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Abstract The introduction of auto-tuning techniques in linear algebra shared-memory
routines is analyzed. Information obtained in the installation of the routines is used at
running time to take some decisions to reduce the total execution time. The study is
carried out with routines at different levels (matrix multiplication, LU and Cholesky
factorizations and linear systems symmetric or general routines) and with calls to
routines in the LAPACK and PLASMA libraries with multithread implementations.
Medium NUMA and large cc-NUMA systems are used in the experiments. This vari-
ety of routines, libraries and systems allows us to obtain general conclusions about
the methodology to use for linear algebra shared-memory routines auto-tuning. Sat-
isfactory execution times are obtained with the proposed methodology.
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1 Introduction

The appearance of multicore and cc-NUMA systems has led to the need to develop
optimized software for this type of systems. Software optimization techniques are
used in parallel routines to decide how to execute them with low execution times.
Decisions are taken at running time as a result of a learning phase which is carried
out when the routine is installed in the system. During installation the values of some
system parameters in a theoretical model of the execution time of the routines are
estimated, or some empirical study of the behavior of the routine in the system is
carried out experimentally. The decisions taken at running time depend on the type
of computational system used. Some could be: selecting the appropriate number of
threads to use at each level of parallelism; how to assign processes to processors; or
selecting the correct block size in algorithms by blocks.

Linear algebra routines are the basic computational kernels used in many scientific
applications, and it is especially interesting to optimize and auto-optimize them,
because any improvement will produce a reduction of the execution time of the high-
level scientific applications where they are used. Furthermore, the auto-tuning tech-
niques used for linear algebra routines can be extended to routines in different fields
[4,15].

In this work, previous ideas for installing multithreaded basic linear algebra rou-
tines in large cc-NUMA systems [6] are combined and extended. In [6], auto-tuning
is carried out by applying installation techniques to the BLAS-3 matrix multiplication
routine (dgemm), which constitutes the basic subroutine for many computational rou-
tines. Here, these ideas are extended for higher-level routines. The LU and Cholesky
factorizations and their multithread implementations in LAPACK [3] and PLASMA
[24] are considered, along with symmetric and general linear systems routines based
on LDLT and LU factorizations. This variety of routines and systems allows us to
draw general conclusions about the installation and auto-tuning of shared-memory
linear algebra subroutines.

The rest of the paper is organized as follows. Section 2 discusses the background
of auto-tuning and its application to parallel linear algebra routines. Section 3 sum-
marizes the auto-tuning methodology we use for linear algebra routines in NUMA
systems. Section 4 analyzes the application of the auto-tuning methodology to MKL
[14] implementations of the matrix multiplication and matrix factorizations. In Sect. 5
the methodology is extended to higher level routines (solution of multiple linear sys-
tems), and Sect. 6 shows some experiments of the application of the methodology to
PLASMA routines. Finally, conclusions and future research lines are offered in Sect. 7.

2 Background

Advanced computational systems have a complex structure which complicates their
efficient use. Scientists and engineers use these advanced systems to solve problems
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of high computational cost, and they need optimized routines with which the solution
times of their problems are reduced. The work for optimizing the code by hand can
take several weeks or months and it requires deep knowledge of several disciplines,
like computer architecture, programming and debugging tools, and mathematical soft-
ware. Furthermore, the optimization task performed for a specific platform may not
necessarily be suitable for other platforms. Such a diverse working environment has
triggered important changes in the traditional way of optimizing the software for sci-
entific calculations, with the goal of following the pace of both the user needs and the
new hardware developments.

Automatic optimization techniques have emerged as valuable tools that provide
scientific software with environment adaptation capacity [21]. The techniques are
applied to routines in different fields like discrete Fourier transform [11], digital signal
processing transforms [25], Fast Wavelet transform [4] or quantum chemistry [26].
In many scientific problems, the basic computational components are linear algebra
routines, and so auto-tuning techniques are especially interesting in linear algebra,
and there are numerous projects in this field: ATLAS [29] optimizes computational
kernels for dense linear algebra, SPARSITY [13] works with sparse linear algebra
kernels, ABCLib-DRSSED [17] with routines for obtaining eigenvalues, etc.

In parallel linear algebra the auto-tuning is carried out in different ways and for
different computational environments. The libraries are optimized in the installation
process for shared memory machines [29] or for message-passing systems [8,9]. The
routines can adapt to the conditions of the system at a particular moment [23]. Poly-
algorithms [20] and poly-libraries [2] can be used.

Auto-tuning is usually through theoretical models of the execution time of the rou-
tine or through empirical analysis of the behavior of the routine based on exhaustive
testing. The approach in FAST [7] is an extensive benchmark followed by a poly-
nomial regression to find optimal parameters for different routines in homogeneous
and heterogeneous environments. Polynomial regression is used in [28] to decide the
most appropriate version from variants of a routine, and a black-box pruning method
is introduced to reduce the enormous implementation space. In the FIBER approach
[16] the execution time of a routine is approximated by fixing one parameter (problem
size) and varying the other (unrolling depth for an outer loop); a set of polynomial
functions of degrees 1 to 5 is generated and the best is selected; the values provided
by these functions for different problem sizes are used to generate another function
where the second parameter is now fixed and the first one is varied. The Incremental
Performance Parameter Estimation is introduced in [27], in which the estimation of the
theoretical model by polynomial regression is started from the least sampling points
and incremented dynamically to improve accuracy. In [19] the number of sampling
points is reduced by using a predetermined shape of the curve that represents the exe-
cution time, and the concept of “speed band” is introduced to represent the inherent
fluctuations in the speed due to changes in load.

Nowadays, with the increased complexity of computational environments, which
are hierarchical and heterogeneous in different ways, it is necessary to adapt the tech-
niques previously developed for simpler environments to these more complex systems.
Thus, basic linear algebra routines are being redesigned for platforms based on mul-
ticore processors [5] and for heterogeneous/hybrid architectures [1], including GPUs
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Fig. 1 Scheme of the empirical auto-tuning methodology

[18,22]. For these routines, which combine different parallel programming paradigms
and several parallelism levels, it is more difficult to obtain satisfactory theoretical mod-
els of the execution time, and the auto-tuning approach based on empirical estimations
through exhaustive testing is preferable. In this work an adaptation of this auto-tuning
method to NUMA platforms is proposed in order to select automatically the number
of threads to use in the different parallelism levels and the block sizes in algorithms
working by blocks.

3 The Auto-Tuning Methodology

Implementations of shared-memory linear algebra routines are normally not very scal-
able. This produces a degradation of the performance in large cc-NUMA systems [10].
To improve the scalability of the routines, the auto-tuning methodology explained in
[6] for the gemm routine can be extended to higher-level routines. The goal is to select
the most appropriate number of threads at each level of parallelism, together with the
values of other algorithmic parameters, like the block size (or sizes) in algorithms
by blocks. The methodology of [9] is adapted to the empirical installation in NUMA
systems. It is divided in three phases, which are represented in Fig. 1:

• Design phase. Initially, when the routine (LAR) is designed, a model of the execu-
tion time is developed, and this model is used in the subsequent phases. When an
implemented routine or library is used and the model of the execution time is not
available, it can be empirically estimated. Auto-tuning of linear algebra routines in
large cc-NUMA based on theoretical models is a difficult task, which has been ana-
lyzed in [10], but with only partially satisfactory results. The approach used here
for linear algebra routines optimization in NUMA systems is based on the empir-
ical study of the behavior of the routine, which could in turn be combined with
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modelling techniques. In any case, the algorithmic parameters (AP) influencing
the execution time of the routine are determined, and they are included in the theo-
retical model (if available) or they are used to design and implement an engine (the
Self-Optimized Linear Algebra Routine Manager, SOLAR_Manager) with which
satisfactory values of the algorithmic parameters are determined in the subsequent
phases. Typical algorithmic parameters in linear algebra routines in cc-NUMA are:

• The number of threads at each parallelism level, which can be, for example,
the number of OpenMP threads and of MKL threads in a two-level routine
which combines OpenMP and MKL parallelism.

• The block size in algorithms by blocks, like those in LAPACK and some
routines of PLASMA, or inner and outer block sizes in algorithms with two
levels of blocks, like some PLASMA routines.

Furthermore, there may be influences between the optimum values of the algorith-
mic parameters. For example, the optimum block size changes with the number
of threads, and so the values of the algorithmic parameters must be estimated
en bloc, and the SOLAR_Manager must be prepared for a combined search for
optimum values. This combined search process is not normally considered in lin-
ear algebra libraries, but the influence is especially important in large systems,
with many cores and where many threads, at different levels, should be started to
fully exploit the computational system.

• Installation phase. In the installation of the routine, when using the model of
the execution time, some system parameters in the model are experimentally esti-
mated for the specific platform in question. The model must be adapted to the
particular characteristics of large NUMA platforms, where there is a shared mem-
ory space with non uniform data access time, which makes it difficult to develop
an accurate model [10]. As an alternative, we consider an installation without the
use of a theoretical model (because the code of the routine is not available, or
due to the difficulty in obtaining an accurate model for a complex system). The
SOLAR_Manager is ready to conduct some experiments with which the behavior
of the routine in the system is analyzed. In this learning phase, experiments are
carried out for some significant problem sizes (Installation_Set), and to search
for the values of the algorithmic parameters (Tuned AP) with which the lowest
experimental execution time is obtained for each one of the Installation_Set sizes.
For example, experiments are conducted for different problem sizes, number of
threads at the different parallelism levels, and block size or sizes in routines work-
ing by blocks. In large NUMA systems, due to the memory hierarchy and the
affinity between memory blocks and processors/cores, the empirical representa-
tion of the behavior of the routine is not an easy task, and it may be necessary
to have extensive experimentation together with some method to reduce the num-
ber of experiments during the installation, but obtaining results that represent the
shape of the execution time curve well when the problem and system sizes vary.
The information generated in the installation is stored for use when the routine is
executed. This information (both in the theoretical and empirical approaches) is
included in the routine together with a decision engine to obtain an auto-tuning

123



Int J Parallel Prog (2014) 42:408–434 413

version of the routine, which is compiled and ready to be called from a non-expert
user to solve a problem efficiently.

• Execution phase. When a problem is being solved, the size of the problem and the
system size established by the user (maximum number of cores) are used to decide
the values of the algorithmic parameters which will be used. The SOLAR_Manager
is prepared to select the number of threads at each parallelism level and the block
sizes. The selection of these parameters is done in the auto-tuning routine prior to
the call to the basic routine with the values selected for the parameters. When a
theoretical model with experimental estimation of the system parameters is used,
the different possible values (from a set of combinations) for the algorithm para-
meters are substituted in the model, and these values which provide the lowest
theoretical execution time are used to solve the problem. In the empirical auto-
tuning approach, the information generated in the learning phase is stored in a
table with entries for the problem and the system sizes experimented with, and the
number of threads and block sizes that are selected are those which give the lowest
execution time for a stored size close to the size of the problem we are working
with.

Thus, the general characteristics of the methodology are:

• The key factor for the success of the methodology is how the installation of the
routine is done. The experiments in the installation should give a precise shape
of the evolution of the execution time for different problem sizes and values of
the algorithmic parameters. Exhaustive experimentation is necessary, but some
pruning method should be used to reduce the search space [19,27,28].

• The results depend on how the experiments carried out in the installation reflect
the behaviour of the routine. The SOLAR_Manager is prepared for an automatic
installation and execution, but the system manager or the user of the routine could
decide to change the parameters of the installation (the Installation_Set) to better
reflect the behavior of the routine when a change in the system occurs, for a tuned
installation for a particular system or for a better study of the behaviour of the
routine for desired problem sizes.

• The method is simple enough to be adapted for routines of different complexity
and for complete scientific problems. We analyse its application to linear alge-
bra routines of different computational levels and in different libraries (LAPACK
and PLASMA). The experiments show that the method, though simple, produces
satisfactory results.

To illustrate how it works, the empirical auto-tuning methodology is applied in the
next section to some basic routines (matrix multiplication and matrix factorizations),
and extensions to higher-level routines and to routines in PLASMA are considered in
subsequent sections.

4 Auto-Tuning of Basic Routines

Two-level routines are used to exploit the different memory levels in large NUMA
systems. OpenMP and MKL parallelism are combined, with exploitation of the implicit
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parallelism provided by the multithread implementations of LAPACK routines in
MKL. For example, a scheme of a two-level matrix multiplication may be that shown
in Algorithm 1. There is OpenMP parallelism in the pragma constructor, with a
number of threads nthomp, and MKL parallelism when the dgemm routine is called,
with nthmkl threads working in each matrix multiplication. Nested parallelism is
enabled and the MKL dynamic selection of threads is disabled because the combination
of OpenMP and MKL parallelism does not work with the dynamic selection enabled
[10]. The goal of the auto-tuning is to determine, for each problem size, the values of
nthomp and nthmkl with which the lowest execution time is obtained.

Algorithm 1 Scheme of a two-level matrix multiplication.

omp_set_nested(1);
mkl_set_dynamic(0);
omp_set_num_threads(nthomp);
mkl_set_num_threads(nthmkl) ;
# pragma omp parallel {

obtain size and in i t i a l position of the submatrix of A to be multiplied
call dgemm to multiply this submatrix by matrix B

}

In matrix factorization routines the block size is an additional parameter to be
decided. For example, in the Cholesky factorization scheme shown in Algorithm 2,
the number of OpenMP and MKL threads in the two-level dgemm or dtrsm routines
must be established, as well as the block size NB. The optimum values for the different
parameters are interdependent, i.e. the value of the block size determines the size of
the matrices in the matrix multiplication, and consequently the optimum number of
threads in the two-level dgemm.

Algorithm 2 Scheme of the LAPACK Cholesky (potrf) routine.

DO 20 J = 1, N, NB
∗ Update and factorize the current
∗ diagonal block and test
∗ for non−positive−definiteness .

JB = MIN(NB, N−J+1)
CALL dsyrk ( . . . )
CALL dpotf2 ( . . . )
IF( J+JB. LE. N ) THEN

∗ Compute the current block column.
CALL dgemm( . . . )
CALL dtrsm ( . . . )

END IF
20 CONTINUE

The installation of the routine in the system is made by executing the routine for
each matrix size specified in the Installation_Set by varying the number of OpenMP
and MKL threads at each level of parallelism from one to the number of available
cores in the system, and using a combination of threads not exceeding the maximum
number of cores (nthomp×nthmkl≤cores). Once the routine has been installed,
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the number of threads with which the lowest time is obtained for each problem size
is stored, and, at execution time, for a particular problem size, the number of threads
to be used to solve the problem is selected by using the information stored during the
installation phase.

Experiments have been carried out in different shared-memory systems, from a
medium NUMA system to a large cc-NUMA system:

• Hipatia: A cluster with 14 nodes with 2 Intel Xeon Quad-Core, 2.80 GHz, and 2
nodes with 4 Intel Xeon Quad-Core, 2.93 GHz. The nodes with 16 cores are used
in the experiments.

• Saturno: A NUMA system with 24 cores, Intel Xeon E7530 (hexa-core) proces-
sors, 1.87 GHz, 32 GB of shared-memory.

• Ben: Composed of 128 cores, Intel-Itanium-2 Dual-Core processors, 1.6 GHz, 1.5
TB of shared-memory.

• Pirineus: Comprising 1,344 cores, Intel Xeon X7542 (hexa-core) processors, 2.67
GHz, 6.14 TB of shared-memory. The maximum number of cores to be used
together is 256.

4.1 Experiments with the Matrix Multiplication

We begin by analyzing the behavior of the matrix multiplication. Initially only MKL
parallelism (1 OpenMP thread—multiple MKL threads) is considered and then the two
levels of parallelism (OpenMP+MKL). Table 1 compares, for each system and with

Table 1 Comparison of the execution times of dgemm

N Seq. Max.Cores Low.MKL Low.OMP+MKL Speed-up MKL/
(OpenMP+MKL)

Saturno

1,000 0.2498 0.0335 0.0318 (20) 0.0291 (8-3) 1.09

2,000 1.9849 0.2257 0.2257 (24) 0.2151 (6-4) 1.05

3,000 6.6704 0.7255 0.5205 (17) 0.5205 (1-17) 1.00

Ben

1,000 0.3144 0.0759 0.0269 (22) 0.0181 (5-8) 1.49

2,000 2.4626 0.3306 0.1294 (36) 0.0749 (10-6) 1.73

3,000 8.2604 0.6640 0.3076 (40) 0.2131 (24-4) 1.44

Pirineus

1,000 0.2199 0.4547 0.0322 (12) 0.0235 (2-16) 1.37

2,000 1.6815 1.1569 0.4796 (16) 0.0797 (5-12) 6.01

3,000 5.4696 1.2903 0.3955 (60) 0.2752 (4-15) 1.44

Sequential time (Seq.), execution time with the maximum number of cores (Max.Cores), lowest execu-
tion time obtained with MKL when varying the number of threads (Low.MKL) and lowest execution time
obtained using two levels of parallelism (Low.OMP+MKL), and speed-up of the OpenMP+MKL imple-
mentation with respect to MKL. In brackets, the number of threads with which the lowest time is obtained.
Times in seconds
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hyperthreading capability disabled, the execution time (in seconds) with a sequential
(1 OpenMP thread + 1 MKL thread) execution (Seq.), the execution time with MKL
parallelism and the maximum number of cores (Max.Cores), the lowest execution time
when using only MKL parallelism (Low.MKL) and the lowest execution time obtained
using two levels of parallelism (Low.OMP+MKL). The last column shows the speed-
up achieved using two levels of parallelism with respect to only MKL parallelism (the
quotient Low.MKL/Low.OMP+MKL). The numbers in brackets represent the threads
with which the lowest time is obtained. The use of two levels of parallelism provides
better speed-up with respect to the use of a single level of parallelism (Speed-up col-
umn). Furthermore, the largest reduction is not obtained with a number of threads equal
to the maximum number of cores, but with an intermediate combination of OpenMP
and MKL threads. The advantage of using two-level parallelism is more apparent in
the largest systems, where more cores can be used efficiently with OpenMP+MKL
parallelism. This can be observed in Fig. 2, which compares the number of cores with
which the lowest execution time is obtained for MKL and OpenMP+MKL.

The results of these initial experiments led us to study auto-tuning techniques capa-
ble of determining (during the installation phase) the most appropriate number of
OpenMP and MKL threads to establish at each level of parallelism in the execution
phase, so ensuring execution times close to the optimum with a minimum installa-
tion time. One initial possibility is to fix the number of OpenMP and MKL threads
according solely to the number of cores, but not to the characteristics of the system.
For example, if the number of OpenMP and MKL threads is established as the square
root of the number of cores in the system, satisfactory speed-ups are obtained in the
systems where experiments have been carried out, but the number of threads in the
two levels does not correspond to the optimal combination of OpenMP and MKL
threads. For a more exact combination, exhaustive testing can be conducted in the
installation phase, and the large installation time should be reduced with guided and
pruned search. Two installation techniques are compared:

• The first technique performs an exhaustive search in all the possible combinations
of OpenMP and MKL threads, with the total number of threads up to the number
of cores. As a result, it obtains the optimal number of threads corresponding to the
minimum execution time, but it uses a high installation time, because all possible
executions are carried out for each matrix size in the Installation_Set, varying the
number of threads up to the number of available cores.

• In order to reduce the installation time, another technique is applied, in which a
guided search based on a percentage is performed. The number of threads at each
level of parallelism is increased until we get an execution time that exceeds the
current minimum by an amount equal to the percentage established. The precision
required to get the optimum number of threads depends on the percentage chosen.
Therefore, the use of high percentage values will give a result closer to the optimum,
because more executions are carried out by ignoring values corresponding to local
optima.

Experiments with exhaustive and guided search have been carried out. The same
Installation_ Set {500, 1,000, 3,000} and Validation_Set {700, 2,000} are used during
the installation phase and for validation. Table 2 shows the execution time (in seconds)
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Fig. 2 Comparison of the
number of cores with which
the lowest execution time is
obtained in MKL and
OpenMP+MKL matrix
multiplications

obtained when applying guided search with different percentages. The combination of
OpenMP-MKL threads with which the optimum time is achieved is shown in brackets.
Figure 3 shows the quotient of the execution time for the different percentages with
respect to the lowest time. The differences with respect to the lowest experimental
time is very small for large problems in large systems, and only in Saturno is a high
percentage necessary in order not to fall in local minima, with which the execution
time is much higher than the optimum experimental. In the cc-NUMA systems the
execution times are very close to the optimum with medium percentages. Furthermore,
the time employed in the installation phase is substantially reduced with respect to that
with exhaustive search (Fig. 4), giving affordable installation times and satisfactory
execution times with the guided search technique with 10 and 20 % thresholds.
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Table 2 Execution times (in seconds) of two-level dgemm, obtained after applying exhaustive and guided
search using different percentages

N Exhaustive 1.00 % 10.00 % 20.00 % 50.00 %

Saturno

500 0.004 (6-4) 0.009 (2-2) 0.009 (2-2) 0.009 (2-2) 0.004 (2-12)

700 0.010 (6-4) 0.023 (2-2) 0.023 (2-2) 0.023 (2-2) 0.011 (2-12)

1,000 0.029 (8-3) 0.033 (3-3) 0.033 (3-3) 0.033 (3-3) 0.030 (2-12)

2,000 0.215 (6-4) 0.260 (3-3) 0.260 (3-3) 0.260 (3-3) 0.258 (2-10)

3,000 0.521 (1-17) 0.834 (3-3) 0.834 (3-3) 0.834 (3-3) 0.709 (3-8)

Ben

500 0.005 (23-1) 0.013 (1-4) 0.005 (4-6) 0.005 (4-6) 0.005 (1-20)

700 0.010 (7-4) 0.015 (1-10) 0.012 (5-6) 0.012 (5-6) 0.011 (1-19)

1,000 0.018 (10-4) 0.030 (1-16) 0.018 (6-7) 0.018 (6-7) 0.025 (1-19)

2,000 0.080 (10-5) 0.098 (3-15) 0.083 (6-8) 0.083 (6-8) 0.096 (3-16)

3,000 0.219 (25-3) 0.230 (5-14) 0.238 (6-10) 0.238 (6-10) 0.230 (5-14)

Pirineus

500 0.006 (1-24) 0.008 (4-4) 0.008 (4-4) 0.008 (4-4) 0.008 (4-4)

750 0.013 (2-16) 0.016 (4-4) 0.025 (4-6) 0.025 (4-6) 0.025 (4-6)

1,000 0.026 (2-16) 0.033 (4-3) 0.026 (4-8) 0.026 (4-8) 0.026 (4-8)

2,000 0.080 (5-12) 0.232 (4-8) 0.081 (4-15) 0.081 (4-15) 0.081 (4-15)

3,000 0.275 (4-15) 0.275 (4-15) 0.275 (4-15) 0.275 (4-15) 0.275 (4-15)

In brackets, the combination of OpenMP-MKL threads with which the optimum time is achieved

4.2 Experiments with Matrix Factorizations

In matrix factorizations, the auto-tuning methodology can be applied to its internal
dgemm routine, which is used to perform all the matrix multiplications involved in the
computation by blocks [12]. As an example, we consider the Cholesky factorization,
where the auto-tuning is applied to the dgemm routine used for the matrix multipli-
cations to update the lower triangular parts of matrix A (Algorithm 2). When using
the MKL implementation of LAPACK, the block size is automatically determined by
the ILAENV function. Therefore, it is necessary to work directly with the reference
potrf routine. The dgemm is replaced by a parallel implementation that uses two
levels of parallelism, and the auto-tuning process is performed in order to select the
most appropriate number of threads at each level. The other routines used internally in
the Cholesky factorization are called using their corresponding multithreaded MKL
implementations.

Experiments have been carried out in Saturno, and the Installation_Set used is:
{256, 768, 1,280, 1,792, 2,304, 2,816, 3,328, 3,840, 4,352}. At running time, the
decisions for the problem sizes in the Validation_Set are taken by applying an interpo-
lation process to the information stored during the installation. Table 3 shows the
execution times (in seconds) obtained with the auto-tuning methodology and the
lowest execution times obtained experimentally by a perfect oracle. The number of
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Fig. 3 Quotient of the
execution time with the number
of OpenMP and MKL threads
selected with guided search with
different percentages with
respect to that with exhaustive
search, for the OpenMP+MKL
matrix multiplications

OpenMP and MKL threads at each level of parallelism is shown in brackets. The
number of threads most frequently used is 24 (the total number of cores in the sys-
tem), but with different combinations (3-8, 4-6, 6-4). The times obtained with the
auto-tuning methodology are normally close to the optimum, and the total number of
threads used is also similar. In larger systems, differences in the execution times are
higher.

In order to analyse the improvement achieved with this methodology when applied
to linear algebra routines which call lower level routines, a comparative study of
the execution time obtained by different implementations of the Cholesky potrf
routine has been carried out. Table 4 shows the results obtained for the reference
LAPACK routine (LAPACK), a potrf LAPACK routine which internally calls the
multithreaded MKL routines dsyrk, dpotf2 and dtrsm (LAPACK+MKL), and
the modified LAPACK routine where dgemm is replaced by the auto-tuned dgemm2L
routine (LAPACK+AT). The results of applying the auto-tuning methodology are
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Fig. 4 Installation time (in
seconds) of the MKL and
OpenMP+MKL matrix
multiplication, obtained in
different systems after applying
exhaustive search and guided
search with different percentages

Table 3 Execution times (in
seconds) obtained with the
application of the auto-tuning
methodology (Auto-tuning) to
the dgemm routine of potrf
and lowest experimental
execution time (Optimum),
and number of OpenMP and
MKL threads used in these
executions, in Saturno

N Optimum Auto-tuning

512 0.0012 (1-16) 0.0014 (1-14)

1,024 0.0040 (4-6) 0.0042 (3-8)

1,536 0.0076 (4-6) 0.0080 (6-4)

2,048 0.0134 (2-12) 0.0141 (4-6)

2,560 0.0326 (7-3) 0.0842 (6-4)

3,072 0.0505 (7-3) 0.0835 (6-4)

3,584 0.0780 (3-8) 0.0786 (4-6)

4,096 0.1247 (3-8) 0.1275 (4-6)

satisfactory, but for some problem sizes a loss of performance occurs due to the
interpolation applied to select the number of OpenMP and MKL threads.

The Cholesky factorization of LAPACK (Algorithm 2) is computed by blocks.
The size and shape of these blocks vary depending on the value selected internally
by the LAPACK ILAENV function. In this function, that value is selected according to
the problem size, but not with respect to the number of threads used. Therefore, we can
reduce the execution time even more by selecting the optimum block size for each value
of the Installation_Set. To apply this idea to multithreaded routines, two parameters
must be selected: the number of threads and the block size. The number of threads is
selected for the dgemm routine by applying the auto-tuning methodology, and for the
selection of the block size it is necessary to work directly with the LAPACK potrf
routine, so that the block size selected by the ILAENV function can be modified
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Table 4 Execution times (in seconds) obtained with different versions of the potrf routine: the reference
LAPACK routine (LAPACK), the LAPACK routine with multithreaded MKL kernels (LAPACK+MKL)
and the LAPACK routine with the auto-tuning methodology (LAPACK+AT), in Saturno

N LAPACK LAPACK+MKL LAPACK+AT

512 0.043 0.0039 (9) 0.0038 (1-14)

1,024 0.333 0.0129 (12) 0.0116 (3-8)

1,536 1.105 0.0246 (24) 0.0244 (6-4)

2,048 2.614 0.0755 (24) 0.0766 (4-6)

2,560 5.075 0.1091 (24) 0.1656 (6-4)

3,072 8.787 0.2030 (21) 0.2376 (6-4)

3,584 13.935 0.2792 (21) 0.3230 (4-6)

4,096 20.895 0.3907 (21) 0.3839 (4-6)

In brackets, the number of threads with which the execution times are obtained

Table 5 Execution times (in seconds) obtained for the potrf LAPACK routine with a block size selected
by the ILAENV function (LAPACK+MKL with ILAENV) and the LAPACK routine with auto-selection
of the block size and number of OpenMP and MKL threads (LAPACK+AT), in Saturno

N LAPACK+MKL ILAENV LAPACK+AT threads+block

Block Time Block Time

512 32 0.0039 (9) 128 0.0034 (1-14)

1,024 96 0.0129 (12) 128 0.0115 (3-8)

1,536 192 0.0246 (24) 64 0.0265 (6-4)

2,048 384 0.0755 (24) 128 0.0621 (4-6)

2,560 384 0.1091 (24) 64 0.0878 (6-4)

3,072 512 0.2030 (21) 64 0.1457 (6-4)

3,584 512 0.2792 (21) 256 0.2524 (4-6)

4,096 512 0.3907 (21) 256 0.3645 (4-6)

In brackets, the number of OpenMP and MKL threads with which the lowest times are obtained

in order to select the best block size. Table 5 compares, for different matrix sizes,
the execution time obtained for the potrf routine when the block size is internally
selected by ILAENV and the execution time when the block size is selected with the
auto-tuning technique. All the experiments have been done in Saturno using the same
Installation_Set {256, 768, 1,280, 1,792, 2,304, 2,816, 3,328, 3,840, 4,352}, with block
sizes power of 2 from 32 to 512 and a number of cores from 1 to 24. When the routine
potrf uses the ILAENV function to select the block size, the same value is used for
several matrix sizes regardless of the number of threads. When the number of threads
and the block size are selected with the auto-tuning methodology, lower execution
times are obtained. For small matrix sizes, the use of larger blocks is preferable, but
for larger sizes a lower value than that selected by the ILAENV function (which does
not consider the number of threads, only the matrix size) is more appropriate. Figure 5
compares the speed-up with respect to the LAPACK+MKL version with the block size
selected with the ILAENV function of the two versions of auto-tuning: when only the
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Fig. 5 Quotient of the execution
time of auto-tuning with threads
selection and with threads and
block size selection, with respect
to LAPACK+MKL with block
size selected with ILANEV, for
the potrf routine in Saturno

number of threads is selected and when the block size is also selected as a function of
the number of threads. The improvement achieved by selecting the appropriate block
size is between 6 and 30 % for most matrix sizes. Therefore, if we also use the block
size joint with the selection of the number of threads in the auto-tuning methodology,
better results are obtained for the potrf routine. Similar results are obtained for other
routines, and the advantage of the auto-tuning is more apparent in larger systems.

5 Extension of the Methodology to Higher Level Routines

The same methodology applied to low level routines can be extended to other routines
which call low level routines. With the Cholesky factorization we have shown how the
methodology can be directly applied to the routine or to a lower level routine (dgemm)
used internally. For higher level routines we have the same possibilities. For example,
the dgesv routine to solve general multiple linear systems uses the LU factorization,
which in turn uses the matrix multiplication. The auto-tuning technique can be applied
to the matrix multiplication and then the LU factorization uses the two level matrix
multiplication with a different number of threads at each level and for the different
multiplications carried out in the factorization process. Otherwise, the auto-tuning can
be made at a higher level in the LU factorization by selecting the optimum number of
threads and the block size. Once we have an auto-tuning LU factorization it can be
used in the linear system routine.

LAPACK routine sysv can be used to solve a linear system AX = B with A a
symmetric matrix. But the implementation of this routine in LAPACK (or in MKL) is
not very scalable, and when the number of cores is large it may be preferable to use
the general routine gesv. The auto-tuning methodology can be used in this case to
decide both the routine to use and the values of the parameters. The joint installation of
these routines should provide information of the preferred routine and of the number
of threads (and consequently of cores) to use when solving a particular problem,
depending on the problem size and the size of the computational system (the number
of cores reserved to solve the problem).

With the Installation_Set {256, 768, 1,280, 1,792, 2,304, 2,816, 3,328, 3,840} in
Saturno the installation time with the exhaustive search is 79 s for dsysv, 62 for
dgesv, 217 for zsysv and 231 for zgesv, giving a total of 589 s. This is not long,
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but it can be reduced with a guided search as explained in Sect. 4 for the matrix
multiplication. For example, a guided search for dsysv with a stopping threshold of
1 % gives an installation time of 9 s, and when the threshold is 10 % the installation time
rises to 36 s. This reduction in the installation time could produce a worse selection of
the number of threads at execution time, but we can see in Fig. 6 (top) that the selection
is satisfactory with the 10 % threshold, for which the execution time and the selected
number of threads practically coincide with those obtained with exhaustive search. If
we consider that the deviation in the execution time is obtained as the mean of the
relative deviation for all the sizes

( |obtained time−optimum time|
optimum time

)
, exhaustive search gives a

deviation of approximately 4.8 %, and so this deviation is the minimum we can expect
from any installation method. Lower deviations are obtained with guided search (4.3
and 2.5 % with guided search with 1 and 10 % threshold), which means guided search
produces satisfactory results with a lower installation time. These results are due to
the shape of the execution time of the routine in Saturno, where the execution time is
practically constant from a number of threads on. For larger systems the differences are
bigger. The figure also compares (bottom) the selection of the number of threads. The
selection with exhaustive search and guided search with 10 % threshold practically
coincide, and the number of threads is very close to the optimum. The mean deviation
of the selected number of threads with respect to the optimum is of 2 threads for

Fig. 6 Comparison of the optimum execution time (top) and number of threads (bottom) with those obtained
with exhaustive search and guided search with 1 and 10 % threshold. Routine dsysv, in Saturno
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exhaustive search and guided search with 10 % threshold, but with a 1 % threshold
the deviation rises to approximately 5, which means a worse selection which has no
proportional influence on the execution time, due to its flat shape.

The guided installation can be extended to be applied to the joint installation of
several similar routines. For example, when installing dsysv and dgesv the infor-
mation generated for one of them can be used to guide the search for the other routine.
If the first routine being installed is dsysv and the number of threads selected for
each problem size in the installation is used to start the search for this problem size
for the routine dgesv, the installation time for dgesv with a guided search with 1
and 10 % threshold is 8 and 9 s. So, the installation time of the two routines is reduced
from 141 to 17 and 45 s.

The routine to use in the solution of the problem can be selected using the infor-
mation stored in the installation. To do so, it is necessary to store for each problem
size in the Installation_Set the number of threads with which the execution time of the
routine gesv is for the first time lower than that of the corresponding routine sysv.
For a given problem size in a Validation_Set we consider that the change from sysv
to gesv occurs for the same number of threads as for the closest problem size in
the Installation_Set. The number of threads at which the change happens is shown in
Table 6. The table shows results in Saturno and in a quadcore laptop. For the problem
sizes in which the change does not happen at the predicted point, two values are shown:
the number of threads at which gesv is better than sysv for the first time, and the
number of threads at which the change happens according to the information stored
in the installation. In Saturno, the number of threads at which the change happens is
well predicted in 35 of 46 cases, and in the laptop in 30 of 46, which means the correct
selection is made approximately 70 % of the times. The behavior in the two systems is
slightly different, with the number of threads at which the change happens increasing
with the problem size more quickly in Saturno than in the laptop, which may be due
to the difference in the memory hierarchy in the two systems and the use of different
versions of MKL. Furthermore, an unexpected behaviour is observed in the laptop,
where the gesv routines with one thread are preferred to sysv for small problem
sizes, which is detected at installation time.

If the routines dsysv and dgesv are installed together in Saturno with determi-
nation of the best routine for each number of cores, the installation time is reduced
from 140 to 48 s, and in the joint installation of zsysv and zgesv the reduction is
from 447 to 135 s.

As we did with the Cholesky factorization in the previous section, the multithread
MKL or reference LAPACK routines can be used to introduce auto-tuning with selec-
tion of the number of threads and the block size. To compare the behavior of MKL
and reference LAPACK routines, the routines zsysv and zgesv are compared in
Saturno in Table 7 and Fig. 7. The table shows the execution time of the two rou-
tines in their implementation in MKL and reference LAPACK, with one thread and
24 threads, and the figure shows the quotient of the execution time obtained with
reference LAPACK with respect to that with MKL. The block size used by MKL is
not known, and LAPACK always selects a block size of 64, regardless of the number
of threads. We can see that MKL slightly improves on LAPACK in the sequential
version (approximately 4 %), which can be produced by a suitable selection of the
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Table 6 Comparison of the number of threads at whichgesv outperformssysv and the number of threads
at which this happens according to the information stored at installation time, with different problem sizes
and in two different systems

Size Saturno Laptop

dsysv-dgesv zsysv-zgesv dsysv-dgesv zsysv-zgesv

384 2 3/2 1 2/1

512 2 3/2 2/1 2/1

640 2 3 2/1 2

896 3/2 3 2/1 3/2

1,024 2 3 1 2

1,152 3 3 2 3

1,408 3 3 2 3

1,536 3 3 2 3

1,664 3 3 2 3

1,920 3 5/3 2 3

2,048 3 5/3 2 3

2,176 4 5 2 3

2,432 4 5 2 3

2,560 4 5 2 3

2,688 4 5 2 3

2,944 5/4 7 2 3

3,072 3/4 7 3/2 3

3,200 5/4 7 2/3 3

3,456 5/4 7 3 3

3,584 5/4 9/7 2/3 4/3

3,712 5 9 3/4 3/–

3,968 5 9 3/4 3/–

4,096 5 9 3/4 3/–

Deviation 0.26 0.35 0.30 0.43

block size in MKL, but also by additional internal optimizations. The improvement
with 24 threads is higher, around 20 % for zsysv and 60 % for zgesv. No dynamic
selection of the number of threads was allowed in MKL, so the improvement is not
due to the number of threads. It is possible that MKL changes the block size with
the number of threads, but additional optimizations must be included, especially in
zgesv. In reference LAPACK the parallelism is achieved in the basic routines which
zsysv and zgesv call (MKL routines), and so the parallelism could be at a lower
level than that in MKL.

Our goal is not to reduce the execution time obtained with the MKL routines, but to
analyze the parameters selection methodology. We consider the joint selection of the
number of threads and the block size. Table 8 compares the execution time in Saturno
of the routines zsysv and zgesv in the cases:
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Table 7 Comparison of the
execution time of MKL and
reference LAPACK routines
zsysv and zgesv for different
problem sizes, when using
1 and 24 threads, in Saturno

Size zsysv zgesv

MKL LAPACK MKL LAPACK

1 thread

512 0.036 0.040 0.060 0.060

1,024 0.257 0.274 0.458 0.455

1,536 0.831 0.879 1.499 1.516

2,048 1.926 2.013 3.487 3.560

2,560 3.697 3.865 6.707 6.981

3,072 6.304 6.554 11.49 11.99

Total 13.05 13.62 23.70 24.55

24 threads

512 0.024 0.032 0.009 0.020

1,024 0.112 0.139 0.038 0.090

1,536 0.294 0.332 0.113 0.229

2,048 0.525 0.624 0.250 0.472

2,560 0.873 1.042 0.540 0.842

3,072 1.269 1.525 0.903 1.296

Total 3.09 3.69 1.85 2.94

Fig. 7 Quotient of the
execution time of routines
zsysv and zgesv in reference
LAPACK with respect to MKL
for different problem sizes,
when using 1 and 24 threads,
in Saturno

• With a block size of 64 and a number of threads equal to that of available cores
(column 64-24). This seems to be a good choice because when more cores are
used a larger reduction of the execution time is expected, and 64 is a reasonable
block size, and is selected by the LAPACK routine ILAENV.

• With a block size of 64 and the number of threads with which the lowest execution
time is obtained (column 64-thr).

• With the combination of block size and number of threads which gives the lowest
experimental execution time (Lowest).

• The rows for sizes 1,024, 2,048 and 3,072 show, in the column AT-blo-thr, the
execution time with the block size and number of threads selected. The rows for
sizes 512, 1,536 and 2,560 correspond to the values obtained with executions for
all the number of cores (from 1 to 24) and block sizes a multiple of 8 from 8 to 256.
These three matrix sizes could be used for installation, and the decisions for other
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Table 8 Comparison of the execution time of the routines zsysv and zgesv in Saturno, for block size
and number of threads fixed at 64 and 24 (64-24), for the best number of threads with block size 64 (64-thr),
for the best combination of block size and number of threads (optimum), and with the block size and number
of threads empirically selected from information obtained at installation time (emp-blo-thr)

Size 64-24 64-thr Lowest AT-blo-thr

zsysv

512 0.032 0.029 (17) 0.025 (18-40)

1,024 0.139 0.131 (21) 0.116 (18-40) 0.116 (18-32)

1,536 0.332 0.322 (21) 0.292 (18-32)

2,048 0.624 0.611 (21) 0.585 (21-32) 0.596 (20-32)

2,560 1.042 1.032 (17) 0.961 (22-40)

3,072 1.525 1.525 (24) 1.446 (24-48) 1.517 (22-40)

zgesv

512 0.020 0.020 (21) 0.018 (18-32)

1,024 0.090 0.090 (24) 0.083 (24-32) 0.085 (21-32)

1,536 0.228 0.228 (24) 0.207 (22-24)

2,048 0.472 0.472 (24) 0.449 (24-48) 0.460 (23-32)

2,560 0.819 0.819 (24) 0.804 (24-56)

3,072 1.296 1.296 (24) 1.294 (22-56) 1.307 (23-56)

The number of threads and the optimum block size used in the different cases are also shown

problem sizes (1,024, 2,048 and 3,072 in the table) are taken using the information
stored in the installation.

Some conclusions can be drawn:

• The selection of the number of threads slightly reduces the execution time for small
matrices or in zsysv, with a worse parallelism, which means that the best number
of threads does not coincide normally with the maximum. In larger systems the
differences would be more apparent.

• The selection of the block size and the number of threads allows additional reduc-
tion of the execution time, which is greater for small matrices, and with a maximum
percentage of reduction in the experiments of about 18 %.

• The use of auto-tuning normally produces a reduction in the execution time with
respect to that with block size 64 and 24 cores, but this reduction is lower than the
optimum obtained experimentally, which is normal because auto-tuning does not
always select the best parameters combination.

6 Application of the Methodology to PLASMA Routines

The same methodology shown with the multithread MKL implementation of LAPACK
can be applied to other linear algebra packages. The PLASMA library [24] is con-
ceived to exploit the multicore capacity of present systems, and we show here some
experiments which prove that empirical auto-tuning techniques are also applicable to
PLASMA.
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Fig. 8 Comparison of the execution times of the routines dgemm, dpotrf, dgetrf and zgesv, in
Hipatia with 16 threads
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Fig. 9 Comparison of the execution times of the routines dgemm, dpotrf, dgetrf and zgesv, in
Saturno with 24 threads
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The behavior of some routines in LAPACK and PLASMA in medium multicore
systems is shown in Figs. 8 (Hipatia) and 9 (Saturno). The results with Hipatia have
been obtained in a node with 16 cores using 16 threads, and in Saturno 24 threads have
been used. For all the routines the default values were taken for the block sizes: block
and inner block equal to 120 for the matrix multiplication and the Cholesky factoriza-
tion and block of size 200 and inner block of size 20 for the LU factorization and the
complex linear system routine (which uses the LU factorization). The comparison of
the two libraries is similar in both systems:

• Better results are obtained with MKL for large matrices. PLASMA outperforms
MKL only for some small problem sizes.

• The percentage of the improvement of MKL with respect to PLASMA is different
in the two systems and for the different routines, which makes it impossible to
draw general conclusions about the advantage of using MKL.

• The differences in the execution time between the two libraries is not very large, and
the selection of the optimum block sizes in PLASMA could make it competitive
with MKL. One good option for optimization is to consider the selection of the
library together with the number of threads and the block sizes.

So, the same techniques used with LAPACK and MKL routines to select the best
implementation and configuration of parameters for a particular problem size and in
a particular system can be applied to PLASMA.

To achieve high performance with multicore architectures, PLASMA relies on
tile algorithms, which provide fine granularity parallelism. Its performance strongly
depends on tunable execution parameters trading off utilization of different system
resources. The outer block size (N B) trades off parallelization granularity and sche-
duling flexibility with single core utilization, while the inner block size (I B) trades off
memory load with extra-flops. In this case the values to search for in the installation are
the number of threads, N B and I B. The search begins with the smallest problem size
in the Installation_Set, with which the experimentation time is small. From these initial
optimum tuning parameters the search for larger problems can continue in different
ways. Two possibilities are considered:

• A guided search exploring all the possible combinations (PLASMA-GS-All) of
number of threads, outer block size, and inner block size (th, N B, I B) begins
by using the best combination of parameters found for the previous matrix size
in the Installation_Set. The search continues using neighbouring values for the
parameters obtained by applying a pre-set of increments for each parameter (th ±
th_inc, N B±N B_inc, I B± I B_inc), until we get an execution time that exceeds
the minimum in an amount equal to the threshold established. As a result, we
obtain the optimal number of threads, N B and I B for each problem size in the
Installation_Set, but with a high installation time, because 27 executions are carried
out for each matrix size in the Installation_Set, varying th, N B and I B.

• The second technique (PLASMA-GS-Par) performs a guided search in each para-
meter, varying the value of one parameter and maintaining the value of the other
parameters fixed. As in the previous case, the search starts with the value for the
parameters that provide the best execution time for the previous problem size in
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Table 9 Comparison of the time obtained for the PLASMA LU routine with the thread, N B and I B config-
uration (in brackets) selected with the installation techniques PLASMA-GS-All and PLASMA-GS-Par,
the lowest time obtained with MKL LU and the lowest time obtained with PLASMA LU

Size PLASMA-GS-All PLASMA-GS-Par MKL PLASMA

2,000 0.11 (17-103-10) 0.10 (15-128-98) 0.11 0.15

3,000 1.17 (23-78-34) 0.21 (23-158-106) 0.28 0.29

4,000 0.39 (24-158-47) 0.40 (24-173-119) 0.55 0.50

5,000 0.69 (24-188-52) 0.70 (24-183-148) 1.06 0.87

6,000 1.17 (23-228-65) 1.17 (23-198-184) 0.87 0.87

7,000 1.76 (23-248-59) 1.74 (24-218-208) 2.36 2.13

8,000 2.48 (24-248-78) 2.52 (24-258-238) 3.45 3.08

9,000 3.50 (24-268-87) 3.50 (24-288-270) 4.73 4.31

10,000 4.70 (24-320-110) 4.68 (24-288-276) 5.78 5.79
Total 15.97 15.02 19.19 17.99

In Saturno, times in seconds
Bold values indicate the lowest time obtained for each problem size

the Installation_Set. The search for the best possible value for each parameter ends
when the execution time exceeds the threshold.

Some PLASMA routines depend on one parameter and on the number of threads
(for example, the Cholesky factorization) while others depend on the three parameters.
As an example we analyse how the installation process works for the LU factorization,
which depends on the three parameters. The Installation_Set used in the experiments
is {500, 1500, 2500, 3500, 4500, 5500, 6500, 7500, 8500, 9500}; the increment values
are th_inc = 1, N B_inc = 10 and I B_inc = 2; and the threshold value is set to
10 %.

Tables 9 (Saturno) and 10 (Hipatia) show, for different matrix sizes, the exe-
cution time (in seconds) obtained for the PLASMA LU factorization when the
parameters are selected with the two techniques considered, the lowest execution
time obtained for the MKL LU factorization, and the lowest time obtained with
PLASMA LU factorization without parameter tuning. The improvements obtained
with the two techniques are close, with a difference in the total time of approxi-
mately 6 % in favour of PLASMA-GS-Par in Saturno and of approximately 10 %
in favour of PLASMA-GS-All in Hipatia. The time required to tune the parame-
ters with PLASMA-GS-All is much higher than that with PLASMA-GS-Par. For
example, in Saturno, this time with PLASMA-GS-All is about 50 min, while with
PLASMA-GS-Par the installation time is reduced to approximately 10 min. In both
systems, the reduction of the execution time obtained with the parameters tuning
methodology is important, of about 26 % with respect to MKL and 20 % with respect
to PLASMA without tuning in Saturno, and of about 15 % with respect to MKL and
23 % with respect to PLASMA without tuning in Hipatia.

The same techniques used with the LU factorization can be applied to other rou-
tines, but different results are obtained depending on the particular routine and system.
For example, when the auto-tuning methodology is applied to the Cholesky factoriza-
tion in Saturno with the Installation_Set {500, 1000, 1500, 2000, 2500, 3000, 3500,
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Table 10 Comparison of the time obtained for the PLASMA LU routine with the thread, N B and I B config-
uration (in brackets) selected with the installation techniques PLASMA-GS-All and PLASMA-GS-Par,
the lowest time obtained with MKL LU and the lowest time obtained with PLASMA LU

Size PLASMA-GS-All PLASMA-GS-Par MKL PLASMA

2,000 0.14 (15-154-30) 0.18 (16-157-41) 0.15 0.15

3,000 0.37 (16-204-55) 0.37 (16-204-167) 0.37 0.28

4,000 0.59 (16-234-75) 0.66 (16-234-221) 0.70 0.66

5,000 0.95 (16-284-100) 1.17 (16-274-239) 1.20 1.12

6,000 1.58 (16-334-125) 1.72 (16-324-290) 1.85 1.82

7,000 2.26 (16-364-140) 2.54 (16-364-343) 2.66 2.78

8,000 3.26 (16-404-165) 3.61 (16-404-385) 3.86 4.09

9,000 4.48 (16-424-185) 4.85 (16-424-416) 5.11 5.66

10,000 5.86 (16-424-190) 6.40 (16-424-420) 6.71 7.67

Total 19.49 21.50 22.61 24.23

In Hipatia, time in seconds
Bold values indicate the lowest time obtained for each problem size

4000, 4500, 5000}, the installation time is reduced from approximately 57 min with
exhaustive search to approximately 7 min with guided search with 10 % threshold.
The auto-tuning selects satisfactory values of the parameters, but in this case only
two parameters are tuned (number of threads and block size) and the advantage of
MKL with respect to PLASMA is bigger than for the LU factorization (Fig. 9), and
the auto-tuned PLASMA version is surpassed by the implementation in MKL.

7 Conclusions

An empirical auto-tuning methodology for linear algebra routines in NUMA systems
has been analyzed. The methodology has been tested in different multicore systems
and with routines of different computational levels and from different linear alge-
bra packages. Some aspects of the methodology have been explained and exhaustive
experimentation shows their applicability:

• The values of some parameters are selected: the number of OpenMP and MKL
threads in two-level routines, the block size in algorithms by blocks, or the outer
and inner block sizes in implementations with two block levels (for example, the
PLASMA LU factorization).

• When working at a medium or high computational level (routines which call lower
level routines), the methodology can be applied directly to the medium or high
level routine or it can use an auto-tuned version of the lower level routines.

• Better results are obtained when the parameters are auto-tuned jointly rather than
separately. This happens if we consider the block size as dependent on the number
of threads and the problem size, and not only on the latter.

• Satisfactory parameters selection is obtained with low installation time with guided
search techniques, which can be implemented to avoid falling into local minima.
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• The joint installation of a group of similar routines can be conducted in such a
way that an important reduction of the installation time is obtained.

• In some cases in which several routines, implementations or libraries are available
to solve a particular problem, the joint installation of them for auto-tuning allows
the best routine together with the values of the parameters to be selected.

• The results obtained are system-dependent, and no general conclusions about
the best values for the parameters can be drawn, but the methodology has been
shown to provide satisfactory results in systems of different characteristics, and
the advantage of using the methodology is more apparent in larger systems, where
the range of possible values for the parameters increases.

In conclusion, the methodology has been shown to be versatile and useful for the
design of efficient routines, which can execute efficiently (obtaining execution times
close to the lowest achievable) without the need for user expertise.

We are working on the application of similar methodologies to other types of
parallelism (message-passing and GPUs) to routines of different types or to particular
scientific applications.
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