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Abstract High definition video applications often require heavy computation, high
bandwidth and high memory requirements which make their real-time implemen-
tation difficult. Multi-core architecture with parallelism provides new solutions to
implementing complex multimedia applications in real-time. It is well-known that the
speed of the H.264 encoder can be increased on a multi-core architecture using the
parallelism concept. Most of the parallelization methods proposed earlier for these
purposes suffer from the drawbacks of limited scalability and data dependency. In
this paper, we present a result obtained using data-level parallelism at the Group-Of-
Pictures (GOP) level for the video encoder. The proposed technique involves each
GOP being encoded independently and implemented on JM 18.0 using advanced
data structures and OpenMP programming techniques. The performance of the par-
allelized video encoder is evaluated for various resolutions based on the parameters
such as encoding speed, bit rate, memory requirements and PSNR. The results show
that with GOP level parallelism, very high speed up values can be achieved without
much degradation in the video quality.
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1 Introduction

H.264 video codec is an advanced video codec and popularly used for low bit-rate,
multiple profiles and high video quality compression [1]. H.264 is used in many video
services such as YouTube, Blu-ray discs, HDTV, live video conferencing etc. The
H.264 design includes a network abstraction layer (NAL) and flexible macro-block
ordering (FMO). NAL provides a network-friendly bit stream of video by placing
the video data in a rational data packet called NAL unit (NALU) [2]. FMO provides
the capability to divide the picture into areas called slice clusters, which significantly
reduce the data corruption due to data losses. Additional functionality offered in H.264
codec includes scalable video coding and multi-view coding (MVC). Scalable video
coding (SVC) provides the ability to create sub-bit streams which however, leads
to lower spatial resolution or lower temporal resolution [3]. MVC provides multiple
views of the same scene as a digital 3D image. It is difficult to implement H.264 in
practice with all its features due to its complexity [4]. H.264 encoder consumes a lot
of resources during the encoding process. It is often highly desirable to reduce the
encoding time especially in applications where timing is an important factor such as
real-time encoding for live streaming.

In general, a single-core processor will perform the reading and execution of instruc-
tions in a serial manner and hence its performance cannot be improved without increas-
ing the clock speed. However, there is a limit on the achievable clock speed due to
power and heat dissipation problems. Hence, an alternative solution to achieve higher
speed would be to use multi-core processors [5]. If the H.264 reference software with
JM18.0 [1] is executed on a multi-core processor, the CPU capacity of the processor
will not be fully utilized because the encoder is not parallelized. To exploit the capabil-
ity of a multi-core processor, it is necessary to introduce multi-threading and parallel
programming methods [6]. Multi-threaded programming splits the serial program into
multiple threads so that the threads can be processed by different cores simultaneously.
Ideally, this will speed up a program by a factor, which will be equivalent to the number
of cores.

In this paper, a parallel encoder is suggested and the results obtained using GOP
parallelism for H.264 encoder using JM18.0 with high profile is presented. In imple-
menting the parallelism concept, the software JM 18.0 is optimized, restructured and
modified using OpenMP programming. The performance of the proposed technique
is evaluated by conducting experiments with different video sequences of resolutions
Quarter Common Intermediate Format (QCIF), Common Intermediate Format (CIF),
Standard Definition (SD) and High Definition (HD). The experimental results show
that with the proposed GOP parallelism, higher speedup values which are closer to
the theoretical values can be achieved.

The rest of the paper is organized as follows: Earlier works on parallelization of
H.264 are explained in Sect. 2. The methodology and experimental setup used in this
paper for simulation are described in Sect. 3. This section also gives a description on
the dynamic parallelism with the GOP access pattern. Section 4 presents a detailed
explanation of the H.264 parallelism implementation with the GOP access pattern on
a multicore architecture. The simulation results are presented in Sect. 5. Conclusions
and future work are described in Sect. 6.
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2 Literature Review on H.264 Parallelism

The scalability and the load balancing are the two major concerns when parallelizing
a program. Scalability implies the maximum number of threads that can be created in
a parallel program. The implementation of load balancing is important to ensure that
all processing cores are sharing an equal amount of work. Ideally, all cores must have
equal loads implying that all of them have equal processing times. In a paper reported
earlier [7], it was shown that high speed- up values can be achieved using GOP level
parallelism for QCIF and CIF resolutions. In this paper we extend our work for higher
resolution video sequences such as SD and HD. Further we also make use of some
advanced data structures such as non-temporal and MALLOC functions for minimizing
the latency and memory stalls. Parallel execution of encoding and decoding has been
reported in several papers [7–11]. These approaches have limitations with regard to
scalability, latency and load balancing for large number of cores.

A parallel implementation of H.264 encoder based on the hybrid version of GOP
and frame-level parallelism on clustered workstations using MPI has been reported
by Rodriguez et al. [8]. In [8], the authors have used MPI, which has large com-
munication overhead whereas in this research work OpenMP is used which has low
latency, high bandwidth and allows run-time scheduling with dynamic load balanc-
ing. The advantage of GOP-level parallelism is that it does not have data dependencies
since each GOP starts with a new video sequence. Thus, there is no communication
overhead and no synchronization is needed between processors or cores. Besides,
GOP-level parallelism has a high scalability due to the large number of GOPs present
in the video. Frame and slice-level parallelisms suffer from the problem of scalability
due to the fact that only a limited number of B-frames will normally be present in
a video sequence and similarly only a limited number of slices will be present in a
frame.

However, GOP-level parallelism requires a large amount of memory for storing all
decoded frames especially with higher resolutions [16]. Though real -time operation
is possible with this setup, it has the problem of higher latency. Antonio et al. [9],
have implemented macro-block level and slice level parallelisms and achieved good
speedup values. The results of the implementation methods reported in [10,11] leads to
many memory stalls. This problem is solved in the proposed approach by dynamically
detecting the dependencies and exploiting the parallelism automatically. We show that
by using the dynamic scheduling technique and some advanced data structures, we can
minimize the cache trashing thereby reducing the memory stalls. VanderTol et al. [12],
proposed MB level and static frame level parallelism and explained the utilization of
spatial MB-level parallelism. In this approach, MB-level parallelism is merged with
frame-level parallelism. In [13], the frame-level parallelism is implemented in a static
manner using motion vectors. Gurhanl et al. [14,15], have implemented H.264 decoder
with GOP parallelism. The technique used by these authors in implementing GOP
parallelism for decoder has problems such as latency, load balancing and memory
limitation for higher resolution video sequences. Alvvarez et al., introduced dynamic
frame level parallelism associated with MB level parallelism. Techniques for analyzing
the scalability in terms of parallelism are suggested by Cor Meenderinck et al. [16,
17].
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Parallelism of the H.264 encoder can basically be divided into two categories,
namely, task domain decomposition and data domain decomposition [18,19]. The
main idea in task domain decomposition is to split the encoder’s tasks among the
threads. Decomposition of task is identified by the functions in the program. The data
domain decomposition method, also known as the loop level parallelism, explores the
idea of distributing the data into multiple threads for processing [20,21].

3 Methodology and Simulation Environment

The main motivation for implementing on GOP level parallelism for video encoding is
that GOP’s are independent of each other and a single master thread controller can be
used to distribute GOP’s to available threads. However, GOP level parallelism requires
more memory [8]. In the proposed method, the problem of high memory requirement
is solved using a dynamic scheduling approach in which information pertaining to
only three frames is stored in the main memory. The remaining frames in each GOP
are stored in a temporary buffer. It is assumed that only two frames in each GOP
are used for reference. Furthermore, some changes are also implemented in the data
structures for optimizing the memory required.

The reference software JM 18.0 of H.264/AVC codec comprises encoder (lencod)
and decoder (ldecod). JM 18.0 is based on serial programming, which encodes and
decodes the set of frames serially making the encoding and decoding times longer. In
this paper, the emphasis is on the speedup of H.264 encoder. The video sequences are
divided into a set of frames which are called the GOP’s and the GOP’s are then encoded
in parallel on multi-core platform. Before applying the parallelization concept, the
redundancy or unused codes are removed and modified in order to efficiently utilize
the memory cache access. With this modification, the data access parameters can be
dynamically stored and removed leading to significant reduction of memory usage.

In this section, GOP-level parallelism method with dynamic scheduling is
described. The proposed technique checks the thread status in a dynamic manner,
so that the latency problem is significantly reduced and it also improves the scala-
bility. The computations of processing cores are modeled based on the number of
cycles. In this implementation, an Intel i7 platform is used for simulating a 4 physi-
cal cores system and as an 8 logical cores system using hyper-threading technology.
It is assumed that, each core has an independent data-cache (L1) and data can be
copied from additional caches (L2 and L3) through four channels. In this approach,
one thread controller and 2–8 slave threads are created depending on the number of
threads required. To record the encoder’s elapse time, all existing native services and
processes in the cores should be closely monitored and controlled. It is also impor-
tant to ensure that the computer is not running any additional background tasks during
encoding as it will incur additional overhead to the processor. The experimental results
are obtained based on H.264 high profile using I, P and B frames. The experiments
are conducted using JM 18.0 reference software and compiled with Microsoft Visual
Studio 2010 using an Intel i7 platform as described below:

Intel CoreTM i7 CPU 930, running at 2.8 GHz with four 32 KB D-Cache (L1), four
32 KB I-Cache (L1), four 256 KB cache (L2) with 8-way set associative and 8 MB
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L3 cache with 16-way set associative and 8 GB RAM. The operating system used is
Windows 7 64 bits Professional version.

The following are some of the additional settings that are used to create the test
environment:

• All external devices are disconnected from the computer excluding the keyboard
and mouse

• All drivers for network adapters are disabled
• Windows Aero, Gadget, Firewall is disabled
• Power setting is changed to “Always on” for all devices
• All extra windows features are removed with the following exceptions:

• Microsoft .net framework

All simulations are performed under this controlled environment and the encoder’s
elapsed time is recorded using Intel Parallel Studio’s 2011 Vtune Amplifier and AMD
code analyst. The memory leaks are analyzed using Intel Parallel Inspector 2011. The
parallel programming is implemented using OpenMP technique. The resolutions of the
video sequences used in the simulation are mainly (SD) and (HD) resolutions. This
paper presents an enhanced parallelization approach that provides good scalability.
GOP-level parallelism has many advantages over other methods in terms of scalability,
independency, load balancing and utilization of the processing cores. The scalability
is tested by increasing the number of processing cores and applying homogeneous
software optimization techniques to each core.

4 Implementation of Scalable Gop Parallelism on H.264 Video Encoder

4.1 Master Thread Controller

In order to attain better data-level parallelism, the processing elements should be
independent with regard to the data. In the proposed GOP-level parallelism, each GOP
is processed with a separate thread and closed GOPs are used. Though the threads are
processed independently, dependency exists within the GOP. The dependency that
exists among Intra, Prediction and Bi-prediction frames in a GOP, which may not
affect the process. Since every GOP initiates with an Intra frame to encode, followed
by the prediction frame and the bi-prediction frames. Figure 1 shows the GOP data
access pattern with two threads on an Intel i7 platform. In the proposed approach,
all the frames of a GOP are stored in a temporary buffer and sequentially transferred
to the corresponding threads for processing. Using the Intel i7 4-core configuration,
the structure of scalable GOP level parallelism with 4threads is shown in Fig. 2. In a
similar way, 8 threads can be created for the Intel i7 platform using Hyper-threading
for 8-logical core configuration. In this implementation, video sequences are divided
into GOPs according to the preset number of frames. The data of each frame in each
GOP are arranged in the sequence of IBBP…. BBPBB and are stored in a temporary
buffer. All GOPs with threads are scheduled using the scheduler and controlled by
a master thread control unit as shown in Fig. 2. In this implementation, L2 and L3
caches are used effectively. In Intel i7 platform, either 4-core or 8-core configuration,
the L2 or L3 caches are connected to the main memory with a separate bus.
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Fig. 1 First two GOPs access pattern on threads
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Fig. 2 Implementation of scalable parallelism at GOP level with four threads

4.2 Dynamic Scheduling Algorithm

A Dynamic Scheduling Algorithm is designed to assign raw video sequences into
temporary buffer. The steps involved in this scheduling are as follows:

1. Storing of video sequences in external memory
2. Dividing the video sequences into GOPs and assigning a reference id to each GOP
3. While looping for (not the end of the sequence)

(i). Check the Rate Distortion (RD) cost of the frames in the GOP
(ii). Check the encoding parameters (search pattern of motion estimation)

4. Encode the GOP according to the reference id
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5. Write the encoded frames into the external memory
6. After completely encoded a GOP, reference id will be increased
7. Exit if reference id is equal to the total number of GOPs
8. Else repeat steps 4 to 7

For the calculation of the total elapsed time, step 5 is omitted as it is a common
overhead incur for both parallel and sequential encoding.

In the proposed dynamic scheduling algorithm, no dedicated thread is used for task
scheduling. Instead, any available thread can be used for performing. The scheduling
algorithm attempts to minimize the barrier wait [22,23]. It is possible to enforce a
flush system for all the parallel threads, which updates the encoded GOP information.
Figure 3 shows the structure of parallelism with barrier. The controller continuously
keeps track of the threads and sends frames to the idle threads. One thread is assigned
for each GOP for execution. Each thread executes the same operation on different
frames, thus ensuring that all threads take the same processing time. The balancing of
tasks in the GOPs is performed by determining the execution time of each function
dynamically thus solving the load balance problem. Using the RD cost, the type
of frame (I, B, or P) is determined and the referencing is performed for encoding
accordingly [2].

4.3 Data Structures for Memory Optimization

The source code of JM18.0 is dispersed with pointers all over the location. Each
structure has a pointer that will point to all the structures. The entire structure is
tangled together by these pointers. These pointers work fine serially. However, it
causes pointer and memory access issues when parallelized. This is due to the fact
that when making a structure private to a processing core, the pointer’s value is made
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private but not the pointed memory location by the pointer. There are actually 2 parts
to take note when resolving this issue. The first part is the fact that the structures in
the lower hierarchy having pointer pointing to any structure that is above it in the
hierarchy. The second part is the fact that some structures are using pointer to another
structure in lower hierarchy. In the original source code of JM18.0, the pointers are
replaced with suitable data structures. To resolve the pointer to the structure, the
encoding parameter structure p_Enc (JM 18.0 encoder code) is made into a global
variable and all structures are directly or indirectly pointed to this structure [1]. This
provides flexibility in pointer structures. For example, whenever there is a need to
make a pointer private, the value of the pointer is copied to another memory location
and then de-referenced from its variable. Finally, within the parallelized region, the
private variable will be updated directly into the structure p_Enc. In order to store the
GOP’s references, the proposed encoder is implemented with advanced data structures,
which eliminates the need for the extra picture buffer. Using Intel Parallel Studio’s
2011 Vtune Amplifier, it is observed that the memset function is taking most of the
time to set memory locations for specific values. In JM 18.0 encoder, most of the
calls to memset is done by calloc function, for allocation of memory locations. All
calloc functions are replaced by malloc, which allocates memory and also reduces
the memory stalls [22,23]. The malloc function reduces the runtime and improves
speedup value in a significant manner. In JM reference software, for transferability or
compactness purposes, all the memory allocations are performed with an initialization.
To solve the scalability and latency issues that occur for large volumes of data, the ‘non-
temporal stores’ function [22] is used which stores data straight to the main memory
without going through cache allocation which makes the memory initialization faster.
The use of ‘non-temporal stores’ function provides better scalability, since all the cores
will work independently. Figure 4 shows the flow chart illustrating the steps involved
in the proposed GOP based encoding process.

5 Experimental Results and Discussions

5.1 Load Balancing

In order to improve the parallel performance, the proposed algorithm starts the GOP
encoding and reading processes at the earliest possible instants and continues without
any overlap between the cores. This process minimizes the communication delays
between the processors without affecting the parallel execution time. In the proposed
implementation, the processors handle the GOPs dynamically and this improves the
load balance. The CPU usage graphs before and after parallelization are shown in
Figs. 5a, b, respectively. From these graphs, it can be observed that all the four cores
are equally balanced after the implementation of GOP parallelism.

5.2 Memory Utilization

The main bottleneck for GOP level parallelism implementation is the memory issue
since each GOP processing deals with a large amount of data resulting in many memory
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Fig. 4 Flow chart of GOP parallelism encoding process

load and store operations. Especially, when each core doesn’t have a direct path to
the memory for read and write operations, the bandwidth becomes insufficient for
parallel working cores. In order to resolve these issues, the proposed method utilizes
the memory effectively by using advanced data structures such as malloc and non-
temporal functions. Table 1 shows the number of cache access and cache misses per
frame with respect to the data cache (L1) during the encoding process. The results
shown in Table 1 indicate the miss rates are much lower compared to those obtained by
other researchers’ results [18–21]. This is due to the fact that GOP parallelism performs
more processes per frame with the better data neighborhood in the data cache. From the
analysis of different frames with the cache access and misses, it is observed that P and
B frames have more data misses than I frame. This is due to the fact that B frames refer
to multiple frames. This problem occurs only in higher resolutions (HD and FHD). To
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(a) CPU usage before parallelization with original JM18.0

(b) CPU usage after parallelization of JM 18.0

Fig. 5 Performance of CPU load balance

Table 1 The results of parallel encoding of high motion video sequence (rush_hour_HD)

Sequences Cache access Cache misses

Sunflower_SD 358 × 106 3.8 × 106

Sunflower_HD 562 × 106 7 × 106

Rush_hour_SD 363 × 106 4 × 106

Rush_hour_HD 575 × 106 7.4 × 106

minimize this effect in the proposed method, only two B frames are used in between I
or P to minimize referencing. In this implementation referencing is done dynamically.
It is also observed that the bus activities do not increase significantly when the number
of threads is increased. The elapse time is reduced by better utilization of the system
by exploiting the optimum thread-level parallelism.

To find the optimum number of frames in a GOP, the GOP size varies from 3 to
20 and the corresponding encoding time, bit rate and PSNR values are recorded. The
results obtained for Intel i7 platform with 4 threads configuration is shown in Fig. 6.
The results for the case of 2 and 8 threads (Hyper-threading) are almost similar to
those shown in Fig. 6. As seen from Fig. 6a, b optimum encoding time and bit-rate
is achieved for GOP size 15 and hence further experiments are performed using this
GOP size.

5.3 PSNR, Encoding Time and Bit-Rate Values

The results obtained for PSNR, total encoding time and bit-rate using GOP size of
15 are presented in Tables 2, 3, 4, 5 for two types of video sequences (with slow and
high motions) for SD (720 × 576) and HD (1280 × 720) resolutions. The results have
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(a) Encoding time versus GOP size

(b) Bit-rate versus GOP size
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Fig. 6 GOP size with different parameters

Table 2 The results of parallel encoding of low motion video sequence (sunflower_SD)

Parameters Configuration

Original JM 2 threads 4 threads 8 threads

Average PSNR (dB) 43.24 43.24 43.24 43.24

Total encoding time (min) 562.18 286.24 146.4 73.77

Bit-rate (Mbit/s) 42.35 42.35 42.35 42.35

been obtained by performing tests with 300 frames for a sequence using 2, 4 and 8
threads and compared to the original JM results on the same platform. Table 2 shows
the results of slow motion (sunflower_SD) video sequence. Table 3 shows the results
of high motion (rush_hour_SD) video sequence. Table 4 shows the results of slow
motion (sunflower_SD) video sequence. Table 5 shows the results of high motion
(rush_hour_HD) video sequence.

It is seen from the results shown in Tables 2, 3, 4, 5 that a significant reduction in
the encoding time has been achieved using GOP parallelism. Also we note that the
implementation of this method has not resulted in any change in the bit rate of the
output file.

The encoding results (PSNR and bit rate) presented in Tables 2, 3, 4, 5 show clearly
that the GOP parallel implementation scheme does not affect the PSNR and bit-rate
values. These results have been achieved without any extra computational overhead.
For the sake of subjective comparison, samples of video frames obtained using parallel

123



942 Int J Parallel Prog (2014) 42:931–947

Table 3 The results of parallel encoding of high motion video sequence (rush_hour _SD)

Parameters Configuration

Original JM 2 threads 4 threads 8 threads

Average PSNR (dB) 43.06 43.06 43.06 43.06

Total encoding time (min) 586.59 298.67 152.65 76.98

Bit-rate (Mbit/s) 45.19 45.19 45.19 45.19

Table 4 The results of parallel encoding of low motion video sequence (sunflower_HD)

Parameters Configuration

Original JM 2 threads 4 threads 8 threads

Average PSNR (dB) 44.19 44.19 44.19 44.19

Total encoding time (min) 1, 062.18 540.82 276.6 139.39

Bit-rate (Mbit/s) 259.19 259.19 259.19 259.19

Table 5 The results of parallel encoding of high motion video sequence (rush_hour _HD)

Parameters Configuration

Original JM 2 threads 4 threads 8 threads

Average PSNR (dB) 44.25 44.25 44.256 44.25

Total encoding time (min) 1, 092.24 556.13 284.43 143.33

Bit-rate (Mbit/s) 273.56 273.56 273.56 273.56

and sequential encoding schemes are shown in Fig. 7. Figure 7a, c represent the video
samples obtained using sequential encoding scheme and Fig. 7b, d represent the video
samples obtained using parallel encoding scheme. It is clear from Fig. 7 that the quality
of the parallel encoded video frame is identical to that of the sequentially encoded video
frame.

Figure 8 shows the PSNR results obtained for different number of threads using i7
platform for SD and HD resolutions.

5.4 Speedup Performance

According to Amdahl’s law, the speedup that can be obtained with no threads is given
by [21]:

speedup = 1

rs + rp
n

where rp is parallel ratio, rs is serial ratio (1 − rp) and n is the number of threads.
Using Intel Parallel Studio Vtune Amplifier the following results are obtained with
different threads.
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Fig. 7 The quality of parallel GOP encoded video versus non parallel encoded video
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1. With 2 threads configurations, we get the parallel ratio of rp = 0.98 and rs = 0.02,
respectively. With these values, the speedup that is obtained according to Amdahl’s
law is 1.96, which is very close to the maximum speed up to 2 for a 2 core system.
This shows that the 2 processing cores are utilized effectively when the other 2
cores are kept idle.

2. With 4 threads configurations, the parallel ratios are rp = 0.994 and rs = 0.006.
With these values, the speedup achieved is 3.93, which is very close to the maxi-
mum speed up of 4.

3. With 8 threads configurations, the parallel ratio of rp = 0.991 and rs = 0.009 are
obtained. In this case, the value of speed up obtained is 7.62. This value is not very
close to the maximum speed up of 8 even though dynamic scheduling is used to
reduce the barrier. This is due to the fact that the system is only having 8 logical
cores and only 4 physical cores.

Figure 9 presents the speedup values obtained according to Amdahl’s law using
GOP level parallelism for four different video sequences (Crew, Harbour, City and
Soccer) with HD resolution. These values are higher compared to those obtained by
using other types of parallelism [6–8,17–21]. Figure 10 shows the speedup versus the
number of cores for the soccer video sequence with QCIF, CIF, SD and HD resolutions.
In this case also, it can be observed that the resulting speed up values is very close to
the ideal or theoretical values. In Figs. 9 and 10, the same speedup value is obtained
for a particular video sequence irrespective of its resolution (QCIF, CIF, SD and HD).

Figure 11 shows the results obtained using different number of thread configurations
for HD videos. It is observed that the speedup is almost constant (or slightly lower)
when the number of threads exceeds the number of cores. This is due to the fact that
additional overheads are required to preempt, schedule and perform context switching.
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Fig. 11 Speedup attained for GOP level parallelism with HD resolution (rush_hour video)

Additional buffers are also needed to hold the information or to process the extra
threads.

In Fig. 11, it is shown that without parallelism, identical speedup values are achieved
for multi-core processors, since all are using single thread configuration only. The
results obtained demonstrate significant speedup improvement on the Intel i7 plat-
form with 2 threads, 4 threads and 8 threads configurations. These results are better
compared to those obtained using parallelization at macro-block level, frame level
and slice-level parallelism [6,8,17,18]. Furthermore, the experimental results show
clearly that the proposed technique does not degrade the quality of the video which
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may not be the case when other parallelization techniques are adopted. Though the
proposed approach leads to less latency values compared to other known techniques,
for applications involving Full HD video real-time implementation is still a problem.

6 Conclusion

In this paper, we have presented a method based on GOP level parallelism for H.264
video encoder and tested its performance using Intel i7 platform with 2 threads, 4
threads and 8 threads configurations. The proposed parallelization strategy can over-
come many shortfalls of the other known methods such as scalability issues and data
dependency constraints. The experimental results shown that the GOP-level paral-
lelism strategy efficiently exploits the capabilities of the multicore processors. The
speedup values obtained using 2 threads, 4 threads and 8 threads configurations are
1.96, 3.93 and 7.62, respectively. These values are higher compared to those achieved
using other levels of parallelism. Although, the focus of this paper is on the use of
H.264 encoder for video processing, the proposed technique can be applied to other
video codecs as well as for computationally intensive multimedia applications.
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