processing, everything is
owned by the task for that subdomain and the processing can proceed successfully.
This way, if the rule of ownership is fulfilled, i.e, all the elements of the graph that
belong to a certain subdomain are owned by the same task, subdomains can be used
not only to partition work, but also to identify potential conflicts. Furthermore, the
process will be efficient if the property chosen to define the work domains implies
proximity for the elements that belong to the same subdomain. For this reason, in algo-
rithms where the processing of a workitem requires accessing its neighborhood, the
characteristics of the affinity of children to parents and proximity are very desirable.

2.1 A Novel Parallelization Scheme Based on Domains

The data-centric partitioning and work assignment just presented is a basic idea that
can be put into practice in very different ways. We propose here a scheme based on
the recursive subdivision of a domain defined on the elements of the irregular data
structure, so that the workitems of each subdomain are processed in parallel, and
the potential conflicts among them are exclusively detected and handled using the
concept of membership of the subdomain. Locality of reference in the parallel tasks is
naturally provided by the fact that most updates in irregular applications are usually
restricted to small regions of the shared heap [22,25]. Our scheme further reinforces
locality if the domain used in the partitioning has the proximity characteristic, so
that the elements associated with a subdomain, and thus with a task, are nearby. The
processing of the workitems begins in the lowest level of subdivision, where there
is the maximum number of subdomains, and thus of parallel tasks. The workitems
that cannot be processed within a given subdomain, typically because they require
manipulations of items associated with other subdomains, are later reconsidered for
processing at higher levels of decomposition using larger subdomains. We now explain
in detail our parallelization method, illustrated in Fig. 2. This figure shows a mesh of
triangles, which can be stored in a graph where each node is a triangle and the edges
connect triangles which are next to each other in the mesh. The big dots represent the
possible limits of the subdomains. In this case, the domain chosen is defined on the
coordinates of the triangles.

2.1.1 Recursive Subdivision

An algorithm starts with an initial worklist, containing nodes from the whole graph
domain, as shown in the initial step in Fig. 2. Before doing any processing, the domain
is recursively subdivided until there are enough subdomains to exploit all the cores
available. The domain decomposition algorithm chosen can have a large impact on
the performance achieved. The reason is that the size of the different parallel tasks
generated, which is critical for the load balancing, and the shape of the subdomains
they operate on, which influences the number of potential conflicts during the parallel
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Fig. 2 Structure of the
domain-based parallelization of
irregular algorithms, exemplified
with a mesh of triangles

processing, largely depend on it. Over-decomposition, i.e., generating more subdo-
mains than cores, can be applied in order to enable load balancing by means of work-
stealing mechanisms. The domain subdivisions implicitly partition both the graph and
the worklist. This logical partitioning can optionally give place to a physical partition-
ing. That is, the graph and/or the worklist can be partitioned in (mostly) separate data
structures so that each one corresponds to the items belonging to a given subdomain and
can be manipulated by the associated task with less contention and improved locality.
We talk about mostly separate structures because for structures such as the graph, tasks
should be able to access portions assigned to other tasks. It is up to the implementation
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strategy to decide which kind of partitioning to apply to each data structure. In our
abstract representation, for simplicity, we show 2 subdivisions to get 4 different sub-
domains, in Steps 1 and 2. Then, in Step 3, a parallel task per subdomain is launched,
whose local worklist contains the elements of the global worklist that fall in its sub-
domain. During the processing of each workitem two special events can happen: an
access to an element outside the local subdomain, and the generation of new workitems
to process. We describe the approach proposed for these two situations in turn.

2.1.2 Conflict Detection

In many algorithms, the processing of a workitem requires accessing a given set of
edges and nodes around it. This set, called the neighborhood, is often found dynami-
cally during the processing and its extent and shape can vary for different workitems.
This way we must deal with the possibility that the neighborhood of a workitem reaches
outside the subdomain of the associated task. Accessing an element outside the local
subdomain is a risk, since it could be in an inconsistent state or about to be modified by
another task. Thus, we propose that whenever a new element in the neighborhood of a
workitem is accessed for the first time, its ownership by the local domain is checked.
If the element belongs to the domain, the processing proceeds. Otherwise there is a
potential conflict and the way to proceed depends on the state of our processing. If the
operation is cautious [27], that is, it reads all the elements of its neighborhood before
it modifies any of them, all it needs to do when it finds an element owned by another
task is to leave, as no state of the problem will have been modified before. Otherwise,
the modifications performed would need to be rolled back.

When a task fails to process a workitem because part of its neighborhood falls
outside its domain, it puts the workitem in a pending list to be processed later, which
is different from the local worklist of workitems to process. The processing of this
pending list will be discussed in Sect. 2.1.4.

Notice that the more neighbors a node has, the higher the chances all its neighbor-
hood does not fit in a single subdomain. For this reason nodes with a large number of
neighbors will tend to generate more conflicts, and thus lower performance, depending
on the domain and decomposition chosen. The programmer could avoid this problem
by choosing a domain with a subdivision algorithm that fits this kind of graphs for the
specific problem she is dealing with. For example the domain and splitting algorithm
could be designed such that nodes with many neighbors always, or at least often, fit
in the same subdomain with their neighbors.

2.1.3 Generation of New Workitems

The new workitems generated by a task that belong to the local subdomain are simply
added to its local worklist, so that the task will process them later. The new workitems
outside the local subdomain can be added to the pending list, so that their processing is
delayed to later stages, exactly as with workitems whose neighborhood extends outside
the local subdomain. Another option is to push them onto the worklists associated with
their domains, so they are processed as soon as possible. The latter option is useful for
algorithms that have a small initial worklist with elements from just one subdomain.
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The processing of the algorithm can start in this subdomain, and the runtime will
spawn new tasks for the neighboring subdomains when they are needed.

2.1.4 Domain Merging

When a subdomain task empties its local worklist, it finishes and the processing can
proceed to the immediately higher level of domain subdivision, as shown in Step 4 in
Fig. 2. The implementation of the change of level of processing can be synchronous
or not. In the first case, the implementation waits for all the tasks for the subdomains
of a given level to finish before building and launching the tasks for the domains in
the immediately upper level. In an asynchronous implementation, whenever the two
child subdomains of a parent domain finish their processing, a task associated to that
parent domain is built and sent for execution. In either case, both child domains of a
given parent subdomain are rejoined, forming that parent domain, and the pending lists
generated in the children subdomains are also joined forming the worklist of the task
for the parent domain. An efficient implementation should perform the merging, and
schedule for execution the task associated with the parent domain, in one of the cores
in which the children run in order to maximize locality. When it runs, the task associ-
ated with the parent domain tries to process the workitems whose processing failed in
the child domains. The task will successfully process those workitems whose neigh-
borhood did not fit in any of the child subdomains, but which fits in the parent domain.
Typically the processing of some workitems will fail again because their neighbor-
hood falls also outside this domain. These workitems will populate the pending list of
the task. This process takes place one level at a time as the processing returns from
the recursive subdivision, until the initial whole domain is reached, and the remaining
elements are processed, which is depicted as the final Step 5 in Fig. 2. This way, the
tasks for all the joined regions—except the topmost one—are processed in parallel.

2.1.5 Discussion

As we have seen, this scheme avoids the need of locks both on the elements of the
graph and on the subdomains and implied partitions generated, thus avoiding the busy
waiting and contention problems usually associated with them. Also, its strategy to
deal with conflicts provides an upper bound for the number of attempts to process
workitems whose neighborhood extends outside the partition assigned to their tasks.
Those workitems are considered at most once per level of subdivision of the origi-
nal domain, rather than being repetitively reexamined until their processing succeeds.
Both characteristics are very desirable, particularly as the number of cores, and there-
fore parallel tasks and potential conflicts, increases. This strategy, though, has the
drawback of eventually serializing the processing of the last elements. But because
of the rejoining process, which tries to parallelize as much as possible the processing
of the workitems whose processing failed in the bottom level subdomains, the vast
majority of the work is performed in parallel. In fact, as we will see in Sect. 5, in our
tests only a very small percentage of the workitems present conflicts that prevent their
parallel processing. This also confirms that optimistic parallelization approaches such
as ours are very suitable for irregular applications [23,24].
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3 The Library

We have developed a C++ library that supports our domain-based strategy to parallelize
irregular applications in shared-memory systems. Programmers are free to use just the
library components, derive from them or implement their own from scratch, as long as
they meet the interface requirements. Our library includes template classes for graphs,
domains, and worklists of elements with the usual semantics. Its most characteristic
component is the algorithm template that implements the parallelization approach just
described, which is

void parallel_domain_proc<bool redirect=false>
(Graph, Worklist, Domain, Operation)

where the name of each parameter indicates the kind of object it expects. This function
is in charge of the domain splitting process, task creation and management, splitting
and merging the worklists, getting elements from them to run the operation, and adding
to the pending worklists workitems whose neighborhood extends outside the current
domain. This skeleton physically partitions the worklists, so that each parallel task has
its own separate worklist, which is of the type provided by the user in the invocation
of the skeleton. Thanks to the physical partitioning, the worklists need not support
simultaneous accesses from parallel tasks. However, the fact that these containers
are extensively read and modified during the parallel execution makes their design
important for performance. The partition of the graph made by our skeleton is only
logical, that is, it is virtually provided by the existence of multiple subdomains, there
being a single unified graph object accessed by all the tasks. This implies that our
library graphs can be safely read and updated in parallel, as long as no two accesses
affect the same element simultaneously—unless they are all reads.

First, the domain, whose class must support the interface shown in Fig. 3, is recur-
sively split, creating several leaf domains. The subdivision process stops when either a
domain is not divisible orparallel_domain_proc decides there are enough tasks
for the hardware resources available. This is the same approach followed by popular
libraries such as [30], which we have used as underlying tool to generate and manage
the parallel tasks. Our current implementation partitions the domain until there are at
least two subdomains per hardware thread. The aim of the over-decomposition is to
balance the load among the threads, as they take charge of new tasks as they finish
the previous one. The initial workload is distributed among these subdomains, assign-
ing each workitem to a subdomain depending on the value of its data. Then a task is
scheduled for each subdomain, which will process the worklist elements belonging
to that subdomain and which will have the control on the portion of the graph that
belongs to that domain.

The Operation to perform on the workitems is provided by the user as a functor,
a function pointer or a C++11 lambda function with the form void op(Workitem∗
e, Worklist& wl, Domain& s). These parameters, which will be provided by

Fig. 3 Required interface for a
Domain class
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our algorithm template in each invocation, are the current workitem to process, the
local worklist and the current subdomain. The local worklist is supplied to receive the
new workitems created by the operation. When accessing the neighbors of a workitem,
the operation is responsible for checking whether they belong to the local subdomain
s. When this is not the case, the operation must throw an exception of a class provided
by our library. This exception, which is captured by our algorithm template, tells the
library to store the current workitem in the pending list, so it can be processed when
the subdomains are joined. The domain classes provided by our library offer a method
that automatically throws this exception when the element checked does not belong
to them.

The boolean template parameter redirect controls the behavior of the algorithm
template with respect to the workitems whose processing fails because their neigh-
borhood extends outside the local subdomain. When redirect is false—which
is its default—they are simply pushed in the task pending list. When it is true, the
behavior depends on the state of the task associated with the workitem subdomain at
the bottom level of subdivision. If this task or a parent of it is already running, the
workitem is also stored in the pending list of the task that generated it. Otherwise,
it is stored in the local worklist of the task that owns its subdomain, which is then
scheduled for execution. To facilitate the redirection of workitems, this configuration
of the algorithm template does not schedule for execution tasks whose worklists are
empty. Notice that redirect is a performance hint, as all the workitems will be cor-
rectly processed no matter which is its value. Redirection mostly benefits algorithms
in which the initial workitems belong to a few bottom level subdomains, and where
the processing gradually evolves to affect more subdomains.

The skeleton builds the worklist of the tasks associated with non-bottom subdo-
mains by merging the pending lists of their respective children. This way, these tasks
try to process the elements that could not be processed in their children. This process
happens repetitively until the root of the tree of domains—i.e., the initial domain
provided by the user—is reached.

4 Tested Algorithms

The four benchmarks used in the evaluation are now described in turn.
Boruvka’s algorithm computes the minimal spanning tree through successive appli-

cations of edge-contraction on the input graph. In edge-contraction, an edge is chosen
from the graph and a new node is formed with the union of the connectivity of the inci-
dent nodes of the chosen edge, as shown in Fig. 4. In the case that there are duplicate
edges, only the one with smallest weight is carried through in the union. Boruvka’s
algorithm proceeds in an unordered fashion. Each node performs edge contraction with
its nearest neighbor. This is in contrast with Kruskal’s algorithm where, conceptually,
edge-contractions are performed in increasing weight order.

The pseudocode for the algorithm is shown in Fig. 5. First, it reads the graph in
Line 1, and fills the worklist with all the nodes of the graph. The nodes of the initial
MST are the same as those of the graph, and they are connected in the loop in Lines
4–9. For each node, the minimum weighted edge to its neighbors is selected in Line 5.
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Fig. 4 Example of an edge
contraction of the Boruvka
algorithm

Fig. 5 Pseudocode of the
Boruvka minimum spanning tree
algorithm

Then, in line 6, this edge is contracted: it is removed from the graph, added to the
MST in Line 7, and one node represents now the current node and its neighbor. This
new node is added to the worklist in Line 8.

The parallelism available in this algorithm decreases over time. At first, all the
nodes whose neighborhoods do not overlap can be processed in parallel, but as the
algorithm proceeds the graph gets smaller, so there are fewer nodes to be processed.

Another benchmark is Delaunay mesh refinement [7]. A 2D Delaunay mesh is
a triangulation of a set of points that fulfills the condition that for any triangle, its
circumcircle does not contain any other point from the mesh. A mesh refinement
has the additional constraint of not having any angle with less than 30 degrees. This
algorithm takes as input a Delaunay mesh that may contain triangles not meeting
the constraint, which are called bad triangles. It produces as output a refined mesh
by iteratively re-triangulating the affected positions of the mesh. Figure 6 shows an
example of a refined mesh.

The pseudocode for the algorithm is shown in Fig. 7, and it works as follows.
Line 1 reads a mesh definition and stores it as a Mesh object. From this object, we
can get the bad triangles as shown in Line 2, and save them as an initial worklist in
wl. The loop between Lines 3 and 9 is the core of the algorithm. Line 4 builds a
Cavity, which represents the set of triangles around the bad one that are going to
be retriangulated. In Line 5 this cavity is expanded so that it covers all the affected
neighbors. Then the cavity is retriangulated in Line 6, and the old cavity is substituted
with the new triangulation in Line 7. This new triangulation can in turn have created
new bad triangles, which are collected in Line 8 and added to the worklist for further
processing.

123



958 Int J Parallel Prog (2014) 42:948–967

Fig. 6 Retriangulation of cavities around bad triangles

Fig. 7 Pseudocode of the
Delaunay mesh refinement
algorithm

The triangles whose neighborhood does not overlap can be processed in parallel,
because there will be no conflicts when modifying them. When the algorithm starts,
chances are that most bad triangles can be processed in parallel.

Our third benchmark, graph component labeling, involves identifying which nodes
in a graph belong to the same connected cluster. We have used the CPU algorithm
presented in [18], whose pseudocode is shown in Fig. 8. The algorithm initializes the
colors of all vertices to distinct values in Lines 6–9. For simplicity we use as initial
color the index or relative position of the node in the container of nodes of the graph. It
then iterates over the vertex set V and starts the labeling procedure for all vertices that
have not been labelled yet, in Lines 11–15. The labeling procedure iterates over the
edge set of each vertex, comparing in Line 21 its color value with that of its neighbors.
If it finds that the color value of a neighbor is greater, it sets it to the color of the current
vertex and recursively calls the labeling procedure on that neighbor in Lines 23 and 24.
If the neighbor has a lower color value, Lines 29 sets the color of the current vertex to
that of the neighbor and Line 30 starts iterating over the list of edges of the node from
the beginning again. As a result of this processing all the nodes in the same connected
cluster end up labelled with the smallest label found in the cluster.

Our last benchmark computes the spanning tree of an unweighted graph. It starts
with a random root node, and it checks its neighbors and adds to the tree those not
already added. The processing continues from each one of these nodes, until the full
set of nodes has been checked and added to the graph. This algorithm is somewhat
different from the ones previously explained, because it starts with just one node in
the worklist, while the others have an initial worklist with a set of nodes distributed
over all the domain of the graph. The pseudocode is shown in Fig. 9.

The aforementioned steps are performed as follows: Line 1 reads the graph, and
Lines 2 and 3 create an empty tree and a worklist with a random node respectively.
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Fig. 8 Pseudocode of the graph
labelling algorithm

Fig. 9 Pseudocode of the
spanning tree algorithm

The loop in Lines 5–10 adds to the MST the neighbors of the current node that are not
already in it, and then inserts such neighbors in the worklist for further processing.

The parallelism in this algorithm works inverse to Boruvka. As it starts with a
single node, the initial stages of the algorithm are done sequentially. As more nodes
are processed, eventually nodes outside the initial domain are checked, allowing new
parallel tasks to start participating in the processing.
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5 Evaluation

All the algorithms required little work to be parallelized using our library. The main
loops have been substituted with an invocation to the parallel_domain_proc
algorithm template, and the only extra lines are for initializing theDomain and check-
ing whether a node belongs to a subdomain. This is shown in Fig. 10. This code
computes the weight of the minimum spanning tree using Boruvka, and stores it in
contracted. This is an atomic integer, because all the tasks are accumulating in
it the weight of the tree as they compute it. We used the C++11 lambda function
notation to represent functions used as argument for algorithm templates, in Lines 5
and 10. The lambda functions used begin with the notation [&] to indicate that all the
variables not in the list of arguments have been captured by reference, i.e., they can be
modified inside the function. Line 5 is a for loop that initializes the worklist and stores
it in wl. Then, Line 9 creates the domain, in this case with a two-dimensional plane
that encompasses the full graph. Finally, the skeleton is run in Line 10. In Line 16,
the helper method of the Domain2D class check_node_and_neighbors checks
whether node lightest and all its neighbors fall within domain d. If not, it throws
an out-of-domain exception.

The impact of the use of a different approach on the ease of programming is not
easy to measure. In this section two quantitative metrics are used for this purpose: the
SLOC (source lines of code excluding comments and empty lines) and the cyclomatic
number [26], which is defined as V = P + 1, where P is the number of decision
points or predicates in a program. The smaller the V , the less complex the program is.

We measured the whole source code for each algorithm and version. The relative
changes of these metrics are shown in Fig. 11 as the percentual difference between

Fig. 10 Boruvka algorithm implemented with our library
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Fig. 11 Relative percentages of
the SLOCs and the cyclomatic
number of the parallelized
version with respect to the
sequential one

the parallel and the sequential version. It can be seen that despite the irregularity of
the algorithm, only small changes are required in order to go from a sequential to
a parallel version, and the growth of any complexity measure is at most 3 % in the
parallel version. In fact, in the case of the cyclomatic number, it is often lower for the
parallel version than for the sequential one. This is because there are conditionals that
are hidden by the library, such us the check for nonexistent workitems. This way, the
simplicity of the parallelization of irregular algorithms using our library is outstanding.

The speed-ups achieved, calculated with respect to the serial version, are shown
in Fig. 12. The system used has 12 AMD Opteron cores at 2.2 GHz and 64 GB. The
Intel icpc v12 with −fast optimization level was used. The inputs of the algorithms
were:

Boruvka A graph defining a street map with 6 × 106 nodes and 15 × 106 edges,
taken from the DIMACS shortest path competition [34]. In this graph, the nodes
are labeled with the latitude and longitude of the cities, so we can use a two-
dimensional domain.
Delaunay Mesh Refinement A mesh triangulated with Delaunay’s trian-
gulation algorithm with 105 triangles, taken from the Galois project input
massive.2 [24]. With this mesh, a graph is built where each node correspond to
one triangle. We use the coordinates of the first vertex of the triangle as the label
of the node, to use it with a two-dimensional domain.
Graph labeling Disjoint graph with 3 × 106 nodes and 8 × 106 edges distributed
on at least 104 disconnected clusters, similar to those in [18]. In this graph, each
node has a unique and consecutive ID in a one-dimensional domain.
Spanning tree A regular grid with height 3000 and width 3000 grid points, where
each node except the boundary nodes has 4 neighbors. The grid structure allows
us to assign x and y coordinates to each node, therefore making it suitable for a
two-dimensional domain.

The parallel times were measured using the default behavior of generating two bottom-
level subdomains per core used. Since the number of subdomains generated by our
skeleton is a power of two, 32 subdomains were generated for the runs on 12 cores.

The minimal slowdown in Fig. 12 for a single processor shows that the overheads
of the skeleton are very small. This was expected because the irregular access patterns
characteristic of these algorithms, coupled with the small number of computations in
most of these benchmarks, turn memory bandwidth and latency into the main factor
limiting their performance.
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Fig. 12 Speedups with respect to optimized serial versions

The speedups achieved are very dependent on the processing performed by each
algorithm. Namely, labeling and spanning, which do not modify the graph structure,
are the benchmarks that scale better. Recall that labeling only modifies data (the color
of each node), while spanning inspects the graph from some starting point just adding
a single edge to the output graph whenever a new node is found. Delaunay refinement
operates on a neighborhood of the graph removing and adding several nodes and edges,
but it also performs several computations. Finally Boruvka is intensive on graph mod-
ifications, as it involves minimal computations, and it removes and adds an enormous
number of nodes and, particularly, edges. This way the latter two algorithms suffer
from more contention due to synchronizations required for the simultaneous deletions
and additions of their parallel tasks on the shared graph. An additional problem is
that parallelization worsens the performance limitations of these algorithms due to
the memory bandwidth because of the increasing number of cores simultaneously
accessing the memory. For these reasons, the speedups achieved are typical for such
applications [23,32].

Speedups are also very dependent on the degree of domain over-decomposition
used. Figure 13 shows the relative speedup achieved using 8 cores with several levels
of over-decomposition with respect to the execution without over-decomposition, that
is, the one that generates a single bottom-level subdomain per core. In the figure,
n levels of over-decomposition imply 2n subdomains per core. This way the results
shown in Fig. 12 correspond to the first bar, with one level of over-decomposition.
We can see that just by not over-decomposing the input domain, Delaunay refinement
gets a very important performance boost, while spanning successfully exploits large
levels of over-decomposition.

Figure 14 shows the percentage of elements that fall outside the domain, and there-
fore have to be deferred to upper levels of domain subdivision, also for runs with
8 cores. It is interesting to see that even when we are not using a small number of
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Fig. 13 Relative speedup with respect to no over-decomposition in runs with 8 cores. 100 is the baseline,
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cores, and thus of subdivisions of the domain, the number of workitems aborted never
exceeds 3 % in the worst case. These values help us explain the results in Fig. 13.
Labeling has no conflicts because in its case the role of the domain is only to partition
the tasks; when two tasks operate simultaneously on an area, the one with the small-
est color will naturally prevail. So over-decomposition does not play any role with
respect to conflicts in this algorithm; it only helps its load balancing. As for Delau-
nay refinement, even when only 3 % of its workitems result in conflicts, this ratio is
proportionally much higher than for the other algorithms, and their individual cost
is also larger. This way, although decreasing over-decomposition might reduce load
balancing opportunities, this is completely offset by the important reduction in the
number of conflicts. Spanning is the second algorithm in terms of conflicts, but two
facts decrease their importance for this code. First, this algorithm begins with a single
workitem from which the processing of neighboring domains are later spawned. This
way if there is no over-decomposition some threads begin to work when the processing
reaches their domains, and stop when their domain is completely processed. This leads
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to a very poor usage of the threads. Over-decomposing allows threads that finish with
a given subdomain to begin working on new domains reached by the processing. The
second fact is that delayed workitems because of conflicts often find that they require
no additional processing when they are reconsidered in an upper level of subdivision
because they were already connected to the spanning tree by their owner task at the
bottom level. Finally, Boruvka has relatively few conflicts and their processing cost
is neither negligible nor as large as in Delaunay refinement. Thus, a small degree of
over-decomposition is the best in terms of balancing the amount of work among the
threads, potentially more so for an increasing number of subdomains, and the number
of conflicts, which also increase with the number of subdomains.

6 Related Work

Since our strategy relies on partitioning the initial work to perform in chunks that can be
mostly processed in parallel, our approach is related to the divide and conquer skeleton
implemented in several libraries [8,10,15,30]. Nevertheless, all the previous works of
this kind we are aware of are oriented to regular problems. As a result those skeletons
assume that the tasks generated are perfectly parallel, providing no mechanisms to
detect conflicts or to deal with them once found. Neither do they support the dynamic
generation of new items to be processed by the user provided tasks. This way, they
are not well suited to deal with the irregular problems we are considering.

One of the approaches to deal with amorphous data parallel algorithms is Hardware
or Software Transactional Memory (HTM/STM) [19]. HTM limits, sometimes heav-
ily, the maximum transaction size because of the hardware resources it relies on. The
Blue Gene/Q was the first system to incorporate it, and although it is present in some
Top500 supercomputers, its adoption is not widely spread. Several implementations
exist for STM [16,31], but their performance is often not satisfactory [5]. With STM,
the operations on an irregular data structure are done inside transactions, so when a con-
flict is detected, such as overlapping neighborhoods for two nodes, it can be rolled back.

Another hardware option is Thread Level Speculation (TLS) [29], which from a
sequential code creates several parallel threads, and enforces the fulfillment of the
semantics of the source code using hardware support. But, just as the solutions based
on transactional memory, it cannot take advantage of the knowledge about the data
structure as ours does.

The Galois system [24] is a framework for this kind of algorithm that relies on
user annotations that describe the properties of the operations. Its interface can be
simplified though, if only cautious and unordered algorithms are considered. Galois
has been enhanced with abstract domains [23], defined as a set of abstract processors
optionally related to some topology, in contrast to our concept of set of values for
a property of the items to process. Also, these domains are only an abstraction to
distribute work, as opposed to our approach, where domains are the fundamental
abstraction to distribute work, schedule tasks and detect conflicts, thus eliminating the
need of locks and busy waits found in [23]. Neither do we need over-decomposition
to provide enough parallelism, which allows for higher performance in algorithms
with costly conflicts, as Delaunay refinement shows in Fig. 13. Finally, lock-based
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management leads conflicting operations in [23] to be repeatedly killed and retried
until they get the locks of all the abstract processors they need. Nevertheless, the
computations that extend outside the current domain in our system are just delayed to
be retried with a larger subdomain. This way the number of attempts of a conflicting
task is at most the number of levels of subdivision of the original domain. With
the cautions that the input and implementation languages are not the same and that
they stop at 4 cores, our library and Galois yield similar speedups for Delaunay in a
comparable system [23].

Chorus [25] defines an approach for the parallelization of irregular applications
based on object assemblies, which are dynamically defined local regions of shared
data structures equipped with a short-lived, speculative thread of control. Chorus fol-
lows a bottom-up strategy that starts with individual elements, merging and splitting
assemblies as needed. These assemblies have no relation to property domains and their
evolution, i.e., when and with whom to merge or split, must be programmatically spec-
ified by the user. We use a top-down process based on an abstract property, and only a
way to subdivide its domain and to check the ownership are needed. Also, the evolution
of the domains is automated by our library and it is oblivious to the algorithm code.
Moreover, Chorus is implemented as a language, while we propose a regular library in
a widely used language, which eases the learning curve and enhances code reusability.
Also, opposite to Chorus’ strategy, ours does not require locks, which favors scala-
bility, and there are no idle processes, so the need for over-decomposition is reduced.
Finally, and in part due to these differences, our approach performs noticeably better
on the two applications tested in [25].

Partitioning has also been applied to an irregular application in [32]. Their parti-
tioned code is manually written and it is specifically developed and tuned for the single
application they study, Delaunay mesh generation. Additionally, their implementation
uses transactional memory for synchronizations.

7 Conclusions

Amorphous data parallelism, found in algorithms that work on irregular data structures
is much harder to exploit than the parallelism in regular codes. There are also few
studies that try to bring structure and common concepts that ease the parallelization
of these algorithms. In this paper we explore the concept of domain on the data to
process as a way to partition work and avoid synchronization problems. In particular,
our proposal relies on (1) domain subdivision as a way to partition work among
tasks, on (2) domain membership, as a mechanism to avoid synchronization problems
between tasks, and on (3) domain merging to join worksets of items whose processing
failed within a given subdomain, in order to attempt their processing in the context of
a larger domain.

An implementation of our approach based on a skeleton operation and a few classes
with minimal interface requirements is also presented. An evaluation using several
benchmarks indicates that our algorithm template allows to parallelize irregular prob-
lems with little programmer effort, providing speed-ups similar to those typically seen
for these applications in the bibliography.
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As for future work, we plan to enable providing more hints to the library to improve
load balancing and performance. Relatedly, the usage of domains that rely on well-
known graph partitioners [21,28] for their splitting process is a promising approach to
explore the generation of balanced tasks, particularly when the user lacks information
on the structure of the input. Also, methods to backup data to be modified so that they
can be restored later automatically by the library if the computation fails can be added
in order to support non-cautious operations. Finally, making a version of the library
suited to distributed memory systems would allow to process very large inputs. The
library is available upon request.
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